1
|
Hsieh NH, Kwok ESC. Biomonitoring-Based Risk Assessment of Pyrethroid Exposure in the U.S. Population: Application of High-Throughput and Physiologically Based Kinetic Models. TOXICS 2025; 13:216. [PMID: 40137543 PMCID: PMC11945574 DOI: 10.3390/toxics13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Pyrethroid insecticides have been extensively utilized in agriculture and residential areas in the United States. This study evaluated the exposure risk by age using available biomonitoring data. We analyzed pyrethroid metabolite concentrations in urine using the National Health and Nutrition Examination Survey (NHANES) data. Reverse dosimetry was conducted with a high-throughput model and a physiologically based kinetic (PBK) model integrated with a Bayesian inference framework. We further derived Benchmark Dose (BMD) values and systemic points of departure in rats using Bayesian BMD and PBK models. Margins of exposure (MOE) were calculated to assess neurotoxic risk based on estimated daily oral intake and dose metrics in plasma and brain. Results from both models indicated that young children have higher pyrethroid exposure compared to other age groups. All estimated risk values were within acceptable levels of acute neurotoxic effect. Additionally, MOEs calculated from oral doses were lower than those derived from internal doses, highlighting that traditional external exposure assessments tend to overestimate risk compared to advanced internal dose-based techniques. In conclusion, combining high-throughput and PBK approaches enhances the understanding of human health risks associated with pyrethroid exposures, demonstrating their potential for future applications in exposure tracking and health risk assessment.
Collapse
Affiliation(s)
- Nan-Hung Hsieh
- Human Exposure & Health Effects Modeling Section, Human Health Assessment Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814, USA;
| | | |
Collapse
|
2
|
Shilnikova N, Momoli F, Karyakina N, Krewski D. Review of non-invasive biomarkers as a tool for exposure characterization in human health risk assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:122-150. [PMID: 39607011 DOI: 10.1080/10937404.2024.2428206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Blood and urine are historically the most frequent matrices used for measuring chemical levels in human biomonitoring studies. As biomonitoring programs are refreshed, consideration of specific priority substances and specific population targets provide opportunities for inclusion of alternative non- or minimally invasive matrices. This review describes methods used in health risk assessment to characterize exposure and risk based upon biomarkers from noninvasive matrices other than urine or blood, including human milk, hair, fingernails, toenails, exhaled breath, deciduous teeth, sweat, semen, meconium, and feces. Illustrative examples of these methods relevant to chemical management are provided. This review suggests that, although these alternative noninvasive biomarkers are not frequently used in human health risk assessment at present, these biomarkers may prove useful in (1) characterizing exposure and health risk in vulnerable populations, (2) cumulative risk assessments, and (3) community-based risk assessments, depending upon the substance of concern. To incorporate alternative noninvasive biomarkers into human health risk assessments with confidence, more research is needed to improve our knowledge of the relationships between external dose, internal dose, and biologic consequent effects in matrices other than blood and urine.
Collapse
Affiliation(s)
- N Shilnikova
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - F Momoli
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Krewski
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Lu E, Ford LC, Rusyn I, Chiu WA. Reducing uncertainty in dose-response assessments by incorporating Bayesian benchmark dose modeling and in vitro data on population variability. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:457-472. [PMID: 39148436 PMCID: PMC11787958 DOI: 10.1111/risa.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
There are two primary sources of uncertainty in the interpretability of toxicity values, like the reference dose (RfD): estimates of the point of departure (POD) and the absence of chemical-specific human variability data. We hypothesize two solutions-employing Bayesian benchmark dose (BBMD) modeling to refine POD determination and combining high-throughput toxicokinetic modeling with population-based toxicodynamic in vitro data to characterize chemical-specific variability. These hypotheses were tested by deriving refined probabilistic estimates for human doses corresponding to a specific effect size (M) in the Ith population percentile (HDM I) across 19 Superfund priority chemicals. HDM I values were further converted to biomonitoring equivalents in blood and urine for benchmarking against human data. Compared to deterministic default-based RfDs, HDM I values were generally more protective, particularly influenced by chemical-specific data on interindividual variability. Incorporating chemical-specific in vitro data improved precision in probabilistic RfDs, with a median 1.4-fold reduction in uncertainty variance. Comparison with US Environmental Protection Agency's Exposure Forecasting exposure predictions and biomonitoring data from the National Health and Nutrition Examination Survey identified chemicals with margins of exposure nearing or below one. Overall, to mitigate uncertainty in regulatory toxicity values and guide chemical risk management, BBMD modeling and chemical-specific population-based human in vitro data are essential.
Collapse
Affiliation(s)
- En‐Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
4
|
Li A, Er JC, Khor WC, Liu MH, Sin V, Chan SH, Aung KT. Integration of National Chemical Hazards Monitoring, Total Diet Study, and Human Biomonitoring Programmes for Food Safety Exposure Assessment in Singapore. J Food Prot 2025; 88:100414. [PMID: 39577808 DOI: 10.1016/j.jfp.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Food safety and food security can impact the quality of human life, and these two aspects are interrelated alongside many influencing external factors. Global stressors such as climate change, recent pandemic, and geopolitical tensions have demonstrated tangible impacts on food security and safety. Food and food system innovation is a key strategy towards feeding the world in a more sustainable and climate-resilient manner. This paper highlights the use of a science-based risk assessment and management in Singapore's food safety system, specifically in the integration of exposure assessment approaches to support evidence-based food safety risk analysis and decision-making. The use of complementary top-down and bottom-up exposure assessment approaches through the market monitoring programme, total diet study and human biomonitoring forms a comprehensive integrated exposure assessment strategy which can ultimately inform policy and measures in ensuring and securing a supply of safe food. The discussion on such application for chemical food safety in Singapore offers additional insights into the synergistic inter-relationships contributing to the exposure assessment associated with chemicals in food.
Collapse
Affiliation(s)
- Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Mei Hui Liu
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Valerie Sin
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
5
|
Macey K, Lange R, Apel P, Poddalgoda D, Calafat AM, Kolossa-Gehring M, LaKind JS, Melnyk LJ, Nakayama SF, St-Amand A, Pollock T. Human biomonitoring health-based guidance values: A case study of the HB2GV Dashboard and DEHP. Int J Hyg Environ Health 2025; 263:114490. [PMID: 39591756 DOI: 10.1016/j.ijheh.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In 2022, the International Society of Exposure Science (ISES) International Human Biomonitoring (i-HBM) Working Group launched a free, online repository of biomonitoring guidance values referred to as the Human Biomonitoring Health-Based Guidance Value (HB2GV) Dashboard. The goal of the Dashboard is to assist global human biomonitoring data users (e.g., risk assessors, risk managers) and human biomonitoring programs with a readily available compilation of guidance values for the general population. The Dashboard contains approximately 600 HB2GVs for over 150 chemicals or their metabolites. Although there are many different types of HB2GVs, most are Biomonitoring Equivalents (BEs), Human Biomonitoring (HBM-I and HBM-II) values, or Human Biomonitoring Guidance Values (HBM-GVs). For users new to human biomonitoring, understanding how the different types of HB2GVs are derived and how to interpret those values in the context of human biomonitoring data can be difficult. Therefore, there is a need to inform users of the differences among available guidance values and to help users identify the HB2GV that could be most suitable for their purposes. Here, we summarize the derivation of HB2GVs for a case study chemical, di-(2-ethylhexyl) phthalate (DEHP). We selected DEHP as there are 36 unique HB2GVs available from three of the most common types of guidance values (i.e., BE, HBM-I value, HBM-GV). We also compare the available HB2GVs with a focus on the differences among their derivation methods, relative quality and confidence, and interpretation. This case study provides guidance on the use of existing HB2GVs for health-based interpretation of human biomonitoring data that may be applied to other chemicals. As with any other type of guidance or regulatory value (e.g., RfDs, MRLs), thoughtful selection and use are strongly encouraged. Appropriately interpreting HBM data with the aid of guidance values can result in improved decision making which, ultimately, could lead to better protection of public health.
Collapse
Affiliation(s)
- Kristin Macey
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada.
| | - Rosa Lange
- German Environment Agency (UBA), Berlin, Germany.
| | - Petra Apel
- German Environment Agency (UBA), Berlin, Germany.
| | - Devika Poddalgoda
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada.
