1
|
Candia-Puma MA, Pola-Romero L, Barazorda-Ccahuana HL, Goyzueta-Mamani LD, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Ferraz Coelho EA, Chávez-Fumagalli MA. Evaluating Rabies Test Accuracy: A Systematic Review and Meta-Analysis of Human and Canine Diagnostic Methods. Diagnostics (Basel) 2025; 15:412. [PMID: 40002563 PMCID: PMC11854560 DOI: 10.3390/diagnostics15040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Rabies is almost invariably fatal once clinical symptoms manifest. Timely and accurate diagnosis is essential for effective treatment and prevention. Dogs are the principal reservoirs of the virus, particularly in developing nations, highlighting the importance of precise diagnostic and control measures to prevent human cases. This systematic review and meta-analysis assessed the accuracy of laboratory tests for diagnosing rabies in humans and dogs. Methods: The PubMed database was searched for published studies on rabies diagnosis between 1990 and 2024. Following PRISMA statement recommendations, we included 60 studies that met the selection criteria. Results: The results demonstrated the effectiveness of immunological tests like the Enzyme-Linked Immunosorbent Assay (ELISA) and molecular tests such as Reverse Transcription Polymerase Chain Reaction (RT-PCR) for both humans and dogs. In this study, the Direct Fluorescent Antibody Test (DFAT) exhibited lower diagnostic performance, with an area under the curve for false positive rates (AUCFPR = 0.887). In contrast, ELISA (AUCFPR = 0.909) and RT-PCR (AUCFPR = 0.905) provided more consistent results. Notably, the Rapid Immunochromatographic Test (RIT) showed the best performance (AUCFPR = 0.949), highlighting its superior diagnostic capabilities compared to DFAT. Conclusions: These findings underscore the need to modernize rabies diagnostic protocols by incorporating advanced methodologies to improve diagnostic accuracy, reduce transmission, and decrease mortality rates.
Collapse
Affiliation(s)
- Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (M.A.C.-P.); (H.L.B.-C.); (L.D.G.-M.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Leydi Pola-Romero
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (M.A.C.-P.); (H.L.B.-C.); (L.D.G.-M.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (M.A.C.-P.); (H.L.B.-C.); (L.D.G.-M.)
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (M.A.C.-P.); (H.L.B.-C.); (L.D.G.-M.)
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial, INCT-BI, Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (M.A.C.-P.); (H.L.B.-C.); (L.D.G.-M.)
| |
Collapse
|
2
|
Máčala J, Makhneva E, Hlaváček A, Kopecký M, Gorris HH, Skládal P, Farka Z. Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection. Anal Chem 2024; 96:10237-10245. [PMID: 38870418 PMCID: PMC11209662 DOI: 10.1021/acs.analchem.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.
Collapse
Affiliation(s)
- Jakub Máčala
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ekaterina Makhneva
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Antonín Hlaváček
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Martin Kopecký
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hans H. Gorris
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Farka
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Jabeen U, Bisht KS, Ranjitha HB, Hosamani M, Sreenivasa BP, Kulkarni PM, Nidhi DC, Amulya RL, Bhanuprakash V, Dechamma HJ, Sanyal A, Basagoudanavar SH. In-process quality control in foot-and-mouth disease vaccine production by detection of viral non-structural proteins using chemiluminescence dot blot assay. J Virol Methods 2024; 326:114906. [PMID: 38479084 DOI: 10.1016/j.jviromet.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/20/2024] [Accepted: 02/25/2024] [Indexed: 04/09/2024]
Abstract
Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.
