1
|
Roncero E, Álvarez M, Cerrada L, Delgado J, Andrade MJ. Debaryomyces hansenii alone and in combination with plant extracts reduce ochratoxin A in dry-cured "chorizo". Food Res Int 2025; 212:116512. [PMID: 40382059 DOI: 10.1016/j.foodres.2025.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The presence of ochratoxin A (OTA) in dry-cured sausages is a current hazard. To control its contamination, the use of biocontrol agents (BCAs) of plant and microbial origin as anti-ochratoxigenic strategies is being carried out. The aim of this study was to evaluate the anti-ochratoxigenic effect of rosemary essential oil (REO), acorn shell extract (AE) and Debaryomyces hansenii against OTA production by Penicillium nordicum in the Spanish dry-cured sausages "chorizo". For this purpose, BCAs were individually and in combination inoculated in the presence of P. nordicum on the surface of portions of "chorizo" and incubated under typical ripening conditions. Samples were taken for analysing OTA production and proteomic profile variation as well as for physico-chemical and sensory analyses of the sausage portions. Individual application of REO and AE significantly increased OTA production, likely as a response to stressful stimuli. On the other hand, treatments that included D. hansenii significantly decreased it, apparently due to the influence of this yeast on triggering OTA degradation processes of P. nordicum. Although physico-chemical and sensory characteristics were altered in some cases, the degree of acceptability was high. These results reflect the possibility of using D. hansenii as an effective BCA with the ability to mitigate increased OTA production in the presence of plant-derived BCAs inoculated on the surface of "chorizo". Additionally, the sensory results suggest a plausible industrial application due to the absence of negative effects on the final product.
Collapse
Affiliation(s)
- Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Micaela Álvarez
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucía Cerrada
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain..
| | - María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
2
|
Shekhar R, Raghavendra VB, Rachitha P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep 2025; 14:101952. [PMID: 40162074 PMCID: PMC11954124 DOI: 10.1016/j.toxrep.2025.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
A comprehensive overview of food mycotoxins, their toxicity, and contemporary detoxification techniques is given in this article. Mycotoxins, which are harmful secondary metabolites generated by a variety of fungi, including Fusarium, Aspergillus, and Penicillium, provide serious health concerns to humans and animals. These include hepatotoxicity, neurotoxicity, and carcinogenicity. Mycotoxins are commonly found in basic food products, as evidenced by recent studies, raising worries about public health and food safety. The article discusses detection techniques such as enzyme-linked immunosorbent assays (ELISA), and quick strip tests. Moreover, the use of various control systems associated with the detoxification of mycotoxinis highlighted. In addition, novel detoxification strategies such as nanotechnology, plant extracts, and omics studies were also discussed. When taken as a whole, this analysis helps to clarify the pressing need for efficient management and monitoring techniques to prevent mycotoxin contamination in the food chain.
Collapse
Affiliation(s)
| | | | - P. Rachitha
- Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India
| |
Collapse
|
3
|
Chen J, Wang K, Godana EA, Solairaj D, Yang Q, Zhang H. Construction of Composite Microorganisms and Their Physiological Mechanisms of Postharvest Disease Control in Red Grapes. Foods 2025; 14:408. [PMID: 39942001 PMCID: PMC11816884 DOI: 10.3390/foods14030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Red grapes often suffer from postharvest diseases like blue mold and black mold caused by Penicillium expansum and Aspergillus niger. Biological control using beneficial yeasts and bacteria is an effective method to manage these diseases. Rhodotorula sp. and Bacillus sp. are effective microorganisms for the control of postharvest diseases of red grapes. This study combined two yeast strains (Rhodotorula graminis and Rhodotorula babjevae) and two bacterial strains (Bacillus licheniformis and Bacillus velezensis) to investigate their biological control effects on major postharvest diseases of red grapes and explore the underlying physiological mechanisms. Research showed that compound microorganism W3 outperformed the others; it reduced spore germination and germ tube growth of P. expansum and A. niger, while its volatiles further inhibited pathogen growth. Additionally, the treatment enhanced the antioxidant capacity of grapes and increased resistance to pathogens by boosting peroxidase activities, superoxide dismutase, catalase and ascorbate peroxidase, phenylalanine ammonolyase, and polyphenol oxidase. Furthermore, the combined treatment increased the activity and accumulation of antifungal compounds such as total phenols and flavonoids, thereby improving disease resistance and reducing decay. Therefore, composite microorganisms combining various antagonistic strains may offer a viable substitute for tackling postharvest diseases in red grapes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.C.); (K.W.); (E.A.G.); (D.S.); (Q.Y.)
| |
Collapse
|
4
|
Ning M, Guo Q, Guo P, Cui Y, Wang K, Du G, Wang Z, Yuan Y, Yue T. Biocontrol activity of Kluyveromyces marxianus YG-4 against Penicillium expansum LPH9 on apples. Int J Food Microbiol 2025; 427:110943. [PMID: 39454321 DOI: 10.1016/j.ijfoodmicro.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Penicillium expansum (P. expansum), a widespread fungal pathogen, causes serious economic loss and public health concerns. The aim of this research is to investigate the antifungal effect of Kluyveromyces marxianus YG-4 (K. marxianus YG-4) against P. expansum and possible mechanism. The results showed that competition for nutrients and space, as well as the release of volatile organic compounds (VOCs), are the antifungal mechanisms. Citronellol may be the antifungal component of K. marxianus YG-4 VOCs based on GC-MS analysis. Further experiments had shown that citronellol inhibited the growth of P. expansum LPH9 by damaging the cell structure, disrupting the redox system, reducing antioxidant enzyme activity, and causing oxidative damage. K. marxianus YG-4, K. marxianus YG-4 VOCs and citronellol can effectively inhibit the spore germination of P. expansum on apples. The above results indicated that K. marxianus YG-4 had strong biocontrol activity and can be used as an excellent candidate strain for fruit preservation.