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Judy S LaKind
- LaKind Associates, LLC, Catonsville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lisa Jo Melnyk
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, USA.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Paiva AM, Barros B, Azevedo R, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Alves MJ, Slezakova K, Pereira MDC, Teixeira JP, Costa S, Almeida A, Morais S. Biomonitoring of firefighters' exposure to priority pollutant metal(loid)s during wildland fire combat missions: Impact on urinary levels and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176105. [PMID: 39245390 DOI: 10.1016/j.scitotenv.2024.176105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wildland firefighters are exposed to metal(loid)s released during wildfires through vegetation combustion, which also promotes remobilization of accumulated anthropogenic metal(loid)s. Studies biomonitoring metal(loid)s exposure promoted exclusively by wildfire suppression activities are lacking. This work aimed to characterize, for the first time, the impact of real-life wildland firefighting operations on urinary levels of priority pollutant metal(loid)s [14 included in ATSDR, 11 in USEPA, and 4 in Human Biomonitoring for Europe Initiative priority lists] in firefighters. Spot urines were sampled pre-exposure (105 non-smokers, 76 smokers) and post-exposure to firefighting activities (20 non-smokers, 25 smokers); among those, paired samples were collected from 14 non-smoking and 24 smoking firefighters. Smokers displayed significantly higher baseline levels of zinc (28 %), lithium (29 %), cadmium (55 %), rubidium (13 %), and copper (20 %) than non-smokers. Following wildfire suppression, the concentration of the WHO potentially toxic metal(loid)s rose from 2 % to 3 % in smokers and 2 % to 5 % in non-smokers (up to 4 % for all firefighters and up to 5 % in paired samples). Levels of nickel (33-53 %), antimony (45-56 %), and cesium (40-47 %) increased significantly post-exposure in non-smokers (in all firefighters and in paired samples), whose urinary concentrations were generally more impacted by wildfire emissions than those of smokers. Arsenic (80 %) displayed the only significant increase post-exposure in smokers, being the best discriminant of exposure to wildfire emissions in these subjects. Significant positive correlations were found for age and/or career length with cadmium, lead, barium, strontium, and mercury, and for body mass index with arsenic. The reference/guidance values were exceeded for arsenic, zinc, cesium, nickel, antimony, cadmium, lead, thallium, mercury, copper, and cobalt in 1-90 % of firefighters suggesting augmented health risks due to wildfire combating and emphasizing the need of mitigation strategies. This study also provides biomonitoring data to help setting reference values for the occupationally exposed part of population.
Collapse
Affiliation(s)
- Ana Margarida Paiva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Rui Azevedo
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Esteves
- Environment Health Department, National Institute of Health Dr Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, 5300-253 Bragança, Portugal; SusTEC, Instituto Politécnico de Bragança, Sustec - Associate Laboratory for Sustainability and Technology in Inland Regions - Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- CIMO, Instituto Politécnico de Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, 5300-253 Bragança, Portugal; AquaValor - Center for Valorization and Transfer of Water Technology, Rua Dr. Júlio Martins N°1, 5400-342 Chaves, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Paulo Teixeira
- Environment Health Department, National Institute of Health Dr Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Solange Costa
- Environment Health Department, National Institute of Health Dr Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Agostinho Almeida
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
7
|
Willey JB, Liang CL, Pollock T, Khoury C, Thomson EM, Walker M, St-Amand A. Cumulative Health Risk from Exposure Load (CHREL): Looking at multi-chemical exposures through the lens of biomonitoring guidance values. Toxicol Lett 2024; 401:139-149. [PMID: 39341379 DOI: 10.1016/j.toxlet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Exposure load (EL) is an indicator of multiple chemical exposures based on human biomonitoring data. We used EL methodology and human biomonitoring health-based guidance values (HB2GVs) as exposure thresholds to create a new metric called Cumulative Health Risk from Exposure Load (CHREL). HB2GVs are derived by calculating the concentration of a biomarker consistent with a health protective exposure guidance value. CHREL analysis was conducted using Canadian Health Measures Survey (CHMS) cycle 3 and 4 biomonitoring data. Based on 18 chemicals, more than half of the Canadian population had an estimated CHRELTOTAL of 1 or more, indicative of chemical exposures potentially above selected exposure guidance values. Females had a significantly lower CHRELTOTAL compared to males, 12-19 year olds had a lower CHRELTOTAL compared to older age groups (significant compared to 40-59 year olds), and nonsmokers had a significantly lower CHRELTOTAL than smokers. Small segments of the population had a CHRELLIVER or a CHRELNERV of 1 or more, indicating exposures potentially above guideline levels for chemicals affecting the liver or nervous system. CHRELCANC was calculated based on 6 chemicals with HB2GVs derived for cancer endpoints. At the 10-5 risk level, most people had an estimated CHRELCANC of 3, indicative of multiple chemicals that may exceed negligible cancer risk. The most important contributors to exposures above HB2GVs were inorganic arsenic, mercury, acrylamide, xylenes, benzene and triclosan. Keeping certain assumptions, uncertainties and limitations in mind, the CHREL indicator can be used to obtain a picture of potential cumulative health risks from combined chemical exposures in a population, and as a comparative measure between subpopulations, including vulnerable subgroups.
Collapse
Affiliation(s)
- Jeff B Willey
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Chun Lei Liang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Cheryl Khoury
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
8
|
Rincón-Rubio A, Mérida-Ortega Á, Ugalde-Resano R, Gamboa-Loira B, Rothenberg SJ, González FB, Cebrián ME, López-Carrillo L. Carcinogenic, non-carcinogenic risk, and attributable cases to organochlorine pesticide exposure in women from Northern Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:421. [PMID: 38570395 DOI: 10.1007/s10661-024-12584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
This study aimed to estimate the carcinogenic and non-carcinogenic risk as well as the attributable cases due to exposure to organochlorine pesticides (OCPs): hexachlorobenzene (HCB), dichlorophenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), heptachlor, and chlordane. From serum concentrations of pesticides of interest in a sample of 908 women from Northern Mexico, the risk for both cancer and non-cancer health effects was evaluated. The population attributable fraction (PAF) was also calculated based on summary association estimates between exposure to OCPs and different health events. Findings revealed that due to their OCP exposure slightly less than half of the women in the sample were at increased risk of developing non-cancerous diseases. Moreover, approximately 25% and 75% of participants were at risk of develop some type of cancer associated with their HCB and DDE concentrations, respectively. In addition, it was estimated that 40.5% of type 2 diabetes, 18.7% of endometriosis, and 23.1% of non-Hodgkin's lymphoma cases could have been prevented if women had not been exposed to these OCPs. Results suggest that the use of OCPs may have contributed to the disease burden in the study area and, based on the time required for these substances to be eliminated from the body, there are probably some women who are still at elevated risk of developing diseases associated to OCPs.
Collapse
Affiliation(s)
- Alma Rincón-Rubio
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Rodrigo Ugalde-Resano
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Brenda Gamboa-Loira
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
- Facultad de Medicina, Universidad Autónoma de Yucatán, Av. Itzáes 498, Colonia Centro, C.P. 97000, Mérida, Yucatán, México
| | - Stephen J Rothenberg
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, México
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
9
|
Wrobel SA, Bury D, Koslitz S, Hayen H, Koch HM, Brüning T, Käfferlein HU. Quantitative Metabolism and Urinary Elimination Kinetics of Seven Neonicotinoids and Neonicotinoid-Like Compounds in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19285-19294. [PMID: 37939249 DOI: 10.1021/acs.est.3c05040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Reverse dosimetry, i.e., calculating the dose of hazardous substances that has been taken up by humans based on measured analyte concentrations in spot urine samples, is critical for risk assessment and requires metabolic and kinetic data. We quantitatively studied the metabolism of seven major neonicotinoid and neonicotinoid-like compounds (NNIs) after single oral doses in male volunteers and determined key kinetic parameters and urinary elimination for NNIs together with their metabolites. Complete and consecutive urine samples were collected over 48 h. All samples were analyzed by tandem mass spectrometry, following liquid or gas chromatographic separation. Single- and group-specific NNI metabolites were quantified, i.e., hydroxylated and N-dealkylated NNIs and NNI-associated carboxylic acids and their glycine derivatives. Large, substance-dependent variations of key toxicokinetic parameters were observed. Mean times of concentration maxima (tmax) in urine varied between 2.0 (imidacloprid) and 25.8 h (N-desmethyl-clothianidin), whereas mean urinary elimination half-times (t1/2) were between 2.5 (acetamiprid) and 49.5 h (sulfoxaflor). Mean 48 h excretion fractions (Fue's) were between 0.03% (2-chloro-1,3-thiazole-5-carboxylic acid glycine) and 84% (clothianidin). In contrast, the interindividual differences of Fue's between the volunteers for each of the NNIs and their metabolites remained low (below a factor of 2 between the maximum and minimum derived Fue with the exception of 6-chloronicotinic acid in the acetamiprid dose study). The obtained quantitative data enabled choosing appropriate biomarkers for exposure assessment and, at the same time, for risk assessment by reverse dosimetry at current environmental exposures, i.e., comparing the calculated doses that have been taken up to currently available acceptable daily intakes of NNIs.