Collapse
Affiliation(s)
- Uzma Jabeen
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | | | | | | | - Pratik M Kulkarni
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | | | | | | | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | |
Collapse
|
4
|
Song X, Qiao Y, Ma J, Zhang X, Liu J, Xin W, Xing S, Wang Y. Co-expression of four penaeidins in transgenic rice seeds: an alternative strategy for substitute antibiotic agricultural products. Transgenic Res 2023; 32:463-473. [PMID: 37535257 DOI: 10.1007/s11248-023-00361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The co-expression of multiple antimicrobial peptides (AMPs) in genetically modified (GM) crops can give plants a broader antibacterial spectrum and lower the pathogen risk of drug resistance. Therefore, four penaeidins (shrimp-derived AMPs) were fused and encoded in an artificial gene (PEN1234), driven by the seed-specific promoter Pzein, with the aim of co-expression in seeds of transgenic rice. The resistant rice plants, acquired via Agrobacterium-mediated transformation and glufosinate screening, were identified by PCR and the modified disk-diffusion method, and eight GM lines with high AMP content in the seeds were obtained. Among them, the PenOs017 line had the largest penaeidin content, at approximately 251-300 μg/g in seeds and 15-47 μg/g in roots and leaves. The AMPs in the seeds kept their antibacterial properties even after the seed had been boiled in hot water and could significantly inhibit the growth of methicillin-resistant Staphylococcus aureus, and AMPs in the leaves could effectively inhibit Xanthomonas oryzae pv. Oryzae. The results indicate that PenOs017 seeds containing AMPs are an ideal raw-material candidate for antibiotic-free food and feed, and may require fewer petrochemical fungicides or bactericides for disease control during cultivation than conventional rice.
Collapse
Affiliation(s)
- Xinyuan Song
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yu Qiao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Xue Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, 100192, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
5
|
Chen H, Zheng X, Li L, Huang L, Huang W, Ma Y. Peptide-Based Therapeutic HPV Cancer Vaccine Synthesized via Bacterial Outer Membrane Vesicles. Int J Nanomedicine 2023; 18:4541-4554. [PMID: 37576463 PMCID: PMC10422965 DOI: 10.2147/ijn.s416706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Peptide-based vaccines have broad application prospects because of their safety, simple preparation, and effectiveness, especially in the development of personalized cancer vaccines, which have shown great advantages. However, the current peptide-based vaccines often require artificial synthesis and intricate delivery technology, which increases the cost and complexity of preparation. Methods Here, we developed a simple technique for combining a peptide and a delivery system using the natural secretion system of bacteria. Specifically, we biosynthesized an antigenic peptide in bacteria, which was then extracellularly released through the bacterial secretory vesicles, thus simultaneously achieving the biosynthesis and delivery of the peptide. Results The system utilizes the natural properties of bacterial vesicles to promote antigen uptake and dendritic cell (DC) maturation. Therefore, tumor-specific CD4+ Th1 and CD8+ cytotoxic T lymphocyte (CTL) responses were induced in TC-1 tumor-bearing mice, thereby efficiently suppressing tumor growth. Conclusion This research promotes innovation and extends the application of peptide-based vaccine biosynthesis technology. Importantly, it provides a new method for personalized cancer immunotherapy that uses screened peptides as antigens in the future.
Collapse
Affiliation(s)
- Haoqian Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Lingjue Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Lishuxin Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, People’s Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| |
Collapse
|
6
|
Surti PV, Kim MW, Phan LMT, Kailasa SK, Mungray AK, Park JP, Park TJ. Progress on dot-blot assay as a promising analytical tool: Detection from molecules to cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Tomar P, Joshi VG, Mahajan NK, Jindal N. Multiple antigenic peptide-based flow through dot-blot assay for simultaneous antibody detection of infectious bronchitis virus and Newcastle disease virus. Biologicals 2021; 73:24-30. [PMID: 34389244 DOI: 10.1016/j.biologicals.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
The present study describes the development of a novel affordable and rapid visual dot-blot assay using synthetic multiple antigenic peptides (MAP) for simultaneous detection of antibodies to infectious bronchitis virus (IBV) and Newcastle disease virus (NDV). Antibody detection efficiencies of MAP peptides namely, NP1 MAP (Nucleoprotein IBV) and HN MAP (Haemagglutinin-neuraminidase NDV) were studied in solid-phase indirect peptide ELISA. In comparison with the commercial kit, the NP1 MAP showed 89.20% diagnostic sensitivity (DSn) and 85.90% diagnostic specificity (DSp) at 19.45% ROC cut-off. Similarly, HN MAP was evaluated and showed 89.70% DSn and 92.90% DSp at 19.90 % ROC cut-off. The peptides after evaluating their ELISA performance were further used to device a flow-through dot-blot assay (FT-DBA) for simultaneous detection of IBV and NDV antibodies. The kappa value for IBV by FT-DBA in comparison to commercial ELISA was 0.64 whereas for NDV, FT-DBA gave a kappa value of 0.68 in comparison to commercial ELISA indicating substantial agreement between the assays. In essence, the divergent MAP based diagnostic design could provide an alternative for antibody detection of IBV and NDV. Further, the FT-DBA approach could be used for low cost, rapid and pen-side detection of IBV and NDV antibodies simultaneously.