Collapse
Affiliation(s)
- Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Technology, Henan Agr Univ, Zhengzhou 450002, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
6
|
Ntungwe EN, Tchana AN, Abia WA. Mycotoxin management: exploring natural solutions for mycotoxin prevention and detoxification in food and feed. Mycotoxin Res 2024; 40:519-534. [PMID: 39271576 DOI: 10.1007/s12550-024-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mycotoxins, secondary metabolites produced by various fungi, pose a significant threat to food and feed safety worldwide due to their toxic effects on human and animal health. Traditional methods of mycotoxin management often involve chemical treatments, which may raise concerns about residual toxicity and environmental impact. In recent years, there has been growing interest in exploring natural alternatives for preventing mycotoxin contamination and detoxification. This review provides an overview of the current research on the use of natural products for mitigating mycotoxin risks in food and feed. It encompasses a wide range of natural sources, including plant-derived compounds, microbial agents, and enzymatic control. The mechanisms underlying the efficacy of these natural products in inhibiting mycotoxin synthesis, adsorbing mycotoxins, or enhancing detoxification processes are discussed. Challenges and future directions in the development and application of natural products for mycotoxin management are also addressed. Overall, this review highlights the promising role of natural products as sustainable and eco-friendly alternatives for combating mycotoxin contamination in the food and feed supply chain.
Collapse
Affiliation(s)
- Epole Ngolle Ntungwe
- Department of Chemistry, University of Coimbra, P-3004-535, Coimbra, Portugal.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
| | - Angéle N Tchana
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Wilfred Angie Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
- Institute for Global Food Security, School of Biological Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DL, UK.
| |
Collapse
|
7
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
8
|
Neto CBS, Gomes TG, Filho EXF, Fontes W, Ricart CAO, de Almeida JRM, de Siqueira FG, Miller RNG. An Enzymatic and Proteomic Analysis of Panus lecomtei during Biodegradation of Gossypol in Cottonseed. J Fungi (Basel) 2024; 10:321. [PMID: 38786676 PMCID: PMC11121953 DOI: 10.3390/jof10050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Cotton is an important plant-based protein. Cottonseed cake, a byproduct of the biodiesel industry, offers potential in animal supplementation, although the presence of the antinutritional sesquiterpenoid gossypol limits utilization. The macrofungus Panus lecomtei offers potential in detoxification of antinutritional factors. Through an enzymatic and proteomic analysis of P. lecomtei strain BRM044603, grown on crushed whole cottonseed contrasting in the presence of free gossypol (FG), this study investigated FG biodegradation over a 15-day cultivation period. Fungal growth reduced FG to levels at 100 μg/g, with a complex adaptive response observed, involving primary metabolism and activation of oxidative enzymes for metabolism of xenobiotics. Increasing activity of secreted laccases correlated with a reduction in FG, with enzyme fractions degrading synthetic gossypol to trace levels. A total of 143 and 49 differentially abundant proteins were observed across the two contrasting growth conditions after 6 and 12 days of cultivation, respectively, revealing a dynamic protein profile during FG degradation, initially related to constitutive metabolism, then later associated with responses to oxidative stress. The findings advance our understanding of the mechanisms involved in gossypol degradation and highlight the potential of P. lecomtei BRM044603 in cotton waste biotreatment, relevant for animal supplementation, sustainable resource utilization, and bioremediation.
Collapse
Affiliation(s)
- Clemente Batista Soares Neto
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| | - Taísa Godoy Gomes
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (W.F.); (C.A.O.R.)
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (W.F.); (C.A.O.R.)
| | | | | | - Robert Neil Gerard Miller
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (C.B.S.N.); (T.G.G.)
| |
Collapse
|
9
|
Álvarez M, Agostini I, Sampaio A, Román Á, Delgado J, Rodrigues P. Unravelling the effect of control agents on Gnomoniopsis smithogilvyi on a chestnut-based medium by proteomics. PEST MANAGEMENT SCIENCE 2024; 80:1895-1903. [PMID: 38053437 DOI: 10.1002/ps.7920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Gnomoniopsis smithogilvyi is the major chestnut pathogen, responsible for economic losses and recently described as a 3-nitropropionic acid and diplodiatoxin mycotoxin producer. Bacillus amyloliquefaciens QST 713 (Serenade® ASO), B. amyloliquefaciens CIMO-BCA1, and the fungicide Horizon® (tebuconazole) have been shown to reduce the growth of G. smithogilvyi. However, they enhanced mycotoxin production. Proteomics can clarify the mould's physiology and the impact of antifungal agents on the mould's metabolism. Thus, the aim of this study was to assess the impact of Horizon®, Serenade®, and B. amyloliquefaciens CIMO-BCA1 in the proteome of G. smithogilvyi to unveil their modes of action and decipher why the mould responds by increasing the mycotoxin production. For this, the mycelium close to the inhibition zone provoked by antifungals was macroscopically and microscopically observed. Proteins were extracted and analysed using a Q-Exactive plus Orbitrap. RESULTS The results did not elucidate specific proteins involved in the mycotoxin biosynthesis, but these agents provoked different kinds of stress on the mould, mainly affecting the cell wall structures and antioxidant response, which points to the mycotoxins overproduction as a defence mechanism. The biocontrol agent CIMO-BCA1 acts similar to tebuconazole. The results revealed different responses on the mould's metabolism when co-cultured with the two B. amyloliquefaciens, showing different modes of action of each bacterium, which opens the possibility of combining both biocontrol strategies. CONCLUSION These results unveil different modes of action of the treatments that could help to reduce the use of toxic chemicals to combat plant pathogens worldwide. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Micaela Álvarez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isadora Agostini
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ana Sampaio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Laboratório Associado Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar, Universidad de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
| | - Ángel Román
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Paula Rodrigues
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
10
|
Agirman B, Carsanba E, Settanni L, Erten H. Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol. Yeast 2023; 40:457-475. [PMID: 37653692 DOI: 10.1002/yea.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.