Collapse
Affiliation(s)
- Sonja A Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Stephan Koslitz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance─Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
10
|
Hays SM, Kirman CR. Biomonitoring Equivalents for N,N-Diethyl-meta-toluamide (DEET). Regul Toxicol Pharmacol 2023; 145:105506. [PMID: 37838349 DOI: 10.1016/j.yrtph.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
N,N-Diethyl-meta-toluamide (DEET) is widely used as an effective mosquito and tick repellent. DEET is absorbed systemically after applications to skin. Once absorbed, DEET is rapidly metabolized with the predominant metabolite being m-dimethylaminocarbonyl benzoic acid (DBA). DEET and metabolites are predominantly excreted in urine after being absorbed systemically. Exposures to DEET are typically biomonitored via measures of DEET and DBA in urine. In this evaluation, we review available health-based risk assessments and toxicological reference values (TRVs) for DEET and derive Biomonitoring Equivalent (BE) values for interpretation of population biomonitoring data. BEs were derived based on existing TRVs derived by Health Canada, yielding 38 and 23 mg/L DBA in urine for adults and 57 and 34 mg/L DBA in urine in children for the acute oral and intermediate dermal TRVs, respectively. The BEs for unchanged DEET in urine are 21 and 12 mg/L in adults and 4.5 and 2.7 mg/L in children for the acute oral and intermediate dermal TRVs. The BE values derived in this manuscript can serve as a guide to help public health officials and regulators interpret population based DEET biomonitoring data in a public health risk context.
Collapse
|
11
|
Correia-Sá L, Fernandes VC, Maia ML, Pinto E, Norberto S, Almeida A, Santos C, Delerue-Matos C, Calhau C, Domingues VF. Trace Elements in Portuguese Children: Urinary Levels and Exposure Predictors. TOXICS 2023; 11:767. [PMID: 37755777 PMCID: PMC10535189 DOI: 10.3390/toxics11090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Exposure to environmental chemicals during developmental stages can result in several adverse outcomes. In this study, the exposure of Portuguese children to Cu, Co, I, Mo, Mn, Ni, As, Sb, Cd, Pb, Sn and Tl was evaluated through the analysis of first morning urine through ICP-MS. Furthermore, we attempted to determine possible exposure predictors. The study sample consisted of 54% girls and 46% boys, with a median age of 10 years; 61% were overweight/obese and were put on a nutritionally oriented diet. For I, half of the population was probably in deficiency status. The median urinary concentrations (μg/L) were Cu 21.9, Mo 54.6, Co 0.76, Mn 2.1, Ni 4.74, As 37.9, Sb 0.09, Cd 0.29, Pb 0.94, Sn 0.45, Tl 0.39 and I 125.5. The region was a significant predictor for Cu, Co, Ni, As and Tl. Children living in an urban area had higher urinary levels, except for Co and Ni. Age was a significant predictor for Cu, I, Mo, Mn, Ni, Sb, Cd and Sn with urinary levels of these elements decreasing with age. No sex-related differences were observed. Diet and weight group were predictors for urinary Cu, Mn, Ni, Sb and As. Significant differences were observed between the diet/weight groups for Cu, Ni, Sb and As, with the healthy diet group presenting higher values.
Collapse
Affiliation(s)
- Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (V.C.F.); (M.L.M.); (C.D.-M.)
| | - Virgínia C. Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (V.C.F.); (M.L.M.); (C.D.-M.)
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; (S.N.); (C.S.); (C.C.)
| | - Maria Luz Maia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (V.C.F.); (M.L.M.); (C.D.-M.)
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; (S.N.); (C.S.); (C.C.)
| | - Edgar Pinto
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4249-015 Porto, Portugal; (E.P.); (A.A.)
- Departmento de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Sónia Norberto
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; (S.N.); (C.S.); (C.C.)
| | - Agostinho Almeida
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4249-015 Porto, Portugal; (E.P.); (A.A.)
| | - Cristina Santos
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; (S.N.); (C.S.); (C.C.)
- Health Information and Decision Science, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (V.C.F.); (M.L.M.); (C.D.-M.)
| | - Conceição Calhau
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; (S.N.); (C.S.); (C.C.)
- Nutrição e Metabolismo NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (V.C.F.); (M.L.M.); (C.D.-M.)
| |
Collapse
|
12
|
Kuang HX, Li MY, Zhou Y, Li ZC, Xiang MD, Yu YJ. Volatile organic compounds and metals/metalloids exposure in children after e-waste control: Implications for priority control pollutants and exposure mitigation measures. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131598. [PMID: 37187124 DOI: 10.1016/j.jhazmat.2023.131598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The decade-long effort to control e-waste in China has made significant progress from haphazard disposal to organized recycling, but environmental research suggests that exposure to volatile organic compounds (VOCs) and metals/metalloids (MeTs) still poses plausible health risks. To investigate the exposure risk faced by children and identify corresponding priority control chemicals, we evaluated the carcinogenic risk (CR), non-CR, and oxidative DNA damage risks of VOCs and MeTs exposure in 673 children from an e-waste recycling area (ER) by measuring urinary exposure biomarker levels. The ER children were generally exposed to high levels of VOCs and MeTs. We observed distinctive VOCs exposure profiles in ER children. In particular, the 1,2-dichloroethane/ethylbenzene ratio and 1,2-dichloroethane were promising diagnostic indexes for identifying e-waste pollution due to their high accuracy (91.4%) in predicting e-waste exposure. Exposure to acrolein, benzene, 1,3-butadiene, 1,2-dichloroethane, acrylamide, acrylonitrile, arsenic, vanadium, copper, and lead posed considerable CR or/and non-CR and oxidative DNA damage risks to children, while changing personal lifestyles, especially enhancing daily physical exercise, may facilitate mitigating these chemical exposure risks. These findings highlight that the exposure risk of some VOCs and MeTs is still non-negligible in regulated ER, and these hazardous chemicals should be controlled as priorities.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
13
|
Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021). Int J Hyg Environ Health 2023; 249:114119. [PMID: 36773580 DOI: 10.1016/j.ijheh.2023.114119] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.
Collapse
|
14
|
Zhang S, Han Y, Peng J, Chen Y, Zhan L, Li J. Human health risk assessment for contaminated sites: A retrospective review. ENVIRONMENT INTERNATIONAL 2023; 171:107700. [PMID: 36527872 DOI: 10.1016/j.envint.2022.107700] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Soil contamination is a serious global hazard as contaminants can migrate to the human body through the soil, water, air, and food, threatening human health. Human Health Risk Assessment (HHRA) is a commonly used method for estimating the magnitude and probability of adverse health effects in humans that may be exposed to contaminants in contaminated environmental media in the present or future. Such estimations have improved for decades with various risk assessment frameworks and well-established models. However, the existing literature does not provide a comprehensive overview of the methods and models of HHRA that are needed to grasp the current status of HHRA and future research directions. Thus, this paper aims to systematically review the HHRA approaches and models, particularly those related to contaminated sites from peer-reviewed literature and guidelines. The approaches and models focus on methods used in hazard identification, toxicity databases in dose-response assessment, approaches and fate and transport models in exposure assessment, risk characterization, and uncertainty characterization. The features and applicability of the most commonly used HHRA tools are also described. The future research trend for HHRA for contaminated sites is also forecasted. The transition from animal experiments to new methods in risk identification, the integration and update and sharing of existing toxicity databases, the integration of human biomonitoring into the risk assessment process, and the integration of migration and transformation models and risk assessment are the way forward for risk assessment in the future. This review provides readers with an overall understanding of HHRA and a grasp of its developmental direction.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yingyue Han
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingyu Peng
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunmin Chen
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liangtong Zhan
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jinlong Li
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Nakayama SF, St-Amand A, Pollock T, Apel P, Bamai YA, Barr DB, Bessems J, Calafat AM, Castaño A, Covaci A, Duca RC, Faure S, Galea KS, Hays S, Hopf NB, Ito Y, Jeddi MZ, Kolossa-Gehring M, Kumar E, LaKind JS, López ME, Louro H, Macey K, Makris KC, Melnyk L, Murawski A, Naiman J, Nassif J, Noisel N, Poddalgoda D, Quirós-Alcalá L, Rafiee A, Rambaud L, Silva MJ, Ueyama J, Verner MA, Waras MN, Werry K. Interpreting biomonitoring data: Introducing the international human biomonitoring (i-HBM) working group's health-based guidance value (HB2GV) dashboard. Int J Hyg Environ Health 2023; 247:114046. [PMID: 36356350 PMCID: PMC10103580 DOI: 10.1016/j.ijheh.2022.114046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Human biomonitoring (HBM) data measured in specific contexts or populations provide information for comparing population exposures. There are numerous health-based biomonitoring guidance values, but to locate these values, interested parties need to seek them out individually from publications, governmental reports, websites and other sources. Until now, there has been no central, international repository for this information. Thus, a tool is needed to help researchers, public health professionals, risk assessors, and regulatory decision makers to quickly locate relevant values on numerous environmental chemicals. A free, on-line repository for international health-based guidance values to facilitate the interpretation of HBM data is now available. The repository is referred to as the "Human Biomonitoring Health-Based Guidance Value (HB2GV) Dashboard". The Dashboard represents the efforts of the International Human Biomonitoring Working Group (i-HBM), affiliated with the International Society of Exposure Science. The i-HBM's mission is to promote the use of population-level HBM data to inform public health decision-making by developing harmonized resources to facilitate the interpretation of HBM data in a health-based context. This paper describes the methods used to compile the human biomonitoring health-based guidance values, how the values can be accessed and used, and caveats with using the Dashboard for interpreting HBM data. To our knowledge, the HB2GV Dashboard is the first open-access, curated database of HBM guidance values developed for use in interpreting HBM data. This new resource can assist global HBM data users such as risk assessors, risk managers and biomonitoring programs with a readily available compilation of guidance values.