Collapse
Affiliation(s)
- Piyush Tomar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - N K Mahajan
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
| |
Collapse
|
8
|
Monroy-Gómez J, Santamaría G, Sarmiento L, Torres-Fernández O. Effect of Postmortem Degradation on the Preservation of Viral Particles and Rabies Antigens in Mice Brains. Light and Electron Microscopic Study. Viruses 2020; 12:v12090938. [PMID: 32858805 PMCID: PMC7552013 DOI: 10.3390/v12090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
Rabies diagnosis is mainly made on fresh brain tissue postmortem by means of the direct immunofluorescence test. However, in some cases, it is not possible to use this technique, given that the affected nervous tissue goes through a postmortem degradation process, due to problems in the handling and transport of the samples. For this reason, the preservation in time of the rabies virus inclusions was assessed, as well as the immunoreactivity and the ultrastructure of viral particles in tissue with postmortem degradation. Brains of mice inoculated with rabies virus and control mice were processed for conventional histology, immunohistochemistry, electron microscopy, and immunoelectron microscopy in different postmortem times. In the processed tissues for hematoxylin and eosin, the presence of eosinophilic inclusions was not observed beyond 12 h postmortem. Surprisingly, the immunoreactivity of the viral antigens increased with time, at least until 30 h postmortem. It was possible to easily recognize the viral particles by means of conventional electron microscopy until 12 h postmortem. Immunoelectron microscopy allowed us to identify the presence of viral antigens disseminated in the neuronal cytoplasm until 30 h postmortem, but immunoreactive viral particles were not observed. The rabies infection did not cause histological or ultrastructural alterations different from those in the control group as a result of the postmortem degradation. In conclusion, the immunohistochemistry is a reliable test for rabies diagnosis in samples with postmortem degradation and that have been fixed with aldehydes.
Collapse
Affiliation(s)
- Jeison Monroy-Gómez
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), 111321 Bogotá, D.C., Colombia; (G.S.); (L.S.)
- Rehabilitation School of Colombia, Institución Universitaria Escuela Colombiana de Rehabilitación, 110121 Bogotá, D.C., Colombia
- Correspondence: (J.M.-G.); (O.T.-F.)
| | - Gerardo Santamaría
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), 111321 Bogotá, D.C., Colombia; (G.S.); (L.S.)
| | - Ladys Sarmiento
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), 111321 Bogotá, D.C., Colombia; (G.S.); (L.S.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), 111321 Bogotá, D.C., Colombia; (G.S.); (L.S.)
