1
|
Zhang M, Wang Y, Miao C, Lin S, Zheng Y, Lin X, Wang Y, Lin X, Zhu X, Weng S. Dextran guanidinylated carbon dots with antibacterial and immunomodulatory activities as eye drops for the topical treatment of MRSA-induced infectious keratitis. Acta Biomater 2025:S1742-7061(25)00357-5. [PMID: 40374136 DOI: 10.1016/j.actbio.2025.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/15/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Bacterial keratitis (BK) develops rapidly and can cause serious consequences, requiring timely and efficient treatment. As the main treatment strategy, antibiotic eye drops are still plagued by bacterial resistance by biofilms and failure to modulate immunity. Herein, dextran guanidinylated carbon dots (DG-CDs) with antimicrobial and immunomodulatory properties were developed. DG-CDs with the graphitized core-like structure with the ordered arrangement of carbon atoms and surface groups of CN, COC, and -OH were thoroughly characterized and modeled as a graphene-like sheet. DG-CDs exhibited strong antimicrobial and anti-biofilm activities with a minimum inhibitory concentration (MIC) of 5 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Molecular docking based on well-characterized structures of DG-CDs revealed that DG-CDs had strong affinity for key bacterial proteins including FtsA, IcaA and ArgA, which were confirmed by corresponding RT-qPCR and transcriptomics. Furthermore, DG-CDs regulated macrophage polarization by inhibiting the M1 subtype and promoting the transition to the M2 subtype. In vivo experiments illustrated that DG-CDs used as eye drops significantly attenuated corneal infection, enhanced the expression of anti-inflammatory factors, and effectively promoted corneal repair in MRSA-infected BK. Overall, this study provides a promising antibacterial nanomaterial with clarified properties and acting mechanism for treating BK as eye drops. STATEMENT OF SIGNIFICANCE: Besides bacterial invasion, bacterial keratitis (BK) also suffers from immune imbalance, which further impairs corneal healing. Current antibiotic eye drops are plagued by bacterial resistance and their inability to modulate immunity. Herein, dextran guanidinylated carbon dots (DG-CDs) with dual functions of antimicrobial and immunomodulatory were developed for treating MRSA infected BK. DG-CDs, with clarified structure and surface groups, exhibited strong antimicrobial activity and no detectable resistance. Molecular docking, based on well-characterized structures of DG-CDs, was achieved to reveal the antibacterial mechanism, which was subsequently confirmed by RT-qPCR and transcriptomics. In addition, DG-CDs exhibited an effective healing ability in an MRSA-infected rat keratitis model by exerting antibacterial activity and regulating macrophage polarization from M1 type to M2 type. DG-CDs represent a promising antibacterial nanomedicine with clarified properties and acting mechanism for treating bacterial infection.
Collapse
Affiliation(s)
- Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yiyang Wang
- Department of Oral Maxillo-Facial Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shuwei Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ying Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoyan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
2
|
Moon KS, Bae JM, Choi EJ, Oh S. Titania nanotubes with aminated reduced graphene oxide as efficient photocatalysts for antibacterial application under visible light. Sci Rep 2025; 15:6127. [PMID: 39971972 PMCID: PMC11839948 DOI: 10.1038/s41598-025-90270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Titania and reduced graphene oxide (rGO) are well-known materials with excellent photocatalytic properties, but research on the photocatalytic-based antibacterial effects of their combination remains limited. This study explored the suitability of titania nanotubes (TiO2 NTs) combined with rGO and two terminal functional groups (nonfunctional and aminated groups (NH2)) as efficient photocatalysts for antimicrobial applications under visible light irradiation. Field-emission scanning electron microscopy observations revealed that rGO covered the entire surface of the TiO2 NTs. Tauc plots calculated from the spectra of diffuse reflectance spectroscopy showed that the band gaps of the nonfunctional and amine functional groups of rGO-coated TiO2 NTs were 2.40 and 2.21 eV, respectively. Therefore, all rGO-coated TiO2 NTs exhibited photocatalytic activity under 470 nm visible light irradiation. An antibacterial colony forming unit test using S. aureus and P. aeruginosa, and two enzymatic activity tests (superoxide dismutase and catalase) on the same bacteria, showed that the aminated rGO-coated TiO2 NTs showed excellent antibacterial activity under 470 nm visible-light irradiation compared to nonfunctional rGO-coated TiO2 NTs and uncoated TiO2 NTs groups. In addition, the MTT assay showed that the aminated rGO-coated TiO2 NTs enhanced cell viability after visible light irradiation. Therefore, the combination of aminated rGO-coated TiO2 NTs and visible-light-triggered photocatalytic activity has significant potential for expressing antibacterial properties in dental applications.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Ji-Myung Bae
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea.