Collapse
Affiliation(s)
- Shoji F Nakayama
- Exposure Dynamics Research Section, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Annie St-Amand
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Tyler Pollock
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Petra Apel
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita12, Nishi 7, Kita-ku, Sapporo, Japan.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
| | | | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA.
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé, 1, Rue Louis Rech, L-3555, Dudelange, Luxembourg.
| | - Sarah Faure
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK.
| | - Sean Hays
- Summit Toxicology LLP, 615 Nikles Dr., Unit 102, Bozeman, MT, 59715, USA.
| | - Nancy B Hopf
- Center for Primary Care and Public Health, Route de la Corniche 2, 1066, Epalinges-Lausanne, Switzerland.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands.
| | - Marike Kolossa-Gehring
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Neulaniementie 4, FI-70210, Kuopio, Finland.
| | - Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, MD, 21228, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Marta Esteban López
- National Center for Environmental Health, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz 1649-016 Lisbon, and Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082, Lisbon, Portugal.
| | - Kristin Macey
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, Ottawa, ON, K1A 0K9, Canada.
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Irinis 95, 3041, Limassol, Cyprus.
| | - Lisa Melnyk
- U.S. Environmental Protection Agency, Office of Research and Development/Center for Public Health and Environmental Assessment, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| | - Aline Murawski
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Josh Naiman
- LaKind Associates, LLC, 504 S 44th St, Philadelphia, PA, 19104, USA.
| | - Julianne Nassif
- Association of Public Health Laboratories 8515 Georgia Avenue, Suite 700, Silver Spring, MD, 20910, USA.
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Devika Poddalgoda
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, Ottawa, ON, K1A 0K9, Canada.
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Ata Rafiee
- Department of Medicine, University of Alberta, 173B Heritage Medical Research Centre, 11207 - 87 Ave NW, Edmonton, AB, T6G 2S2, Canada.
| | - Loïc Rambaud
- Occupational and Environmental Health Division, Santé publique France, 12 rue du Val d'Osne, 94415, Saint-Maurice, France.
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan.
| | - Marc-Andre Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Maisarah Nasution Waras
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, P. Pinang, Malaysia.
| | - Kate Werry
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
16
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
17
|
Nasser Eddine N, Noisel N, Dieme D, Asmar MK, Issa ST, Bouchard M. Multi-matrix biomonitoring approach to assess exposure to metals and trace elements in the Lebanese population and associations with drinking water consumption. ENVIRONMENTAL RESEARCH 2022; 214:113982. [PMID: 35952733 DOI: 10.1016/j.envres.2022.113982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study is the first attempt to assess exposure to metals and trace elements in subgroups of the Lebanese population using a multi-matrix biomonitoring approach. Concentrations of 11 metals and trace elements (aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), selenium (Se), uranium (U), zinc (Zn)) were measured in urine, hair and toenails. Biological levels were compared according to age, sex, smoking status, socioeconomic status, geographical area and drinking water source. While most urinary and toenail concentrations of metals and trace elements were not different between males and females, measured concentrations of several elements in hair were higher in females compared to males. Urinary concentrations of some metals (Al, Cu, Se and Zn) were higher in children compared to teenagers and adults. Hair and toenail concentrations of several elements (As, Cd, Pb, Mn, Se in hair and toenails plus Al, Fe in toenails) were also significantly higher in children compared to teenagers and/or adults. Smoking status had no influence on metal and trace element concentrations. Levels of Cd, Pb and Mn were also higher in samples from subgroups with lower economic status (Cd and Pb in the three matrices and Mn in hair and toenails). Very few correlations were identified between sources of drinking water and urine, hair, and toenail concentrations of metals and trace elements. However, a correlation was observed between hair and toenails levels of As, Cd and Pb. Overall, results highlight that a special attention should be given to metal and trace element exposure in this population (including Pb, As, Cd, Mn, and Se). It could be relevant to scale up this kind of investigation with a large human biomonitoring initiative in the Lebanese population in order to generalize results, and assess trends over time.
Collapse
Affiliation(s)
- Nessrine Nasser Eddine
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Nolwenn Noisel
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Chaire d'analyse et de gestion des risques toxicologiques, Université de Montréal, 2900, Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Denis Dieme
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, 7101, Avenue Du Parc, Montréal, QC H3N 1X7, Canada
| | - Michèle Kosremelli Asmar
- Institut Supérieur de Santé Publique, Faculté de Médecine, Université Saint-Joseph de Beyrouth, Lebanon
| | - Sahar T Issa
- Department of Environmental Health Sciences, Faculty of Communications, Arts and Sciences, Canadian University Dubai, United Arab Emirates
| | - Michèle Bouchard
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, 7101, Avenue Du Parc, Montréal, QC H3N 1X7, Canada; Chaire d'analyse et de gestion des risques toxicologiques, Université de Montréal, 2900, Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
18
|
Tarazona JV, Cattaneo I, Niemann L, Pedraza-Diaz S, González-Caballero MC, de Alba-Gonzalez M, Cañas A, Dominguez-Morueco N, Esteban-López M, Castaño A, Borges T, Katsonouri A, Makris KC, Ottenbros I, Mol H, De Decker A, Morrens B, Berman T, Barnett-Itzhaki Z, Probst-Hensch N, Fuhrimann S, Tratnik JS, Horvat M, Rambaud L, Riou M, Schoeters G, Govarts E, Kolossa-Gehring M, Weber T, Apel P, Namorado S, Santonen T. A Tiered Approach for Assessing Individual and Combined Risk of Pyrethroids Using Human Biomonitoring Data. TOXICS 2022; 10:451. [PMID: 36006130 PMCID: PMC9416723 DOI: 10.3390/toxics10080451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Pyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future.
Collapse
Affiliation(s)
- Jose V. Tarazona
- European Food Safety Authority (EFSA), 43126 Parma, Italy
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Irene Cattaneo
- European Food Safety Authority (EFSA), 43126 Parma, Italy
| | - Lars Niemann
- Department of Safety of Pesticides, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005 Lisbon, Portugal
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Ilse Ottenbros
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), 6700 Wageningen, The Netherlands
| | | | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerpen, Belgium
| | | | - Zohar Barnett-Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Janja Snoj Tratnik
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Milena Horvat
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Loic Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | | | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Sonia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Työterveyslaitos, P.O. Box 40, 00032 Helsinki, Finland
| |
Collapse
|
19
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
20
|
Nguyen VK, Colacino J, Patel CJ, Sartor M, Jolliet O. Identification of occupations susceptible to high exposure and risk associated with multiple toxicants in an observational study: National Health and Nutrition Examination Survey 1999-2014. EXPOSOME 2022; 2:osac004. [PMID: 35832257 PMCID: PMC9266352 DOI: 10.1093/exposome/osac004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Occupational exposures to toxicants are estimated to cause over 370 000 premature deaths annually. The risks due to multiple workplace chemical exposures and those occupations most susceptible to the resulting health effects remain poorly characterized. The aim of this study is to identify occupations with elevated toxicant biomarker concentrations and increased health risk associated with toxicant exposures in a diverse working US population. For this observational study of 51 008 participants, we used data from the 1999-2014 National Health and Nutrition Examination Survey. We characterized differences in chemical exposures by occupational group for 131 chemicals by applying a series of generalized linear models with the outcome as biomarker concentrations and the main predictor as the occupational groups, adjusting for age, sex, race/ethnicity, poverty income ratio, study period, and biomarker of tobacco use. For each occupational group, we calculated percentages of participants with chemical biomarker levels exceeding acceptable health-based guidelines. Blue-collar workers from "Construction," "Professional, Scientific, Technical Services," "Real Estate, Rental, Leasing," "Manufacturing," and "Wholesale Trade" have higher biomarker levels of toxicants such as several heavy metals, acrylamide, glycideamide, and several volatile organic compounds (VOCs) compared with their white-collar counterparts. Moreover, blue-collar workers from these industries have toxicant concentrations exceeding acceptable levels: arsenic (16%-58%), lead (1%-3%), cadmium (1%-11%), glycideamide (3%-6%), and VOCs (1%-33%). Blue-collar workers have higher toxicant levels relative to their white-collar counterparts, often exceeding acceptable levels associated with noncancer effects. Our findings identify multiple occupations to prioritize for targeted interventions and health policies to monitor and reduce toxicant exposures.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, Medical School, Harvard University, Boston, MA, USA
| | - Justin Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Medical School, Harvard University, Boston, MA, USA
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Wollin KM, Apel P, Chovolou Y, Pabel U, Schettgen T, Kolossa-Gehring M, Röhl C, Agency OBOTHBCOTGE. Concept for the Evaluation of Carcinogenic Substances in Population-Based Human Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7235. [PMID: 35742488 PMCID: PMC9223427 DOI: 10.3390/ijerph19127235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
The Human Biomonitoring (HBM) Commission at the German Environment Agency holds the opinion that for environmental carcinogens for which no exposure levels can be assumed and are harmless to health, health-based guidance values corresponding to the classical definition of the HBM-I or HBM-II value cannot be established. Therefore, only reference values have been derived so far for genotoxic carcinogens from exposure data of the general population or subpopulations. The concept presented here opens up the possibility of performing health risk assessments of carcinogenic substances in human biomonitoring, and thus goes decisively beyond the purely descriptive statistical reference value concept. Using the presented method, quantitative dose descriptors of internal exposure can be derived from those of external exposure, provided that sufficient toxicokinetic information is available. Dose descriptors of internal exposure then allow the simple estimate of additional lifetime cancer risks for measured biomarker concentrations or, conversely, of equivalent concentrations for selected risks, such as those considered as tolerable for the general population. HBM data of chronic exposures to genotoxic carcinogens can thus be used to assess the additional lifetime cancer risk referring to the general population and to justify and prioritize risk management measures.