- Correspondence: (J.M.-G.); (O.T.-F.)
| |
Collapse
|
9
|
Zhuang QQ, Deng HH, He SB, Peng HP, Lin Z, Xia XH, Chen W. Immunoglobulin G-Encapsulated Gold Nanoclusters as Fluorescent Tags for Dot-Blot Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31729-31734. [PMID: 31411018 DOI: 10.1021/acsami.9b11599] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Few-atom gold nanoclusters (AuNCs) have been fabricated and used for various fields owing to their remarkable optical and photophysical features. However, the rational design for the antibody-mediated synthesis of fluorescent AuNCs for direct antigen-antibody reactions remains unexplored. In this work, immunoglobulin G (IgG)-functionalized AuNCs (IgG-AuNCs) were successfully prepared via a facile and fast biomineralization process. The generated IgG-AuNCs can emit intense red fluorescence with a high photoluminescence quantum yield. Besides strong emission, the bioactivity of IgG on the IgG-AuNCs can be retained. Surface plasmon resonance measurements suggested that IgG-AuNCs can bind to goat anti-human IgG with an affinity constant of 6.21 × 10-8 M. A simple detection method was then developed using a dot-blot immunoassay with IgG-AuNCs as fluorescent tags. Experimental results confirmed that the IgG-AuNC-based fluorescent reporters had many advantages such as low nonspecific adsorption and good photostability, offering immense potential for the development of efficient biosensors. This work can be extended to other specific antibodies to produce multifunctional AuNCs and utilized to detect and monitor targeted analytes and biological events of interest.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
- Department of Pharmacy , Affiliated Quanzhou First Hospital of Fujian Medical University , Quanzhou 362000 , China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| |
Collapse
|
10
|
Abstract
Over the last 10 years there have been only a handful of publications dealing with the oral virome, which is in contrast to the oral microbiome, an area that has seen considerable interest. Here, we survey viral infections in general and then focus on those viruses that are found in and/or are transmitted via the oral cavity; norovirus, rabies, human papillomavirus, Epstein‐Barr virus, herpes simplex viruses, hepatitis C virus, and HIV. Increasingly, viral infections have been diagnosed using an oral sample (e.g. saliva mucosal transudate or an oral swab) instead of blood or urine. The results of two studies using a rapid and semi‐quantitative lateral flow assay format demonstrating the correlation of HIV anti‐IgG/sIgA detection with saliva and serum samples are presented. When immediate detection of infection is important, point‐of‐care devices that obtain a non‐invasive sample from the oral cavity can be used to provide a first line diagnosis to assist in determining appropriate counselling and therapeutic path for an increasing number of diseases.
Collapse
|
11
|
Chacko K, Parakadavathu RT, Al-Maslamani M, Nair AP, Chekura AP, Madhavan I. Diagnostic difficulties in human rabies: A case report and review of the literature. Qatar Med J 2017; 2016:15. [PMID: 28534007 PMCID: PMC5427514 DOI: 10.5339/qmj.2016.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic disease with the highest fatality rate of any infectious disease. The clinical features of rabies encephalopathy are highly nonspecific at the onset and clinicians from low endemic areas usually face difficulties in recognizing cases during the early stages. The need for establishing a rapid and accurate test to identify rabies during the ante-mortem period is important. However, in actual clinical practice, the latter may remain difficult for various reasons. In human rabies, positively identifying the antigen, antibody or genetic material by various diagnostic methods during the symptomatic period is affected by the unpredictable nature of viremia, levels of antibody immune response of the host, and the virulence of the infecting strain. Also, more advanced testing with greater sensitivity may not be readily available at all centers. Here we describe a case of a young male who was bitten by a rabid dog and developed progressive encephalopathy with a fatal outcome, with negative antibodies in the cerebrospinal fluid (CSF). A review of the literature on the clinical features, diagnostic tests, treatment and prevention of rabies is also presented.