| |
Collapse
|
3
|
Shao Y, Zhu W, Liu S, Zhang K, Sun Y, Liu Y, Wen T, Zou Y, Zheng Q. Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism. BMC Oral Health 2025; 25:25. [PMID: 39755609 DOI: 10.1186/s12903-024-05355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S. mutans exhibits greater resistance to drugs and host immune defenses than the planktonic form of the bacteria. The objective of this study was to evaluate the anti-biofilm effect of cordycepin from the perspective of metabolomics. METHODS The minimum inhibitory concentration (MIC) was determined to evaluate the antimicrobial effect of cordycepin on planktonic S. mutans. The 24-h biofilm was treated with 128 µg/mL of cordycepin for 10 min at the 8- or 20-h time points. Biofilm biomass and metabolism were assessed using crystal violet and MTT assays and cordycepin cytotoxicity was evaluated in human oral keratinocytes (HOK) using CCK-8 assays. The live bacterial rate and the biofilm volume were assessed by confocal laser scanning microscopy. Metabolic changes in the biofilm collected at different times during with cordycepin were analyzed by metabolomics and verified by quantitative real-time PCR. RESULTS The results showed that treatment with 128 µg/mL cordycepin reduced both the biomass and metabolic activity of the biofilm without killing the bacteria, and cordycepin at this concentration showed good biocompatibility. Metabolomics analysis showed that differentially abundant metabolites following cordycepin treatment were mainly related to purine and nucleotide metabolism. After immediate treatment with cordycepin, genes related to purine and nucleotide metabolism were downregulated, and the levels of various metabolites changed significantly. However, the effect was reversible. After continuing culture for 4 h, the changes in genes and most metabolites were reversed, although the levels of 2'-deoxyadenosine, 2'-deoxyinosine, and adenine remained significantly different. CONCLUSIONS Cordycepin has the effect of anti-biofilm of S. mutans, mainly related to purine and nucleotide metabolism.
Collapse
Affiliation(s)
- Yidan Shao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Wenyan Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yudong Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Tingchi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yingxue Zou
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Tianjin Children's Hospital, 225 Machang Road, Hexi District, Tianjin, 300202, China.
| | - Qingwei Zheng
- Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
4
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Liu JY, Jia JJ, Liu M, Duan H, Hu ML, Liu C, Xue RY, Jin ZL, Zhang SS, Li GC, Feng R, Jin Z, Li HB, He L. A novel indolylbenzoquinone compound HL-J6 suppresses biofilm formation and α-toxin secretion in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2023; 62:106972. [PMID: 37741585 DOI: 10.1016/j.ijantimicag.2023.106972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.