Collapse
Affiliation(s)
- Bilal Agirman
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Erdem Carsanba
- Centro de Biotecnologia e Química Fina (CBQF), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Palermo, Italy
| | - Huseyin Erten
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
11
|
Hof C, Khan MF, Murphy CD. Endogenous production of 2-phenylethanol by Cunninghamella echinulata inhibits biofilm growth of the fungus. Fungal Biol 2023; 127:1384-1388. [PMID: 37993249 DOI: 10.1016/j.funbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023]
Abstract
The filamentous fungus Cunninghamella echinulata is a model of mammalian xenobiotic metabolism. Under certain conditions it grows as a biofilm, which is a natural form of immobilisation and enables the fungus to catalyse repeated biotransformations. Putative signalling molecules produced by other Cunninghamella spp., such as 3-hydroxytyrosol and tyrosol, do not affect the biofilm growth of C. echinulata, suggesting that it employs a different molecule to regulate biofilm growth. In this paper we report that 2-phenylethanol is produced in higher concentrations in planktonic cultures of C. echinulata than when the fungus is grown as a biofilm. We demonstrate that exogenously added 2-phenylethanol inhibits biofilm growth of C. echinulata but has no effect on planktonic growth. Furthermore, we show that addition of 2-phenylethanol to established C. echinulata biofilm causes detachment. Therefore, we conclude that this molecule is produced by the fungus to regulate biofilm growth.
Collapse
Affiliation(s)
- Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Dos Santos NSS, Fonseca S, Almeida FF, Belo E, Siqueira M, Dos Santos Niculau E, Silva S, Santos DA, Provasi PF, Andrade-Filho T, Gester R, Cunha AR. Biotransformation of 1-nitro-2-phenylethane
⟶
2-phenylethanol from fungi species of the Amazon biome: an experimental and theoretical analysis. J Mol Model 2023; 29:223. [PMID: 37402028 DOI: 10.1007/s00894-023-05595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
CONTEXT Natural products and their biotransformation procedures are a powerful source of new chromophores with potential applications in fields like biology, pharmacology and materials science. Thus, this work discusses about the extraction procedure of 1-nitro-2-phenylethane (1N2PE) from Aniba canelilla, its biotransformation setup into 2-phenylethanol (2PE) using four fungi, Lasiodiplodia caatinguensis (phytopathogenic fungus from Citrus sinensis), Colletotrichum sp. (phytopathogenic fungus from Euterpe oleracea), Aspergillus flavus and Rigidoporus lineatus isolated from copper mining waste located in the interior of the Brazilian Amazon. A detailed experimental and theoretical vibrational analysis (IR and Raman) have allowed us to perform some charge transfer effects on the title compounds (push-pull effect) by monitoring specific vibrational modes of their electrophilic and nucleophilic molecular sites. The solvent interactions promote molecular conformations that affect the vibrational spectra of the donor and acceptor groups, as can be seen comparatively in the gas and aqueous solution spectra, an effect possibly related to the bathochromic shift in the calculated optical spectrum of the compounds. The nonlinear optical behavior shows that while the solvent reduces the response of 1N2PE, the response of 2PE increases the optical parameters, which presents low refractive index (n) and first hyperpolarizability. (β ) is almost eight times that reported for urea (42.79 a.u.), a common nonlinear optical material. Furthermore, the bioconversion goes from an electrophilic to a nucleophilic compound, affecting its molecular reactivity. METHODS 1N2PE was obtained from Aniba canelilla, whose essential oil is constituted of∼ 80 % of 2PE. The A. canelilla essential oil was extracted under hydrodistillation. The biotransformation reactions were performed in autoclaved liquid media (100 mL) composed of malt extract (2%) in 250 mL Erlenmeyer flask. Each culture was incubated in an orbital shaker (130 rpm) at32 ∘ C during 7 days and after that, 50 mg of 1N2PE (80%) were diluted in 100μ L of dimethylsulfoxide (DMSO) and added to the reactions flasks. Aliquots (2 mL) were removed using ethyl acetate (2 mL) and analyzed by GC-MS (fused silica capillary col1umn, Rtx -5MS 30 m× 0.25 mm× 0.25μ m) in order to determine the amount of 1N2PE biotransformation. FTIR 1N2PE and 2PE spectra were obtained by attenuated total reflectance (ATR), using a Agilent CARY 630 spectrometer, in the spectral region 4000-650 cm− 1 . The quantum chemical calculations were carried out in the Gaussian 09 program while the DICE code was used to perform the classical Monte Carlo simulations and generate the liquid environment using the classical All-Atom Optimized parameters for Liquid Simulations (AA-OPLS). All nonlinear optical properties, reactive parameters, and electronic excitations were calculated using the Density Functional Theory framework coupled to the standard 6-311++G(d,p) basis set.