Collapse
Affiliation(s)
| | - Petra Apel
- German Environment Agency (UBA), 14195 Berlin, Germany; (P.A.); (M.K.-G.)
| | - Yvonni Chovolou
- North Rhine-Westphalia Office of Nature, Environment and Consumer Protection, 45659 Recklinghausen, Germany;
| | - Ulrike Pabel
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Claudia Röhl
- Department of Environmental Health Protection, State Agency for social Services (LAsD) Schleswig-Holstein, 24534 Neumünster, Germany
- Institute of Toxicology and Pharmacology for Natural Scientists, Christiana Albertina University of Kiel, 24105 Kiel, Germany
| | | |
Collapse
|
22
|
Socianu S, Bopp SK, Govarts E, Gilles L, Buekers J, Kolossa-Gehring M, Backhaus T, Franco A. Chemical Mixtures in the EU Population: Composition and Potential Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106121. [PMID: 35627658 PMCID: PMC9141134 DOI: 10.3390/ijerph19106121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.
Collapse
Affiliation(s)
- Sebastian Socianu
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
| | - Stephanie K. Bopp
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
- Correspondence: ; Tel.: +39-0332-789950
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | | | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, 41319 Gothenburg, Sweden;
| | - Antonio Franco
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
| |
Collapse
|
23
|
Jamnik T, Flasch M, Braun D, Fareed Y, Wasinger D, Seki D, Berry D, Berger A, Wisgrill L, Warth B. Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development. Nat Commun 2022; 13:2653. [PMID: 35550507 PMCID: PMC9098442 DOI: 10.1038/s41467-022-30204-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 04/13/2022] [Indexed: 12/19/2022] Open
Abstract
Exposure to synthetic and natural chemicals is a major environmental risk factor in the etiology of many chronic diseases. Investigating complex co-exposures is necessary for a holistic assessment in exposome-wide association studies. In this work, a sensitive liquid chromatography-tandem mass spectrometry approach was developed and validated. The assay enables the analysis of more than 80 highly-diverse xenobiotics in urine, serum/plasma, and breast milk; with detection limits generally in the pg-ng mL-1 range. In plasma of extremely-premature infants, 27 xenobiotics are identified; including contamination with plasticizers, perfluorinated alkylated substances and parabens. In breast milk samples collected longitudinally over the first 211 days post-partum, 29 analytes are detected, including pyrrolizidine- and tropane alkaloids which have not been identified in this matrix before. A preliminary estimation of daily toxicant intake via breast milk is conducted. In conclusion, we observe significant early-life co-exposure to multiple toxicants, and demonstrate the method's applicability for large-scale exposomics-type cohort studies.
Collapse
Affiliation(s)
- Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Daniel Wasinger
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - David Seki
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - Angelika Berger
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lukas Wisgrill
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria.
| |
Collapse
|
24
|
Shaabani Z, Esmaili-Sari A, Moradi AM, Taghavi L, Farsad F. Possible health risk assessment for heavy metal concentrations in water, sediment, and fish species and Turkmen pregnant women's biomonitoring in Miankaleh Peninsula, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37187-37203. [PMID: 35032266 DOI: 10.1007/s11356-021-17894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the human biomonitoring of heavy metals in the water, sediments, and tissues of mostly consumed fish species using Turkmen pregnant women's biomarkers in winter 2019, at the Miankaleh Peninsula, north of Iran. Metal concentrations were measured in various fish organs as well as pregnant women's blood, hair, and nail as biological indicators. For this purpose, a total of 20 water and sediment, 14 fish, and 16 human samples were collected. Inductively coupled plasma mass spectrometry (ICP-MS) was used to evaluate the concentration of Cr, Co, Cu, As, Hg, and Pb. Results showed metals with the highest concentrations as Cu and Cr in water (93.35 and 80.91 µg/l, respectively), Hg and Pb in sediment (7.40 µg/g for both), Cu and Pb in the liver (27.00 and 18.9 µg/g for C. carpio; 1414 and 31.7 µg/g for L. auratus), muscle (10.00 and 18.80 for C. carpio; 37.20 and 8.27 µg/g for L. auratus), and skin (26.40 and 9.90 for C. carpio; 10.80 and 11.74 µg/g for L. auratus). In addition, Cu, in pregnant women samples, had the highest values at 2.53 mg/l, 8.87, 36.46, and 29.04 µg/g for blood, hair, fingernail, and toenail, respectively. However, Co showed the lowest concentration in all studied samples. Fish liver and fingernail of pregnant women did reveal the highest heavy metal accumulation, whereas fish muscle and blood of pregnant women had the lowest accumulated heavy metals. The concentration of Hg in water, sediment, fish muscle, and women's blood and hair exceeded the limits suggested by various organizations. Therefore, this study highlighted that heavy metal concentration, in particular Hg, in water, sediments, and fish is a serious risk to the health of local inhabitants who rely on fisheries products and recommended that necessary information should be provided to warn Turkmen pregnant women in consumption of Hg-contaminated fish in this area.
Collapse
Affiliation(s)
- Zahra Shaabani
- Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Esmaili-Sari
- Department of Environment, Faculty of Natural Resources and Marine Science Tarbiat Modares University, Tehran, Iran.
| | - Ali Mashinchian Moradi
- Department of Marine Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lobat Taghavi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Forough Farsad
- Department of Environmental Science, Faculty of Natural Resources, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
25
|
Ilozumba MN, Shelver WL, Hong CC, Ambrosone CB, Cheng TYD. Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4681. [PMID: 35457549 PMCID: PMC9024480 DOI: 10.3390/ijerph19084681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022]
Abstract
Background: Triclosan, bisphenol A (BPA), and brominated flame retardants are environmental estrogenic endocrine-disrupting compounds that may influence the prognosis of breast cancer. We examined the urinary concentrations of these compounds and their associations with demographic characteristics and body fatness in a population of women with newly diagnosed breast cancer. Methods: Overnight urine collection and anthropometric measures were obtained from 302 participants. Triclosan, BPA, tetrabromobisphenol A (TBBPA), and tetrabromobenzoic acid (TBBA) concentrations were determined using ultra-performance liquid chromatography−tandem mass spectrometry. Regression analyses were conducted to examine associations of urinary compound concentration with age, menopause, race, ethnicity, educational level, estrogen receptor status, body size, and body composition. Results: Triclosan, BPA, and TBBA were detected in urine samples from 98.3%, 6.0%, and 0.3% of patients, respectively; TBBPA was undetectable. Among patients with quantifiable values, the geometric mean concentrations were 20.74 µg/L (27.04 µg/g creatinine) for triclosan and 0.82 µg/L (1.08 µg/g creatinine) for BPA. Body mass index ≥ 30 vs. <25 kg/m2 was associated with lower creatinine-corrected urinary concentrations of triclosan (−40.00, 95% confidence interval [CI] = −77.19 to −2.81; p = 0.0351). The observed association was predominantly in postmenopausal women (−66.57; 95% CI: −109.18% to −23.96%). Consistent results were found for associations between triclosan levels and fat mass variables. Conclusion: In this study population, women with newly diagnosed breast cancer had triclosan exposure. Assessments of the implications of urinary concentrations of triclosan for women should consider body fatness and menopausal status.
Collapse
Affiliation(s)
- Mmadili N. Ilozumba
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Weilin L. Shelver
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA;
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (C.-C.H.); (C.B.A.)