Collapse
Affiliation(s)
- Jing-Yi Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing-Jing Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Duan
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ming-Li Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruo-Yi Xue
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Li Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shan-Shan Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guo-Cheng Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rang Feng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Bo Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Elumalai L, Palaniyandi S, Anbazhagan GK, Mohanam N, Munusamy S, G K SR, Pudukadu Munusamy A, Chinnasamy M, Ramasamy B. Synthesis of biogenic cadmium sulfide nanoparticles (MR03-CdSNPs) using marine Streptomyces kunmingensis - MR03 for in-vitro biological determinations and in silico analysis on biofilm virulence proteins: A novel approach. ENVIRONMENTAL RESEARCH 2023; 235:116698. [PMID: 37474092 DOI: 10.1016/j.envres.2023.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Lokesh Elumalai
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Sankarganesh Palaniyandi
- Department of Food Technology, Hindustan Institute of Technology and Science, Padur, OMR, Chennai, Tamil Nadu, 603103, India
| | - Ganesh Kumar Anbazhagan
- Centre for Research and Development, Department of Microbiology, Hindustan College of Arts & Science, Padur, OMR, Chennai, Tamil Nadu, 603103, India
| | - Nithyalakshmi Mohanam
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Santhakumar Munusamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Sri Ragavi G K
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Ayyasamy Pudukadu Munusamy
- Bioremediation Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Muthusamy Chinnasamy
- Department of Biotechnology, Srinivasan College of Arts and Science, (Affiliated to Bharathidasan University), Perambalur, Tamil Nadu, 621212, India
| | - Balagurunathan Ramasamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
8
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
9
|
Leal ALAB, da Silva MC, Silva AKFE, de Souza Mesquita AB, Bezerra CF, Dotto ARF, do Amaral W, de Araujo Abi-chacra É, da Silva LE, Barreto HM, dos Santos HS. Chemical composition of Piper gaudichaudianum Kunth essential oil and evaluation of its antimicrobial and modulatory effects on antibiotic resistance, antibiofilm, and cell dimorphism inhibitory activities. 3 Biotech 2023; 13:255. [PMID: 37396469 PMCID: PMC10310684 DOI: 10.1007/s13205-023-03681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Essential oils extracted from many plant species have different biological activities, among which microbial activity stands out. Species of the genus Piper have antimicrobial potential against different species of bacteria and fungi. In this sense, the present study aimed to determine the chemical composition of the essential oil from the leaves of Piper gaudichaudianum (EOPG), as well as to investigate their antimicrobial activity and their modulatory effect on the Norfloxacin resistance in the Staphylococcus aureus SA1199B strain overproducer of the NorA efflux pump. Furthermore, their inhibitory activities on the biofilm formation as well as on the cellular differentiation of C. albicans were evaluated. Gas chromatography analysis identified 24 compounds, such as hydrocarbon sesquiterpenes (54.8%) and oxygenated sesquiterpenes (28.5%). To investigate the antimicrobial potential of EOPG against S. aureus, E. coli, and C. albicans, a microdilution assay was performed, and no intrinsic antimicrobial activity was observed. On the other hand, the oil potentiated the activity of Norfloxacin against the SA1199B strain, indicating that EOPG could be used in association with Norfloxacin against S. aureus strains resistant to this antibiotic. EOPG also inhibited S. aureus biofilm formation, as evidenced by the crystal violet assay. In the dimorphism assay, EOPG was able to inhibit the cell differentiation process in C. albicans. Results indicate that EOPG could be used in association with Norfloxacin in the treatment of infections caused by resistant S. aureus strains overproducing the NorA efflux pump. Furthermore, its ability to inhibit the formation of hyphae by C. albicans suggests that EOPG could also be applied in the prevention and/or treatment of fungal infections.