Collapse
Affiliation(s)
- Neidy S S Dos Santos
- Programa de Pós-Graduação em Química, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
| | - Sávio Fonseca
- Programa de Pós-Graduação em Química, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
| | - Franco F Almeida
- Programa de Pós-Graduação em Química, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
| | - Ezequiel Belo
- Faculdade de Engenharia Mecânica, Campus Universitário de Tucuruí, Universidade Federal do Pará, Tucurui, 68464-000, PA, Brazil
| | - Marcelo Siqueira
- Curso de Física, Universidade Federal do Amapá, Macapá, AP, Brazil
| | - Edenilson Dos Santos Niculau
- Centro de Ciências Integradas/Departamento de Química/Campus Universitário de Araguaína, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| | - Sebastião Silva
- Faculdade de Química, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
| | - Darlisson A Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, 50740-560, Pernambuco, Brazil
| | - Patricio F Provasi
- Department of Physics, IMIT, Northeastern University, CONICET, AV. Libertad 5500, W 3404 AAS, Corrientes, Argentina
| | - Tarciso Andrade-Filho
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
| | - Rodrigo Gester
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, 68507-590, Marabá, PA, Brazil
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo, SP 05588-090, Brazil
| | - Antonio R Cunha
- Universidade Federal do Maranhão, UFMA, Campus Balsas, CEP 65800-000, Maranhão, Brazil.
| |
Collapse
|
13
|
Khan AR, Ali Q, Ayaz M, Bilal MS, Sheikh TMM, Gu Q, Wu H, Gao X. Plant-Microbes Interaction: Exploring the Impact of Cold-Tolerant Bacillus Strains RJGP41 and GBAC46 Volatiles on Tomato Growth Promotion through Different Mechanisms. BIOLOGY 2023; 12:940. [PMID: 37508371 PMCID: PMC10376619 DOI: 10.3390/biology12070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The interaction between plant and bacterial VOCs has been extensively studied, but the role of VOCs in growth promotion still needs to be explored. In the current study, we aim to explore the growth promotion mechanisms of cold-tolerant Bacillus strains GBAC46 and RJGP41 and the well-known PGPR strain FZB42 and their VOCs on tomato plants. The result showed that the activity of phytohormone (IAA) production was greatly improved in GBAC46 and RJGP41 as compared to FZB42 strains. The in vitro and in-pot experiment results showed that the Bacillus VOCs improved plant growth traits in terms of physiological parameters as compared to the CK. The VOCs identified through gas chromatography-mass spectrometry (GC-MS) analysis, namely 2 pentanone, 3-ethyl (2P3E) from GBAC46, 1,3-cyclobutanediol,2,2,4,4-tetramethyl (CBDO) from RJGP41, and benzaldehyde (BDH) from FZB42, were used for plant growth promotion. The results of the partition plate (I-plate) and in-pot experiments showed that all the selected VOCs (2P3E, CBDO, and BDH) promoted plant growth parameters as compared to CK. Furthermore, the root morphological factors also revealed that the selected VOCs improved the root physiological traits in tomato plants. The plant defense enzymes (POD, APX, SOD, and CAT) and total protein contents were studied, and the results showed that the antioxidant enzymes and protein contents significantly increased as compared to CK. Similarly, plant growth promotion expression genes (IAA4, ARF10A, GA2OX2, CKX2, and EXP1) were significantly upregulated and the ERF gene was downregulated as compared to CK. The overall findings suggest that both Bacillus isolates and their pure VOCs positively improved plant growth promotion activities by triggering the antioxidant enzyme activity, protein contents, and relative gene expressions in tomato plants.
Collapse
Affiliation(s)
- Abdur Rashid Khan
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Saqib Bilal
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Taha Majid Mahmood Sheikh
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
14
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
15
|
Álvarez M, Andrade MJ, Delgado J, Núñez F, Román ÁC, Rodrigues P. Rosmarinus officinalis reduces the ochratoxin A production by Aspergillus westerdijkiae in a dry-cured fermented sausage-based medium. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel) 2023; 15:toxins15010045. [PMID: 36668865 PMCID: PMC9866025 DOI: 10.3390/toxins15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic fungi in the genera Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are the most common cause of pre- and postharvest diseases of fruit, vegetable, root and grain commodities. Some species are also able to produce mycotoxins, secondary metabolites having toxic effects on human and non-human animals upon ingestion of contaminated food and feed. Synthetic fungicides still represent the most common tool to control these pathogens. However, long-term application of fungicides has led to unacceptable pollution and may favour the selection of fungicide-resistant mutants. Microbial biocontrol agents may reduce the incidence of toxigenic fungi through a wide array of mechanisms, including competition for the ecological niche, antibiosis, mycoparasitism, and the induction of resistance in the host plant tissues. In recent years, the emission of volatile organic compounds (VOCs) has been proposed as a key mechanism of biocontrol. Their bioactivity and the absence of residues make the use of microbial VOCs a sustainable and effective alternative to synthetic fungicides in the management of postharvest pathogens, particularly in airtight environments. In this review, we will focus on the possibility of applying yeast VOCs in the biocontrol of mycotoxigenic fungi affecting stored food and feed.