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (C.-C.H.); (C.B.A.)
| | - Ting-Yuan David Cheng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (C.-C.H.); (C.B.A.)
| |
Collapse
|
26
|
Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063362. [PMID: 35329058 PMCID: PMC8955248 DOI: 10.3390/ijerph19063362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Human biomonitoring (HBM) is a rapidly developing field that is emphasized as an important approach for the assessment of health risks. However, its value for health risk assessment (HRA) remains to be clarified. We performed a review of publications concerned with applications of HBM in the assessment of health risks. The selection of publications for this review was limited by the search engines used (only PubMed and Scopus) and a timeframe of the last five years. The review focused on the clarity of 10 HRA elements, which influence the quality of HRA. We show that the usage of HBM data in HRA is limited and unclear. Primarily, the key HRA elements are not consistently applied or followed when using HBM in such assessments, and secondly, there are inconsistencies regarding the understanding of fundamental risk analysis principles and good practices in risk analysis. Our recommendations are as follows: (i) potential usage of HBM data in HRA should not be non-critically overestimated but rather limited and aligned to a specific value for exposure assessment or for the interpretation of health damage; (ii) improvements to HRA approaches, using HBM information or not, are needed and should strictly follow theoretical foundations of risk analysis.
Collapse
|
27
|
Ponce G, Valcke M, Bourgault MH, Gagné M, Laouan-Sidi EA, Gagnon F. Determination of a guidance value for the communication of individual-level biomonitoring data for urinary arsenic. Int J Hyg Environ Health 2022; 240:113927. [DOI: 10.1016/j.ijheh.2022.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
28
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
F Fernández S, Pardo O, Coscollà C, Yusà V. Exposure assessment of Spanish lactating mothers to acrylamide via human biomonitoring. ENVIRONMENTAL RESEARCH 2022; 203:111832. [PMID: 34358503 DOI: 10.1016/j.envres.2021.111832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is an organic compound classified as "Probably carcinogenic to humans" (Group 2 A) that can be found principally in processed carbohydrate-rich foods and tobacco smoke. In humans, after exposure, AA is rapidly metabolized and excreted in urine, predominantly as N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA3) and N-Acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul), which can be used as short-term biomarkers of exposure to AA. In this study, the presence of AA metabolites in urine samples of lactating mothers living in Spain (n = 114) was analyzed by "dilute and shoot" and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All urinary metabolites were detected in 100% of the analyzed samples, with geometric means of 70, 33 and 15 ng ml-1, for AAMA, AAMA-Sul and GAMA3, respectively. The consumption of coffee, bread and precooked food products were found to be significant predictors of internal exposure to AA. An estimated daily intake (EDI) of AA based on its urinary metabolites was calculated, obtaining mean values between 1.2 and 1.9 μg AA·kg bw-1·day-1 in the target population. The risk assessment was evaluated using both reverse and forward dosimetry, showing an average margin of exposure (MOE) of 349 and a hazard quotient (HQ) of 5.5. Therefore, AA exposure should be considered a medium priority for risk assessment follow-up in the Spanish population, since a health concern with respect to non-neoplastic toxicity could not be discarded.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Public Health Directorate of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain.
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain.
| |
Collapse
|
30
|
Pollock T, Karthikeyan S, Walker M, Werry K, St-Amand A. Trends in environmental chemical concentrations in the Canadian population: Biomonitoring data from the Canadian Health Measures Survey 2007-2017. ENVIRONMENT INTERNATIONAL 2021; 155:106678. [PMID: 34118655 DOI: 10.1016/j.envint.2021.106678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ten years of nationally representative biomonitoring data collected between 2007 and 2017 are available from the Canadian Health Measures Survey (CHMS). These data establish baseline environmental chemical concentrations in the general population. Here we sought to evaluate temporal trends in environmental chemical exposures in the Canadian population by quantifying changes in biomarker concentrations measured in the first five two-year cycles of the CHMS. We identified 39 chemicals that were measured in blood or urine in at least three cycles and had detection rates over 50% in the Canadian population. We calculated geometric mean concentrations for each cycle using the survey weights provided. We then conducted analyses of variance to test for linear trends over all cycles. We also calculated the percent difference in geometric means between the first and most recent cycle measured. Of the 39 chemicals examined, we found statistically significant trends across cycles for 21 chemicals. Trends were decreasing for 19 chemicals from diverse chemical groups, including metals and trace elements, phenols and parabens, organophosphate pesticides, per- and polyfluoroalkyl substances, and plasticizers. Significant reductions in chemical concentrations included di-2-ethylhexyl phthalate (DEHP; 75% decrease), perfluorooctane sulfate (PFOS; 61% decrease), perfluorooctanoic acid (PFOA; 58% decrease), dimethylphosphate (DMP; 40% decrease), lead (33% decrease), and bisphenol A (BPA; 32% decrease). Trends were increasing for two pyrethroid pesticide metabolites, including a 110% increase between 2007 and 2017 for 3-phenoxybenzoic acid (3-PBA). No significant trends were observed for the remaining 18 chemicals that included arsenic, mercury, fluoride, acrylamide, volatile organic compounds, and polycyclic aromatic hydrocarbons. National biomonitoring data indicate that concentrations, and therefore exposures, have decreased for many priority chemicals in the Canadian population. Concentrations for other chemical groups have not changed or have increased, although average concentrations remain below thresholds of concern derived from human exposure guidance values. Continued collection of national biomonitoring data is necessary to monitor trends in exposures over time.
Collapse
Affiliation(s)
- Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate Werry
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Zare Jeddi M, Virgolino A, Fantke P, Hopf NB, Galea KS, Remy S, Viegas S, Mustieles V, Fernandez MF, von Goetz N, Vicente JL, Slobodnik J, Rambaud L, Denys S, St-Amand A, Nakayama SF, Santonen T, Barouki R, Pasanen-Kase R, Mol HGJ, Vermeire T, Jones K, Silva MJ, Louro H, van der Voet H, Duca RC, Verhagen H, Canova C, van Klaveren J, Kolossa-Gehring M, Bessems J. A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. Int J Hyg Environ Health 2021; 238:113826. [PMID: 34583227 DOI: 10.1016/j.ijheh.2021.113826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Ana Virgolino
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Karen S Galea
- IOM - Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| | - Sylvie Remy
- VITO - Flemish Institute for Technological Research, Health Unit, Mol, Belgium
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169-056, Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1500-310, Lisboa, Portugal
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | | | - Joana Lobo Vicente
- EEA - European Environment Agency, Kongens Nytorv 6, 1050, Copenhagen K, Denmark
| | - Jaroslav Slobodnik
- NORMAN Association, Rue Jacques Taffanel - Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Loïc Rambaud
- SPF - Santé Publique France, Environmental and Occupational Health Division, France
| | - Sébastien Denys
- SPF - Santé Publique France, Environmental and Occupational Health Division, France
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Japan
| | - Tiina Santonen
- FIOH-Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Finland
| | - Robert Barouki
- Université de Paris, Inserm Unit 1124, 45 rue des Saints Pères, 75006, Paris, France
| | - Robert Pasanen-Kase
- SECO - State Secretariat for Economic Affairs, Labour Directorate Section Chemicals and Work (ABCH), Switzerland
| | - Hans G J Mol
- Wageningen Food Safety Research (WFSR) - part of Wageningen University & Research, Wageningen, The Netherlands
| | - Theo Vermeire
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton, SK17 9JN, UK
| | - Maria João Silva
- INSA - National Institute of Health Dr. Ricardo Jorge, Portugal; TOXOMICS - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Henriqueta Louro
- INSA - National Institute of Health Dr. Ricardo Jorge, Portugal; TOXOMICS - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Hilko van der Voet
- Wageningen University & Research, Biometris, Wageningen, the Netherlands
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg; Centre Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Hans Verhagen
- University of Ulster, Coleraine, Northern Ireland, UK; Technical University of Denmark, Lyngby, Denmark
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology, and Public Health-University of Padua, Padua, Italy
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Health Unit, Mol, Belgium
| |
Collapse
|
32
|
Drevin G, Lelievre B, Riou J, Briet M. Molybdenum Occupational Study in a French Cohort of Workers. Ann Work Expo Health 2021; 66:52-59. [PMID: 34278419 DOI: 10.1093/annweh/wxab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Occupational exposure to molybdenum has been poorly documented to date. Here, we present a retrospective study evaluating urinary molybdenum concentration before and after shift over a period of 2 years in exposed workers. METHODS This retrospective study was conducted across eight industrial sites in France and included all workers undergoing medical follow-up for occupational molybdenum exposure. A mean of six sequential samples (before and after shift) was performed for each worker. The urinary molybdenum concentration was determined using a validated method of inductively coupled plasma-mass spectrometry. A mixed linear model was built and linear regression was used to verify the extent to which the urinary molybdenum concentration depends on the age of the workers and the sampling period. Additionally, an analysis based on individual trajectory was also performed. RESULTS Seventy-seven workers were included in the present study. Post-shift urinary molybdenum concentrations were significantly higher than pre-shift values [median (95th percentile) 37.9 (91.1), versus 60.6 (190.0) µg g-1 creatinine, respectively, P < 0.009]. No accumulation of molybdenum over time was observed. The urinary molybdenum concentrations were not influenced by age. Four workers presented high post-shift values as a result of not adhering to protection measures (maxima of 529.8, 359.7, 386.3, and 1459.7 µg g-1 creatinine, respectively). CONCLUSIONS To our knowledge, this is the first study of occupational molybdenum exposure in France to include an individual trajectory analysis. No accumulation of molybdenum was seen but high post-shift molybdenum urinary concentrations were observed for some workers. The study emphasizes the importance of molybdenum monitoring in exposed workers.