Collapse
Affiliation(s)
- Kadavil Chacko
- Infectious Diseases Division, Hamad Medical Corporation, Doha, Qatar
| | | | - Muna Al-Maslamani
- Infectious Diseases Division, Hamad Medical Corporation, Doha, Qatar
| | - Arun P Nair
- Infectious Diseases Division, Hamad Medical Corporation, Doha, Qatar
| | | | - Indira Madhavan
- Department of Medicine, Government Medical College, Thrissur, Kerala, India
| |
Collapse
|
12
|
Kumar MA, Barathidasan R, Palanivelu M, Singh S, Wani MY, Malik YS, Singh R, Dhama K. A novel recombinant Meq protein based dot-ELISA for rapid and confirmatory diagnosis of Marek’s disease induced lymphoma in poultry. J Virol Methods 2016; 236:271-280. [DOI: 10.1016/j.jviromet.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
13
|
Zhang P, Lu H, Chen J, Han H, Ma W. Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay. Am J Cancer Res 2014; 4:307-15. [PMID: 24505238 PMCID: PMC3915093 DOI: 10.7150/thno.8007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023] Open
Abstract
Simple and sensitive detection of infectious disease at an affordable cost is urgently needed in developing nations. In this regard, the dot blot immunoassay has been used as a common protein detection method for detection of disease markers. However, the traditional signal reporting systems, such as those using enzymes or gold nanoparticles lack sensitivity and thus restrict the application of these methods for disease detection. In this study, we report a simple and sensitive detection method for the detection of infectious disease markers that couples the dot-blot immunoassay with quantum dots nanobeads (QDNBs) as a reporter. First, the QDNBs were prepared by an oil-in-water emulsion-evaporation technique. Because of the encapsulation of several QDs in one particle, the fluorescent signal of reporter can be amplified with QDNBs in a one-step test and be read using a UV lamp obviating the need for complicated instruments. Detection of disease-associated markers in complex mixture is possible, which demonstrates the potential of developing QDNBs into a sensitive diagnostic kit.
Collapse
|
14
|
Fujinami Y, Hirai Y, Sakai I, Yoshino M, Yasuda J. Sensitive Detection ofBacillus anthracisUsing a Binding Protein Originating from γ-Phage. Microbiol Immunol 2013; 51:163-9. [PMID: 17310083 DOI: 10.1111/j.1348-0421.2007.tb03894.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Therefore, there is a pressing need to develop novel methods for rapid, simple, and precise detection of B. anthracis. Here, we report that the C-terminal region of gamma-phage lysin protein (PlyG) binds specifically to the cell wall of B. anthracis and the recombinant protein corresponding to this region (positions, 156-233), PlyGB, is available as a bioprobe for detection of B. anthracis. Our detection method, based on a membrane direct blot assay using recombinant PlyGB, was more rapid and sensitive than the gamma-phage test and was simpler and more inexpensive than genetic methods such as PCR, or immunological methods using specific antibodies. Furthermore, its specificity was comparable to the gamma-phage test. PlyGB is applicable in conventional methods instead of antibodies and could be a potent tool for detection of B. anthracis.
Collapse
Affiliation(s)
- Yoshihito Fujinami
- Department of First Forensic Science, National Research Institute of Police Science, Kashiva, Chiba, Japan
| | | | | | | | | |
Collapse
|
15
|
Mani RS, Madhusudana SN. Laboratory diagnosis of human rabies: recent advances. ScientificWorldJournal 2013; 2013:569712. [PMID: 24348170 PMCID: PMC3848253 DOI: 10.1155/2013/569712] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
Rabies, an acute progressive, fatal encephalomyelitis, transmitted most commonly through the bite of a rabid animal, is responsible for an estimated 61,000 human deaths worldwide. The true disease burden and public health impact due to rabies remain underestimated due to lack of sensitive laboratory diagnostic methods. Rapid diagnosis of rabies can help initiate prompt infection control and public health measures, obviate the need for unnecessary treatment/medical tests, and assist in timely administration of pre- or postexposure prophylactic vaccination to family members and medical staff. Antemortem diagnosis of human rabies provides an impetus for clinicians to attempt experimental therapeutic approaches in some patients, especially after the reported survival of a few cases of human rabies. Traditional methods for antemortem and postmortem rabies diagnosis have several limitations. Recent advances in technology have led to the improvement or development of several diagnostic assays which include methods for rabies viral antigen and antibody detection and assays for viral nucleic acid detection and identification of specific biomarkers. These assays which complement traditional methods have the potential to revolutionize rabies diagnosis in future.