Collapse
|
17
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
18
|
Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, Shao X. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14468-14479. [PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
Collapse
Affiliation(s)
- Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Pingping Zhan
- the Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
19
|
Yang Q, Dhanasekaran S, Ngea GLN, Tian S, Li B, Zhang H. Unveiling ochratoxin a controlling and biodetoxification molecular mechanisms: Opportunities to secure foodstuffs from OTA contamination. Food Chem Toxicol 2022; 169:113437. [PMID: 36165818 DOI: 10.1016/j.fct.2022.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Anarchic growth of ochratoxin A (OTA) producing fungi during crop production, prolonged storage, and processing results in OTA contamination in foodstuffs. OTA in food exacerbates the risk of health and economic problems for consumers and farmers worldwide. Although the toxic effects of OTA on human health have not been well established, comprehensive preventive and remedial measures will be essential to eliminate OTA from foodstuffs. Strict regulations, controlling OTA at pre- or post-harvest stage, and decontamination of OTA have been adopted to prevent human and animal OTA exposure. Biological control of OTA and bio-decontamination are the most promising strategies due to their safety, specificity and nutritional value. This review addresses the current understanding of OTA biodegradation mechanisms and recent developments in OTA control and bio-decontamination strategies. Additionally, this review analyses the strength and weaknesses of different OTA control methods and the contemporary approaches to enhance the efficiency of biocontrol agents. Overall, this review will support the implementation of new strategies to effectively control OTA in food sectors. Further studies on efficacy-related issues, production issues and cost-effectiveness of OTA biocontrol are to be carried out to improve the knowledge, develop improved delivery technologies and safeguard the durability of OTA biocontrol approaches.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, PO. Box. 7236, Douala-Bassa, Cameroon
| | - Shiping Tian
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China
| | - Boqiang Li
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
20
|
Zhao X, Zhou J, Tian R, Liu Y. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Front Microbiol 2022; 13:922450. [PMID: 35910607 PMCID: PMC9337857 DOI: 10.3389/fmicb.2022.922450] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The fungal decay of fresh fruits and vegetables annually generates substantial global economic losses. The utilization of conventional synthetic fungicides is damaging to the environment and human health. Recently, the biological control of post-harvest fruit and vegetable diseases via antagonistic microorganisms has become an attractive possible substitution for synthetic fungicides. Numerous studies have confirmed the potential of volatile organic compounds (VOCs) for post-harvest disease management. Moreover, VOC emission is a predominant antifungal mechanism of antagonistic microorganisms. As such, it is of great significance to discuss and explore the antifungal mechanisms of microbial VOCs for commercial application. This review summarizes the main sources of microbial VOCs in the post-harvest treatment and control of fruit and vegetable diseases. Recent advances in the elucidation of antifungal VOC mechanisms are emphasized, and the applications of VOCs produced from antagonistic microorganisms are described. Finally, the current prospects and challenges associated with microbial VOCs are considered.
Collapse
|
21
|
Alkuwari A, Hassan ZU, Zeidan R, Al-Thani R, Jaoua S. Occurrence of Mycotoxins and Toxigenic Fungi in Cereals and Application of Yeast Volatiles for Their Biological Control. Toxins (Basel) 2022; 14:toxins14060404. [PMID: 35737064 PMCID: PMC9228409 DOI: 10.3390/toxins14060404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Fungal infections in cereals lead to huge economic losses in the food and agriculture industries. This study was designed to investigate the occurrence of toxigenic fungi and their mycotoxins in marketed cereals and explore the effect of the antagonistic yeast Cyberlindnera jadinii volatiles against key toxigenic fungal strains. Aspergillus spp. were the most frequent contaminating fungi in the cereals, with an isolation frequency (Fr) of 100% in maize, followed by wheat (88.23%), rice (78.57%) and oats (14.28%). Morphological and molecular identification confirmed the presence of key toxigenic fungal strains in cereal samples, including A. carbonarius, A. flavus, A. niger, A. ochraceus and A. parasiticus. Aflatoxins (AFs) were detected in all types of tested cereal samples, with a significantly higher level in maize compared to wheat, rice, oats and breakfast cereals. Ochratoxin A (OTA) was only detected in wheat, rice and maize samples. Levels of mycotoxins in cereals were within EU permissible limits. The volatiles of Cyberlindnera jadinii significantly inhibited the growth of A. parasiticus, A. niger and P. verrucosum. The findings of this study confirm the presence of toxigenic fungi and mycotoxins in cereals within the EU permissible limits and the significant biocontrol ability of Cyberlindnera jadinii against these toxigenic fungi.
Collapse
|
22
|
Cao M, Huang L, Jin S, Zhao M, Zheng Y. Comparative Proteomics Study of Yak Milk from Standard and Naturally Extended Lactation Using iTRAQ Technique. Animals (Basel) 2022; 12:ani12030391. [PMID: 35158713 PMCID: PMC8833776 DOI: 10.3390/ani12030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Extended lactation is a common phenomenon in lactating yaks under grazing and natural reproduction conditions. To elucidate differences in milk protein compositions and mammary gland functions between yaks of standard lactation (TL yaks) and prolonged lactation (HL yaks), whole milk samples of TL yaks and HL yaks (n = 15 each) were collected from a yak pasture at the northwest highland of China. The iTRAQ technique was used to compare the skim milk proteins in the two yak groups. A total of 202 differentially expressed proteins (DEPs) were revealed, among which 109 proteins were up-regulated and 93 were down-regulated in the milk of HL yaks compared to TL yaks. Caseins including κ-casein, αs1-casein, αs2-casein, and β-casein were up-regulated in HL yak milk over 1.43-fold. The GO function annotation analysis showed that HL yaks produced milk with characteristics of milk at the degeneration stage, similar to that of dairy cows. KEGG enrichment showed that the metabolic pathways with the most differences are those that involve carbohydrate metabolism and the biosynthesis of amino acids. The present results highlight detailed differences in skim milk proteins produced by HL yaks and TL yaks and suggest that the mammary gland of HL yak is at the degeneration stage.