Collapse
Affiliation(s)
- Guillaume Drevin
- Department of Methodology and Biostatistics, University Hospital of Angers, 4 rue Larrey, 49933 Angers Cedex 09, France.,Faculté de Médecine, Université d'Angers, rue Haute Reculée 49045 Angers, France
| | - Benedicte Lelievre
- Department of Methodology and Biostatistics, University Hospital of Angers, 4 rue Larrey, 49933 Angers Cedex 09, France.,GEIHP-UPRES EA 342-Université d'Angers, 4 rue Larrey, 49933 Angers Cedex 09, France
| | - Jérémie Riou
- Department of Methodology and Biostatistics, University Hospital of Angers, 4 rue Larrey, 49933 Angers Cedex 09, France.,MINT, Université d'Angers, INSERM 1066, CNRS 6021, University Hospital of Angers, 4 rue Larrey, 49933 Angers Cedex 09, France
| | - Marie Briet
- Department of Methodology and Biostatistics, University Hospital of Angers, 4 rue Larrey, 49933 Angers Cedex 09, France.,Faculté de Médecine, Université d'Angers, rue Haute Reculée 49045 Angers, France.,Laboratoire MitoVasc, UMR CNRS 6214 INSERM 1083, Faculté de Médecine, rue Haute Reculée, 49045 Angers Cedex, France
| |
Collapse
|
33
|
Lange R, Apel P, Rousselle C, Charles S, Sissoko F, Kolossa-Gehring M, Ougier E. The European Human Biomonitoring Initiative (HBM4EU): Human biomonitoring guidance values for selected phthalates and a substitute plasticizer. Int J Hyg Environ Health 2021; 234:113722. [PMID: 33711757 DOI: 10.1016/j.ijheh.2021.113722] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Ubiquitous use of plasticizers has led to a widespread internal exposure of the European population. Until today, metabolites are detected in almost every urine sample analysed. This raised the urgent need for a toxicological interpretation of the internal exposure levels. The European Human Biomonitoring Initiative (HBM4EU) contributes substantially to the knowledge on the actual exposure of European citizens to chemicals prioritised within HBM4EU, on their potential impact on health and on the interpretation of these data to improve policy making. On that account, human biomonitoring guidance values (HBM-GVs) are derived for the general population and the occupationally exposed population agreed at HBM4EU consortium level. These values can be used to assess phthalate exposure levels measured in HBM studies in a health risk assessment context. HBM-GVs were derived for five phthalates (DEHP, DnBP, DiBP, BBzP and DPHP) and for the non-phthalate substitute Hexamoll® DINCH. For the adult general population, the HBM-GVs for the specific metabolite(s) of the respective parent compounds in urine are the following: 0.5 mg/L for the sum of 5-oxo-MEHP and 5-OH-MEHP; 0.19 mg/L for MnBP, 0.23 mg/L for MiBP; 3 mg/L for MBzP; 0.5 mg/L for the sum of oxo-MPHP and OH-MPHP and 4.5 mg/L for the sum of OH-MINCH and cx-MINCH. The present paper further specifies HBM-GVs for children and for workers.
Collapse
Affiliation(s)
- Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Sandrine Charles
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Fatoumata Sissoko
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | | | - Eva Ougier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| |
Collapse
|
34
|
Willey JB, Pollock T, Thomson EM, Liang CL, Maquiling A, Walker M, St-Amand A. Exposure Load: Using biomonitoring data to quantify multi-chemical exposure burden in a population. Int J Hyg Environ Health 2021; 234:113704. [PMID: 33690093 DOI: 10.1016/j.ijheh.2021.113704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
People are often concurrently exposed to numerous chemicals. Here we sought to leverage existing large biomonitoring datasets to improve our understanding of multi-chemical exposures in a population. Using nationally-representative data from the 2012-2015 Canadian Health Measures Survey (CHMS), we developed Exposure Load, a metric that counts the number of chemicals measured in people above a defined concentration threshold. We calculated Exposure Loads based on five concentration thresholds: the analytical limit of detection (LOD) and the 50th, 75th, 90th and 95th percentiles. Our analysis considered 44 analyte biomarkers representing 26 chemicals from the 2012-2015 CHMS; complete biomarker data were available for 1858 participants aged 12-79 years following multiple imputation of results that were missing due to sample loss. Chemicals may have one or more biomarkers, and for the purposes of Exposure Load calculation, participants were considered to be exposed to a chemical if at least one biomarker was above the threshold. Distributions of Exposure Loads are reported for the total population, as well as by age group, sex and smoking status. Canadians had an Exposure Load between 9 and 21 (out of 26) when considering LOD as the threshold, with the majority between 13 and 18. At higher thresholds, such as the 95th percentile, the majority of Canadians had an Exposure Load between 0 and 3, although some people had an Exposure Load of up to 15, indicating high exposures to multiple chemicals. Adolescents aged 12-19 years had significantly lower Exposure Loads than adults aged 40-79 years at all thresholds and adults aged 20-39 years at the 50th and 75th percentiles. Smokers had significantly higher Exposure Loads than nonsmokers at all thresholds except the LOD, which was expected given that tobacco smoke is a known source of certain chemicals included in our analysis. No differences in Exposure Loads were observed between males and females at any threshold. These findings broadly suggest that Canadians are concurrently exposed to many chemicals at lower concentrations and to fewer chemicals at high concentrations. They should assist in identifying vulnerable subpopulations disproportionately exposed to numerous chemicals at high concentrations. Future work will use Exposure Loads to identify prevalent chemical combinations and their link with adverse health outcomes in the Canadian population. The Exposure Load concept can be applied to other large datasets, through collaborative efforts in human biomonitoring networks, in order to further improve our understanding of multiple chemical exposures in different populations.
Collapse
Affiliation(s)
- Jeff B Willey
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | - Chun Lei Liang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Aubrey Maquiling
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Song W, Wan Y, Jiang Y, Liu Z, Wang Q. Urinary concentrations of 2,4-D in repeated samples from 0-7 year old healthy children in central and south China. CHEMOSPHERE 2021; 267:129225. [PMID: 33341734 DOI: 10.1016/j.chemosphere.2020.129225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) and its analogues are widely used in agriculture. Although the occurrence of 2,4-D in urine has been widely reported in North America, it has scarcely been investigated in China, especially in young children. In addition, both invivo and in vitro studies have shown that high-level 2,4-D exposure is associated with oxidative stress, but their association in a general sensitive population has rarely been evaluated. In this study, 2,4-D and its analogues were measured in 417 urine samples collected from 139 children aged 0-7 during the non-peak season of pesticide application in Wuhan, central China, and Shenzhen, south China. Each of them provided three samples in three consecutive days. An oxidative stress biomarker, 8-hydroxy-2-deoxyguanosine (8-OHdG), was also measured. The geometric mean (GM) of unconjugated urinary 2,4-D concentration was 0.10 μg/L (corrected by urinary specific gravity, SG-corrected). After β-glucuronidase hydrolysis, the GM of SG-corrected urinary 2,4-D was 0.15 μg/L, and the detection frequency was 100%. Moderate inter-day reproducibility was found within individuals, with an intraclass correlation coefficient of 0.68 for SG-corrected urinary deconjugated 2,4-D. The GM of estimated daily intake of 2,4-D was 6.05 ng/kg-bw/day. A significant positive correlation was found between urinary 2,4-D and 8-OHdG, whereas no association was found after SG-correction. This is the first study to characterize the occurrence of urinary 2,4-D, its inter-day reliability, and its association with urinary 8-OHdG in young children from China.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Zhengdan Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
36
|
Basini G, Bussolati S, Bertini S, Quintavalla F, Grasselli F. Evaluation of Triclosan Effects on Cultured Swine Luteal Cells. Animals (Basel) 2021; 11:ani11030606. [PMID: 33668891 PMCID: PMC7996528 DOI: 10.3390/ani11030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary A great concern has been raised against many chemicals, both natural and man-made, that can mimic or interfere with the hormones. Among these, using swine ovarian cells, we were aimed to explore the potential effect of triclosan, an antimicrobial agent widely used in cosmetics and home products. Our results demonstrate that triclosan disrupts cellular function, in particular interfering with hormone production and proliferation, thus suggesting a critical evaluation of its effects. Abstract Triclosan is a chlorinated phenolic, used in many personal and home care products for its powerful antimicrobial effect. Several studies have shown triclosan toxicity and the American Food and Drug Administration (FDA) in 2016 has limited its use. It has been recently included in endocrine-disrupting chemicals (EDCs), a list of chemicals known for their ability to interfere with hormonal signaling with particular critical effects on reproduction both in animals and humans. In order to deepen the knowledge in this specific field, the present study was undertaken to explore the effect of different concentrations of triclosan (1, 10, and 50 µM) on cultured luteal cells, isolated from swine ovaries, evaluating effects on growth Bromodeoxyuridine (BrDU) incorporation and Adenosine TriPhosphate (ATP) production, steroidogenesis (progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity). A biphasic effect was exerted by triclosan on P4 production. In fact, the highest concentration inhibited, while the others stimulated P4 production (p < 0.05). Triclosan significantly inhibited cell proliferation, metabolic activity, and enzymatic scavenger activity (p < 0.05). On the contrary, nitric oxide production was significantly increased by triclosan (p < 0.01), while superoxide anion generation and non-enzymatic scavenging activity were unaffected.