Collapse
Affiliation(s)
- Reeta Subramaniam Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Shampur Narayan Madhusudana
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| |
Collapse
|
16
|
Kadam SS, Sherikar AA, Pingale VS. Comparative analysis of routine laboratory diagnostic tests for rabies. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2011; 22:142-5. [PMID: 23637517 PMCID: PMC3550737 DOI: 10.1007/s13337-011-0052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Present study was undertaken to compare various routine laboratory diagnostic tests for rabies detection. Seller's staining, mouse inoculation test (MIT), Dot-ELISA, Agar gel precipitation test (AGPT) and counter immunoelectrophoresis test (CIET) were the main basic tests performed in the laboratory for the rabies diagnosis. Out of 200 brain specimens, Negri bodies were observed in 52 brain samples by Seller's staining. Rabies virus was isolated in 56 samples by intra-cerebral inoculation in newborn Swiss-albino mice. Dot-ELISA and AGPT could detect rabies antigen in 55 and 57 samples respectively. Comparative analysis revealed that the CIET is the most sensitive and rapid test among performed diagnostic tests.
Collapse
Affiliation(s)
- S. S. Kadam
- />Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 MS India
| | - A. A. Sherikar
- />Department of Microbiology, Bombay Veterinary College, Parel, Mumbai, 400 012 MS India
| | - V. S. Pingale
- />Laxman Devram Sonawane College, Bhiwandi-Murbad Road, Wadeghar, Kalyan (W), 421301 MS India
| |
Collapse
|
17
|
Lembo T, Hampson K, Kaare MT, Ernest E, Knobel D, Kazwala RR, Haydon DT, Cleaveland S. The feasibility of canine rabies elimination in Africa: dispelling doubts with data. PLoS Negl Trop Dis 2010; 4:e626. [PMID: 20186330 PMCID: PMC2826407 DOI: 10.1371/journal.pntd.0000626] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/22/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Canine rabies causes many thousands of human deaths every year in Africa, and continues to increase throughout much of the continent. METHODOLOGY/PRINCIPAL FINDINGS This paper identifies four common reasons given for the lack of effective canine rabies control in Africa: (a) a low priority given for disease control as a result of lack of awareness of the rabies burden; (b) epidemiological constraints such as uncertainties about the required levels of vaccination coverage and the possibility of sustained cycles of infection in wildlife; (c) operational constraints including accessibility of dogs for vaccination and insufficient knowledge of dog population sizes for planning of vaccination campaigns; and (d) limited resources for implementation of rabies surveillance and control. We address each of these issues in turn, presenting data from field studies and modelling approaches used in Tanzania, including burden of disease evaluations, detailed epidemiological studies, operational data from vaccination campaigns in different demographic and ecological settings, and economic analyses of the cost-effectiveness of dog vaccination for human rabies prevention. CONCLUSIONS/SIGNIFICANCE We conclude that there are no insurmountable problems to canine rabies control in most of Africa; that elimination of canine rabies is epidemiologically and practically feasible through mass vaccination of domestic dogs; and that domestic dog vaccination provides a cost-effective approach to the prevention and elimination of human rabies deaths.