Collapse
|
23
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
24
|
Al Attiya W, Hassan ZU, Al-Thani R, Jaoua S. Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles. PLoS One 2021; 16:e0259302. [PMID: 34714880 PMCID: PMC8555823 DOI: 10.1371/journal.pone.0259302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Fungal infection and synthesis of mycotoxins in coffee leads to significant economic losses. This study aimed to investigate the prevalence of toxigenic fungi, their metabolites, and the effect of traditional roasting and brewing on ochratoxin A (OTA) and aflatoxins (AFs) contents of naturally contaminated coffee samples. In addition, in vivo biocontrol assays were performed to explore the antagonistic activities of Bacillus simplex 350–3 (BS350-3) on the growth and mycotoxins synthesis of Aspergillus ochraceus and A. flavus. The relative density of A. niger, A. flavus, Penicillium verrucosum and A. carbonarius on green coffee bean was 60.82%, 7.21%, 3.09% and 1.03%, respectively. OTA contents were lowest in green coffee beans (2.15 μg/kg), followed by roasted (2.76 μg/kg) and soluble coffee (8.95 μg/kg). Likewise, AFs levels were highest in soluble coffee (90.58 μg/kg) followed by roasted (33.61 μg/kg) and green coffee (9.07 μg/kg). Roasting naturally contaminated coffee beans at three traditional methods; low, medium and high, followed by brewing resulted in reduction of 58.74% (3.50 μg/kg), 60.88% (3.72 μg/kg) and 64.70% (4.11 μg/kg) in OTA and 40.18% (34.65 μg/kg), 47.86% (41.17 μg/kg) and 62.38% (53.73 μg/kg) AFs contents, respectively. Significant inhibitions of AFs and OTA synthesis by A. flavus and A. carbonarius, respectively, on infected coffee beans were observed in presence of Bacillus simplex BS350-3 volatiles. Gas chromatography mass spectrochemistry (GC-MS/MS) analysis of head-space BS350-3 volatiles showed quinoline, benzenemethanamine and 1-Octadecene as bioactive antifungal molecules. These findings suggest that marketed coffee samples are generally contaminated with OTA and AFs, with a significant level of roasted and soluble coffee contaminated above EU permissible limits for OTA. Further, along with coffee roasting and brewing; microbial volatiles can be optimized to minimize the dietary exposure to mycotoxins.
Collapse
Affiliation(s)
- Wadha Al Attiya
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
25
|
Di Canito A, Mateo-Vargas MA, Mazzieri M, Cantoral J, Foschino R, Cordero-Bueso G, Vigentini I. The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods 2021; 10:1650. [PMID: 34359520 PMCID: PMC8306029 DOI: 10.3390/foods10071650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
In view of the growing concern about the impact of synthetic fungicides on human health and the environment, several government bodies have decided to ban them. As a result, a great number of studies have been carried out in recent decades with the aim of finding a biological alternative to inhibit the growth of fungal pathogens. In order to avoid the large losses of fruit and vegetables that these pathogens cause every year, the biological alternative's efficacy should be the same as that of a chemical pesticide. In this review, the main studies discussed concern Saccharomyces and non-Saccharomyces yeasts as potential antagonists against phytopathogenic fungi of the genera Penicillium and Aspergillus and the species Botrytis cinerea on table grapes, wine grapes, and raisins.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - María Alejandra Mateo-Vargas
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Monica Mazzieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Jesús Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Gustavo Cordero-Bueso
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| |
Collapse
|
26
|
Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021; 10:1279. [PMID: 34205122 PMCID: PMC8228748 DOI: 10.3390/foods10061279] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
- School of Natural and Applied Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture Abeokuta, Abeokuta P.M.B. 2240, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- School of Biotechnology, KIIT University, Bhubaneswar 751019, Odisha, India;
| | - Katarzyna Baran
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
27
|
Saleh AE, Ul-Hassan Z, Zeidan R, Al-Shamary N, Al-Yafei T, Alnaimi H, Higazy NS, Migheli Q, Jaoua S. Biocontrol Activity of Bacillus megaterium BM344-1 against Toxigenic Fungi. ACS OMEGA 2021; 6:10984-10990. [PMID: 34056251 PMCID: PMC8153935 DOI: 10.1021/acsomega.1c00816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Mycotoxins are secondary metabolites of some fungal species and represent important contaminants of food and feed. This study aimed to explore the biological control activity of Bacillus megaterium BM344-1 volatile organic compounds (VOCs) on the growth and mycotoxin production of single representatives of the toxigenic species Aspergillus flavus, Aspergillus carbonarius, Penicillium verrucosum, and Fusarium verticillioides. In vitro co-incubation experiments indicated the P. verrucosum isolate as the most sensitive one, with a growth inhibition ratio of 66.7%, followed by A. flavus (29.4%) and F. verticillioides (18.2%). Exposure of A. flavus, P. verrucosum, and F. verticillioides to BM344-1 VOCs resulted in complete inhibition of aflatoxins (AFB1, AFG1, and AFG2), ochratoxin A, and fumonisin B1 (FB1) synthesis on artificial media, respectively. In vivo experiments on maize kernels showed 51% inhibition of fungal growth on ears simultaneously infected with A. flavus spores and exposed to BM344-1 volatiles. Likewise, AF synthesis by A. flavus was significantly (p < 0.05) inhibited (25.34 ± 6.72 μg/kg) by bacterial volatiles as compared to that in control maize ears (91.81 ± 29.10 μg/kg). Gas chromatography-tandem mass spectrometry-based analysis of headspace volatiles revealed hexadecanoic acid methyl ester (palmitic acid) and tetracosane as bioactive compounds in the BM344-1 volatilome. Bacterial volatiles have promising potential to control the growth and mycotoxin synthesis of toxigenic fungi and may present valuable aid in the efforts to warrant food and feed safety.