Collapse
|
37
|
Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. Int J Mol Sci 2021; 22:ijms22030995. [PMID: 33498193 PMCID: PMC7863963 DOI: 10.3390/ijms22030995] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
Due to their unique chemical properties, per- and polyfluoroalkyl substances (PFAS) have been used extensively as industrial surfactants and processing aids. While several types of PFAS have been voluntarily phased out by their manufacturers, these chemicals continue to be of ecological and public health concern due to their persistence in the environment and their presence in living organisms. Moreover, while the compounds referred to as “legacy” PFAS remain in the environment, alternative compounds have emerged as replacements for their legacy predecessors and are now detected in numerous matrices. In this review, we discuss the historical uses of PFAS, recent advances in analytical techniques for analysis of these compounds, and the fate of PFAS in the environment. In addition, we evaluate current biomonitoring studies of human exposure to legacy and emerging PFAS and examine the associations of PFAS exposure with human health impacts, including cancer- and non-cancer-related outcomes. Special focus is given to short-chain perfluoroalkyl acids (PFAAs) and ether-substituted, polyfluoroalkyl alternatives including hexafluoropropylene oxide dimer acid (HFPO-DA; tradename GenX), 4,8-dioxa-3H-perfluorononanoic acid (DONA), and 6:2 chlorinated polyfluoroethersulfonic acid (6:2 Cl-PFESA; tradename F-53B).
Collapse
|
38
|
Sato H, Ito Y, Hanai C, Nishimura M, Ueyama J, Kamijima M. Non-linear model analysis of the relationship between cholinesterase activity in rats exposed to 2, 2-dichlorovinyl dimethylphosphate (dichlorvos) and its metabolite concentrations in urine. Toxicology 2021; 450:152679. [PMID: 33460720 DOI: 10.1016/j.tox.2021.152679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Urinary dialkylphosphates (DAPs) are measured to assess exposure to organophosphorus pesticides (OPs), but they are common metabolites of OPs and not specific indices for individual agents. Biomonitoring (BM) of urinary DAPs has been widely adopted as an assessment of individual exposure in general environments, however, guidance values for DAPs based on health effects have yet to be established. The present study aimed to clarify the relationship between the amount of urinary dimethylphosphate (DMP), a metabolite of dichlorvos (DDVP), and the inhibition of cholinesterase (ChE) activity in rats exposed to DDVP. The relationship was analyzed using a nonlinear model analysis, and the excretion level of urinary DMP equivalent to ChE 20 % inhibition (EL20) and the lower limit of the 95 % confidence interval of EL20 (ELL20) were estimated. EL20 and ELL20 (mg/24 h urine) of brain, erythrocyte, and plasma ChE activities after 10-day administration of DDVP were 0.21 and 0.15, 0.11 and 0.06, and 0.23 and 0.09, respectively. Extrapolating ELL20 of the brain ChE to humans, the range of 24 h urinary DMP concentration according to the 20 % inhibition of cholinesterase activity was estimated to be 20.5-30.8 mg/l. In conclusion, the amount of urinary DMP as ELL20 for DDVP exposure was identified and could probably be used as a novel index for the assessment of risk from OP exposure. Further studies are needed to clarify the ELL20 s derived from OPs other than DDVP, for informing efforts to establish guidance values of urinary OP metabolites that should prevent neurotoxicity.
Collapse
Affiliation(s)
- Hirotaka Sato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Chinami Hanai
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masaya Nishimura
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
39
|
Apel P, Rousselle C, Lange R, Sissoko F, Kolossa-Gehring M, Ougier E. Human biomonitoring initiative (HBM4EU) - Strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int J Hyg Environ Health 2020; 230:113622. [DOI: 10.1016/j.ijheh.2020.113622] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
|
40
|
Cheung JSJ, Hu XF, Parajuli RP, Rosol R, Torng A, Mohapatra A, Lye E, Chan HM. Health risk assessment of arsenic exposure among the residents in Ndilǫ, Dettah, and Yellowknife, Northwest Territories, Canada. Int J Hyg Environ Health 2020; 230:113623. [DOI: 10.1016/j.ijheh.2020.113623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
|
41
|
Connolly A, Coggins MA, Koch HM. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. TOXICS 2020; 8:E60. [PMID: 32824707 PMCID: PMC7560361 DOI: 10.3390/toxics8030060] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Glyphosate continues to attract controversial debate following the International Agency for Research on Cancer carcinogenicity classification in 2015. Despite its ubiquitous presence in our environment, there remains a dearth of data on human exposure to both glyphosate and its main biodegradation product aminomethylphosphonic (AMPA). Herein, we reviewed and compared results from 21 studies that use human biomonitoring (HBM) to measure urinary glyphosate and AMPA. Elucidation of the level and range of exposure was complicated by differences in sampling strategy, analytical methods, and data presentation. Exposure data is required to enable a more robust regulatory risk assessment, and these studies included higher occupational exposures, environmental exposures, and vulnerable groups such as children. There was also considerable uncertainty regarding the absorption and excretion pattern of glyphosate and AMPA in humans. This information is required to back-calculate exposure doses from urinary levels and thus, compared with health-based guidance values. Back-calculations based on animal-derived excretion rates suggested that there were no health concerns in relation to glyphosate exposure (when compared with EFSA acceptable daily intake (ADI)). However, recent human metabolism data has reported as low as a 1% urinary excretion rate of glyphosate. Human exposures extrapolated from urinary glyphosate concentrations found that upper-bound levels may be much closer to the ADI than previously reported.
Collapse
Affiliation(s)
- Alison Connolly
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
- Centre for Climate and Air Pollution Studies, School of Physics and the Ryan Institute, National University of Ireland, University Road, H91 CF50 Galway, Ireland;
| | - Marie A. Coggins
- Centre for Climate and Air Pollution Studies, School of Physics and the Ryan Institute, National University of Ireland, University Road, H91 CF50 Galway, Ireland;
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
42
|
Sabbioni G, Berset JD, Day BW. Is It Realistic to Propose Determination of a Lifetime Internal Exposome? Chem Res Toxicol 2020; 33:2010-2021. [PMID: 32672951 DOI: 10.1021/acs.chemrestox.0c00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomonitoring of xenobiotics has been performed for many years in occupational and environmental medicine. It has revealed hidden exposures and the exposure of workers could be reduced. Although most of the toxic effects of chemicals on humans were discovered in workers, the scientific community has more recently focused on environmental samples. In several countries, urinary and blood samples have been collected and analyzed for xenobiotics. Health, biochemical, and clinical parameters were measured in the biomonitoring program of the Unites States. The data were collected and evaluated as group values, comparing races, ages, and gender. The term exposome was created in order to relate chemical exposure to health effects together with the terms genome, proteome, and transcriptome. Internal exposures were mostly established with snapshot measurements, which can lead to an obvious misclassification of the individual exposures. Albumin and hemoglobin adducts of xenobiotics reflect the exposure of a larger time frame, up to 120 days. It is likely that only a small fraction of xenobiotics form such adducts. In addition, adduct analyses are more work intensive than the measurement of xenobiotics and metabolites in urine and/or blood. New technology, such as high-resolution mass spectrometry, will enable the discovery of new compounds that have been overlooked in the past, since over 300,000 chemicals are commercially available and most likely also present in the environment. Yet, quantification will be challenging, as it was for the older methods. At this stage, determination of a lifetime internal exposome is very unrealistic. Instead of an experimental approach with a large number of people, which is economically and scientifically not feasible, in silico methods should be developed further to predict exposure, toxicity, and potential health effects of mixtures. The computer models will help to focus internal exposure investigations on smaller groups of people and smaller number of chemicals.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jean-Daniel Berset
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| | - Billy W Day
- Medantox LLC, Pittsburgh, Pennsylvania 15241, United States.,ReNeuroGen LLC, Elm Grove, Wisconsin 53122, United States
| |
Collapse
|