Collapse
Affiliation(s)
- Tiziana Lembo
- Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Madhusudana SN, Sukumaran SM. Antemortem diagnosis and prevention of human rabies. Ann Indian Acad Neurol 2008; 11:3-12. [PMID: 19966972 PMCID: PMC2781142 DOI: 10.4103/0972-2327.40219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 02/17/2008] [Accepted: 02/24/2008] [Indexed: 12/25/2022] Open
Abstract
Human rabies still continues to be a significant health problem in India and other developing countries where dogs are the major vectors of transmission. Rabies in humans can present in two clinical forms, i.e., furious and paralytic. While diagnosis of furious rabies can be made based on the typical symptoms and signs, paralytic rabies poses a diagnostic dilemma to the neurologists who may encounter these cases in their practice. Although there are certain clinical features that distinguish this disease from other forms of Guillain-Barre syndromes, confirmation of diagnosis may require laboratory assistance. Conventional techniques such as antigen detection, antibody assays and virus isolation have limited success. The recently introduced molecular techniques show more promise in confirming the cases of paralytic rabies. There has not been much success in the treatment of confirmed rabies cases and recovery from rabies is extremely rare. Therefore, preventive measures of this dreaded disease after an exposure become extremely important. The present article reviews the current status of human rabies with regard to antemortem diagnosis, disease management and post-exposure prophylaxis.
Collapse
Affiliation(s)
- Shampur Narayana Madhusudana
- Department of Neurovirology, Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| | - Suja Moorlyath Sukumaran
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| |
Collapse
|
19
|
Abstract
This chapter discusses the anatomy, functions, and biochemistry of cerebrospinal fluid (CSF). CSF has four major functions: physical support of neural structures, excretion and “sink” action, intracerebral transport, and control of the chemical environment of the central nervous system. CSF provides a “water jacket” of physical support and buoyancy. The CSF is protective because its volume changes reciprocally with changes in the volume of intracranial contents, particularly blood. Thus, the CSF protects the brain from changes in arterial and central venous pressure associated with posture, respiration, and exertion. Acute or chronic pathological changes in intracranial contents can be accommodated, to a point, by changes in the CSF volume. The direct transfer of brain metabolites into the CSF provides excretory function. This capacity is important because the brain lacks a lymphatic system. The lymphatic function of the CSF is also manifested in the removal of large proteins and cells, such as bacteria or blood cells, by bulk CSF absorption. The “sink” action of the CSF arises from the restricted access of water-soluble substances to the CSF and the low concentration of these solutes in the CSF.
Collapse
|
20
|
Muhamuda K, Madhusudana SN, Ravi V, Desai A. Presence of rabies specific immune complexes in cerebro-spinal fluid can help in ante-mortem diagnosis of human paralytic rabies. J Clin Virol 2006; 37:162-7. [PMID: 16931137 DOI: 10.1016/j.jcv.2006.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/27/2006] [Accepted: 06/30/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human rabies presents in two clinical forms, viz. furious or encephalitic and paralytic. Clinical diagnosis of paralytic form is difficult and requires laboratory confirmation. Presently available diagnostic techniques are not very sensitive for ante-mortem confirmation of rabies. OBJECTIVE In the present study, we investigated whether presence of rabies specific immune complexes in cerebro-spinal fluid (CSF) of paralytic rabies patients could help in ante-mortem diagnosis of rabies. STUDY DESIGN A capture ELISA based on monoclonal antibodies to rabies nucleoprotein (N) and glycoprotein (G) was developed to detect immune complexes to rabies N and G proteins. We studied CSF samples collected ante-mortem from 30 suspected paralytic rabies patients in whom diagnosis was later confirmed by autopsy. We included 30 CSF samples from people undergoing spinal anesthesia as negative controls and 30 CSF samples from other viral encephalitis as disease controls. RESULTS Twenty-three out of 30 CSF samples (76.6%) showed presence of immune complexes to both rabies N and G proteins. None of the negative controls and CSFs from other confirmed viral infections were positive. Thus, the results were 100% specific and the sensitivity of this test was 76.6%. CONCLUSIONS Detection of immune complexes to rabies antigens may be used as one of the techniques for rapid ante-mortem diagnosis of human rabies.