Collapse
Affiliation(s)
- Aya Ehab Saleh
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Zahoor Ul-Hassan
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Randa Zeidan
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Noora Al-Shamary
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Thoraya Al-Yafei
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Hajer Alnaimi
- Environmental
Science Center, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Nayla Salah Higazy
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Quirico Migheli
- Dipartimento
di Agraria and Desertification Research Centre (NRD), Università degli Studi di Sassari, Viale Italia 39, Sassari I-07100, Italy
| | - Samir Jaoua
- Department
of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| |
Collapse
|
28
|
Balbino TR, da Silveira FA, Ventorim RZ, do Nascimento AG, de Oliveira LL, da Silveira WB. Adaptive responses of Kluyveromyces marxianus CCT 7735 to 2-phenylethanol stress: Alterations in membrane fatty-acid composition, ergosterol content, exopolysaccharide production and reduction in reactive oxygen species. Fungal Genet Biol 2021; 151:103561. [PMID: 33819626 DOI: 10.1016/j.fgb.2021.103561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 11/27/2022]
Abstract
2-phenylethanol (2-PE) is a higher aromatic alcohol with a rose-like aroma used in the cosmetic and food industries as a flavoring and displays potential for application as an antifungal. Biotechnological production of 2-PE from yeast is an interesting alternative due to the non-use of toxic compounds and the generation of few by-products. Kluyveromyces marxianus CCT 7735 is a thermotolerant strain capable of producing high 2-PE titers from L-Phenylalanine; however, like other yeast species, its growth has been strongly inhibited by this alcohol. Herein, we aimed to evaluate the effect of 2-PE on cell growth, cell viability, membrane permeability, glucose uptake, metabolism, and morphology in K. marxianus CCT 7735, as well as its adaptive responses. The stress condition was imposed after 4 h of cultivation by adding 3.0 g.L-1 of 2-PE in exponential growing cells. 2-PE stress impaired yeast growth, glucose uptake, fermentative metabolism, membrane permeability, and cell viability. Moreover, the stress condition provoked changes in both morphology and surface roughness. The reactive oxygen species (ROS) increased immediately on exposure to 2-PE. Changes in membrane fatty-acid composition, ergosterol content, exopolysaccharides production, and reduction of the ROS levels appear to be the result of adaptive responses in K. marxianus. Our results provided insights into a better understanding of the effects of 2-PE on K. marxianus and its adaptive responses.
Collapse
Affiliation(s)
- Thércia Rocha Balbino
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fernando Augusto da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Rafaela Zandonade Ventorim
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Antônio Galvão do Nascimento
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leandro Licursi de Oliveira
- Laboratory of Immunochemistry and Glycobiology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
29
|
Nešić K, Habschied K, Mastanjević K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins (Basel) 2021; 13:198. [PMID: 33801997 PMCID: PMC8001018 DOI: 10.3390/toxins13030198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
Seeking useful biological agents for mycotoxin detoxification has achieved success in the last twenty years thanks to the participation of many multidisciplinary teams. We have recently witnessed discoveries in the fields of bacterial genetics (inclusive of next-generation sequencing), protein encoding, and bioinformatics that have helped to shape the latest perception of how microorganisms/mycotoxins/environmental factors intertwine and interact, so the road is opened for new breakthroughs. Analysis of literature data related to the biological control of mycotoxins indicates the ability of yeast, bacteria, fungi and enzymes to degrade or adsorb mycotoxins, which increases the safety and quality of susceptible crops, animal feed and, ultimately, food of animal origin (milk, meat and eggs) by preventing the presence of residues. Microbial detoxification (transformation and adsorption) is becoming a trustworthy strategy that leaves no or less toxic compounds and contributes to food security. This review summarizes the data and highlights the importance and prospects of these methods.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Autoput 3, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
30
|
Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. J Proteomics 2020; 233:104075. [PMID: 33309927 DOI: 10.1016/j.jprot.2020.104075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/17/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
In the present study, 120 fungal isolates were locally isolated from soil and selected according to their ability to antimicrobial activity. Then, selected isolates were tested for their ability to prevent biofilm formation and only one isolate (A01) showed an antibiofilm effect. The isolate A01 identified as Aspergillus tubingensis by sequencing of the 18S ITS region and a segment of β-tubulin gene. Then, 5 fractions were prepared from the culture filtrate of A. tubingensis A01 using the ultrafiltration technique to find active polypeptide fraction. The experiments revealed that one of them had an antibiofilm activity. The MALDI-TOF/MS analyses demonstrated that this polypeptide composed of 92 amino acids and had a molecular mass of 10,087 Da. The sequence alignment showed homology with hypothetical protein (OJI81679.1). The gene coding for this polypeptide consisting of 279 nucleotides, herein we called astucin, was cloned and sequenced from A. tubingensis A01 to confirm results. The MIC of the purified polypeptide was 32 m/L and 128 μg/mL and the MBIC was 2 and 8 μg/mL against Staphylococcus aureus and MRSA, respectively. The results demonstrated that the antimicrobial and antibiofilm activity of astucin, together with its lack of cytotoxicity, makes it an alternative for application in medicine. SIGNIFICANCE: Antibiotic resistance is a global problem and the emergence of antibiotic resistant bacteria reduce the effect the current treatment approaches. In this context, antimicrobial peptides stand out as potentional agents to combat bacterial infection especially, biofilm related infections. Importantly, this study have greatly considered our understanding for fungal derived antibiofilm polypeptides. In this study, traditional selection method combined with crystal violet assay is used to investigate antibiofilm polypeptides. We identified antibiofilm polypeptides purified from A. tubingensis A01. This protein shows antimicrobial and antibiofilm activity against S. aureus.
Collapse
|
31
|
Khan MF, Murphy CD. 3-Hydroxytyrosol regulates biofilm growth in Cunninghamella elegans. Fungal Biol 2020; 125:211-217. [PMID: 33622537 DOI: 10.1016/j.funbio.2020.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
In contrast to yeast biofilms, those of filamentous fungi are relatively poorly understood, in particular with respect to their regulation. Cunninghamella elegans is a filamentous fungus that is of biotechnological interest as it catabolises drugs and other xenobiotics in an analogous manner to animals; furthermore, it can grow as a biofilm enabling repeated batch biotransformations. Precisely how the fungus switches from planktonic to biofilm growth is unknown and the aim of this study was to shed light on the possible mechanism of biofilm regulation. In dimorphic yeasts, alcohols such as tyrosol and 2-phenylethanol are known to control the yeast-to-hypha switch, and a similar molecule might be involved in regulating biofilm in C. elegans. Gas chromatography-mass spectrometry analysis of crude ethyl acetate extracts from supernatants of 72 h planktonic and biofilm cultures revealed 3-hydroxytyrosol as a prominent metabolite. Further quantification revealed that the amounts of the compound in planktonic cultures were substantially higher (>10-fold) than in biofilm cultures. In the presence of exogenous 3-hydroxytyrosol the growth of aerial mycelium was inhibited, and there was selective inhibition of biofilm when it was added to culture medium. There was no biotransformation of the compound when it was added to 72 h-old cultures, in contrast to the related compounds tyrosol and 2-phenylethanol, which were oxidised to a number of products. Therefore, we propose that 3-hydroxytyrosol is a new signalling molecule in fungi, which regulates biofilm growth.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Zhang X, Li B, Zhang Z, Chen Y, Tian S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. J Fungi (Basel) 2020; 6:E158. [PMID: 32878102 PMCID: PMC7558569 DOI: 10.3390/jof6030158] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes for chemical fungicides in the control of postharvest decay owing to their widespread distribution, antagonistic ability, environmentally friendly nature, and safety for humans. Over the past few decades, the biocontrol mechanisms of antagonistic yeasts have been extensively studied, such as nutrition and space competition, mycoparasitism, and induction of host resistance. Moreover, combination of antagonistic yeasts with other agents or treatments were developed to improve the biocontrol efficacy. Several antagonistic yeasts are used commercially. In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement. Issues requiring further study are also discussed.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Alasmar R, Ul-Hassan Z, Zeidan R, Al-Thani R, Al-Shamary N, Alnaimi H, Migheli Q, Jaoua S. Isolation of a Novel Kluyveromyces marxianus Strain QKM-4 and Evidence of Its Volatilome Production and Binding Potentialities in the Biocontrol of Toxigenic Fungi and Their Mycotoxins. ACS OMEGA 2020; 5:17637-17645. [PMID: 32715249 PMCID: PMC7377640 DOI: 10.1021/acsomega.0c02124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To overcome the economic losses associated with fungi and their toxic metabolites, environmentally safe and efficient approaches are needed. To this end, biological control using yeasts and safe bacterial strains and their products are being explored to replace synthetic fungicides. In the present study, the biocontrol effect of a yeast strain of Kluyveromyces marxianus, QKM-4, against the growth and mycotoxin synthesis potential of key toxigenic fungi was evaluated. In vitro assays were performed to find the application of yeast volatile organic compounds (VOCs) against fungal contamination on important agricultural commodities. The removal of ochratoxin A (OTA) and deoxynivalenol (DON) by living and heat-inactivated yeast cells was also explored. VOCs produced by strain QKM-4 were able to significantly limit the fungal growth of 17 fungal species belonging to genera Aspergillus, Penicillium, and Fusarium. Yeast VOCs were able to reduce OTA biosynthesis potential of Penicillium verrucosum and Aspergillus carbonarius by 99.6 and 98.7%, respectively. In vivo application of QKM-4 VOCs against Fusarium oxysporum and A. carbonarius infection on tomatoes and grapes, respectively, determined a complete inhibition of fungal spore germination. GC/MS-based analysis of yeast VOCs identified long-chain alkanes, including nonadecane, eicosane, docosane, heptacosane, hexatriacontane, and tetracosane. In vitro testing of the mycotoxin-binding potential of the living and heat-inactivated QKM-4 cells showed a reduction of OTA and DON up to 58 and 49%, respectively, from artificially contaminated buffers. Our findings clearly demonstrate the strong antifungal potential of K. marxianus QKM-4 and propose this strain as a strong candidate for application in agriculture to safeguard food and feed products.
Collapse
Affiliation(s)
- Reem Alasmar
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul-Hassan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Randa Zeidan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Al-Shamary
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hajer Alnaimi
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Quirico Migheli
- Dipartimento
di Agraria, Università degli Studi
di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Samir Jaoua
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
34
|
Yang Y, Saand MA, Abdelaal WB, Zhang J, Wu Y, Li J, Fan H, Wang F. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics 2020; 220:103766. [DOI: 10.1016/j.jprot.2020.103766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
|
35
|
Tilocca B, Cao A, Migheli Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front Microbiol 2020; 11:41. [PMID: 32117096 PMCID: PMC7018762 DOI: 10.3389/fmicb.2020.00041] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The use of synthetic fungicides represents the most common strategy to control plant pathogens. Excessive and/or long-term distribution of chemicals is responsible for increased levels of environmental pollution, as well as adverse health consequence to humans and animals. These issues are deeply influencing public perception, as reflected by the increasing demand for safer and eco-friendly agricultural commodities and their by-products. A steadily increasing number of research efforts is now devoted to explore the use of safer and innovative approaches to control plant pathogens. The use of microorganisms as biological control agents (BCAs) represents one of the most durable and promising strategies. Among the panoply of microbial mechanisms exerted by BCAs, the production of volatile organic compounds (VOCs) represents an intriguing issue, mostly exploitable in circumstances where a direct contact between the pathogen and its antagonist is not practicable. VOCs are potentially produced by all living microorganisms, and may be active in the biocontrol of phytopathogenic oomycetes, fungi, and bacteria by means of antimicrobial activity and/or other cross-talk interactions. Their biological effects, the reduced residuals in the environment and on agricultural commodities, and the ease of application in different agricultural systems make the use of VOCs a promising and sustainable approach to replace synthetic fungicides in the control of plant pathogens. In this review, we focus on VOCs produced by bacteria and fungi and on their role in the cross-talk existing between the plant pathogens and their host. Biologic systemic effect of the microbial volatile blends on both pathogen and host plant cells is also briefly reviewed.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quirico Migheli
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
36
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
37
|
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 2019; 35:154. [PMID: 31576429 PMCID: PMC6773674 DOI: 10.1007/s11274-019-2728-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.
Collapse
Affiliation(s)
- Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Bruno Tilocca
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi and NRD - Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|