Collapse
Affiliation(s)
- K Muhamuda
- Department of Neurovirology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, India
| | | | | | | |
Collapse
|
21
|
Chávez JH, Leal PC, Yunes RA, Nunes RJ, Barardi CRM, Pinto AR, Simões CMO, Zanetti CR. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet Microbiol 2006; 116:53-9. [PMID: 16697126 DOI: 10.1016/j.vetmic.2006.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/07/2006] [Accepted: 03/27/2006] [Indexed: 11/18/2022]
Abstract
Human rabies is a viral disease with a great impact on public health, mainly on account of its fatal course in the majority of cases. Despite the well-established prophylaxis by immunization, rabies is believed to be responsible for 40,000-70,000 human deaths per year, mostly in endemic areas. Palliative support and experimental protocols to avoid death have been employed with no expressive results, with the exception of a recent human case of recovery from rabies. No antiviral drugs are currently available to fight against this infection. In combination with the prophylaxis, an antiviral drug would be useful for human rabies treatment, providing enhanced protection against the encephalitis caused by the virus. Phenolic compounds are derived from the secondary plant metabolism, although they can also be obtained by synthetic processes. Many studies have shown a great range of pharmacological effects for these substances, including vasodilatation, antiallergenic, antiinflammatory and antiviral properties, among others. In this study, the potential in-vitro anti-rabies activity of 24 synthetic phenolic compounds was evaluated using McCoy cells and PV rabies strain. The cytotoxicity (CC50) was assayed by the MTT method and the antiviral activity (IC50) was estimated by the inhibition of viral cytopathic effects. Isoprinosine and ketamine were used as positive controls. The tested compounds showed selectivity indices (SI=CC50/IC50) ranging from 1.0 to 3.9. Six phenolic compounds failed to inhibit the cytopathic effect to any degree, and four showed SI > or = 3.0. According to these results, some probable structure-activity relationships are suggested. It was observed that the presence of free hydroxyl and ether groups influenced the anti-rabies activity. However, additional studies are required to establish these relationships.
Collapse
Affiliation(s)
- Juliana H Chávez
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Parasitologia, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nagaraj T, Vasanth JP, Desai A, Kamat A, Madhusudana SN, Ravi V. Ante mortem diagnosis of human rabies using saliva samples: comparison of real time and conventional RT-PCR techniques. J Clin Virol 2006; 36:17-23. [PMID: 16504574 DOI: 10.1016/j.jcv.2006.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 01/03/2006] [Accepted: 01/09/2006] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rabies is an enzootic and fatal disease and is still a major problem in developing countries. Ante mortem diagnosis in human cases is necessary for medical management of the patient and to ensure appropriate post-exposure treatment of contacts. Both conventional RT-PCR and Real time PCR (TaqMan) have been described for the detection of rabies virus RNA from saliva and tissue respectively, however to date, there have been no studies comparing conventional and real time PCR assays for detection of rabies virus nucleic acid using saliva samples for ante mortem diagnosis. OBJECTIVES In this study, we evaluated the utility of conventional RT-PCR and SYBR Green I Real time PCR in the ante mortem diagnosis of rabies using saliva samples. STUDY DESIGN Saliva samples collected from twenty-four patients presenting with typical clinical manifestations of rabies were tested in the two assays. RESULTS Amongst the 24 samples tested, 21 samples (87.5%) were positive by either of the two molecular methods. Of these 21, rabies virus RNA was detected in 6/21 in the conventional RT-PCR assay while SYBR Green I Real time PCR could detect RNA in 18/21 samples. CONCLUSION Real time PCR assay was more sensitive than conventional RT-PCR assay (sensitivity 75% versus 37%, p=0.0189). This study highlights the utility of molecular diagnostic tests in establishing ante mortem diagnosis of rabies using saliva samples within a few hours.
Collapse
Affiliation(s)
- T Nagaraj
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | | | | | | | | | |
Collapse
|
23
|
Bagó Z, Revilla-Fernández S, Allerberger F, Krause R. Value of immunohistochemistry for rapid ante mortem rabies diagnosis. Int J Infect Dis 2005; 9:351-2. [PMID: 16183320 DOI: 10.1016/j.ijid.2005.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 01/31/2005] [Indexed: 11/21/2022] Open
|