Collapse
Affiliation(s)
- Antonio Linkoln Alves Borges Leal
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE Brazil
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Matheus Carvalho da Silva
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Andressa Kelly Ferreira e Silva
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Avilnete Belem de Souza Mesquita
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Camila Fonseca Bezerra
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE Brazil
| | - Ana Rafaela Freitas Dotto
- Postgraduate Programme in Sustainable Territorial, Federal University of Paraná, Matinhos, PR Brazil
| | - Wanderlei do Amaral
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, PR Brazil
| | - Érika de Araujo Abi-chacra
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Luiz Everson da Silva
- Postgraduate Programme in Sustainable Territorial, Federal University of Paraná, Matinhos, PR Brazil
| | - Humberto Medeiros Barreto
- Department of Parasitology and Microbiology, Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, PI Brazil
| | - Hélcio Silva dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE Brazil
- Center for Exact Sciences and Technology, Vale Do Acarau State University, Sobral, CE Brazil
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE Brazil
| |
Collapse
|
10
|
El-Kirat-Chatel S, Varbanov M, Retourney C, Salles E, Risler A, Brunel JM, Beaussart A. AFM reveals the interaction and nanoscale effects imposed by squalamine on Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2023; 226:113324. [PMID: 37146477 DOI: 10.1016/j.colsurfb.2023.113324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The Gram-positive bacterium Staphylococcus epidermidis is responsible for important nosocomial infections. With the continuous emergence of antibiotic-resistant strains, the search for new treatments has been amplified in the last decades. A potential candidate against multidrug-resistant bacteria is squalamine, a natural aminosterol discovered in dogfish sharks. Despite its broad-spectrum efficiency, little is known about squalamine mode of action. Here, we used atomic force microscopy (AFM) imaging to decipher the effect of squalamine on S. epidermidis morphology, revealing the peptidoglycan structure at the bacterial surface after the drug action. Single-molecule force spectroscopy with squalamine-decorated tips shows that squalamine binds to the cell surface via the spermidine motif, most likely through electrostatic interactions between the amine groups of the molecule and the negatively-charged bacterial cell wall. We demonstrated that - although spermidine is sufficient for the initial attachment of squalamine to S. epidermidis - the integrity of the molecule needs to be conserved for its antimicrobial action. A deeper analysis of the AFM force-distance signatures suggests the implication of the accumulation-associated protein (Aap), one of the main adhesins of S. epidermidis, in the initial binding of squalamine to the bacterial cell wall. This work highlights that AFM -combined with microbiological assays at the bacterial suspension scale- is a valuable approach to better understand the molecular mechanisms behind the efficiency of squalamine antibacterial activity.
Collapse
Affiliation(s)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | | | - Elsa Salles
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Jean-Michel Brunel
- UMR_MD1, U-1261, Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | | |
Collapse
|
11
|
Pouget C, Chatre C, Lavigne JP, Pantel A, Reynes J, Dunyach-Remy C. Effect of Antibiotic Exposure on Staphylococcus epidermidis Responsible for Catheter-Related Bacteremia. Int J Mol Sci 2023; 24:ijms24021547. [PMID: 36675063 PMCID: PMC9863639 DOI: 10.3390/ijms24021547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.
Collapse
Affiliation(s)
- Cassandra Pouget
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Clotilde Chatre
- Department of Infectious and Tropical Diseases, CH Perpignan, 66000 Perpignan, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, IRD UMI 233, INSERM U1175, CHU Montpellier, University Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-4-6668-3202
| |
Collapse
|
12
|
Chajęcka-Wierzchowska W, Gajewska J, Zakrzewski AJ, Caggia C, Zadernowska A. Molecular Analysis of Pathogenicity, Adhesive Matrix Molecules (MSCRAMMs) and Biofilm Genes of Coagulase-Negative Staphylococci Isolated from Ready-to-Eat Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1375. [PMID: 36674132 PMCID: PMC9859056 DOI: 10.3390/ijerph20021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| |
Collapse
|
13
|
Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. J Funct Biomater 2022; 13:jfb13040251. [PMID: 36412892 PMCID: PMC9680338 DOI: 10.3390/jfb13040251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
An oronasal fistula (ONF) is an abnormal structure between the oral and nasal cavities, which is a common complication of cleft palate repair due to the failure of wound healing. When some patients with ONF are unsuitable for secondary surgical repair, the obturator treatment becomes a potential method. The objectives of the obturator treatment should be summarized as filling the ONF comfortably and cosmetically restoring the dentition with partial function. The anatomy of patients with cleft palate is complex, which may lead to a more complex structure of the ONF. Thus, the manufacturing process of the obturator for these patients is more difficult. For performing the design and fabrication process rapidly and precisely, digital techniques can help, but limitations still exist. In this review, literature searches were conducted through Medline via PubMed, Wiley Online Library, Science Direct, and Web of Science, and 122 articles were selected. The purpose of this review was to introduce the development of the obturator for treating patients with ONF after cleft palate repair, from the initial achievement of the obstruction of the ONF to later problems such as fixation, velopharyngeal insufficiency, and infection, as well as the application of digital technologies in obturator manufacturing.
Collapse
|
14
|
Ju Y, Long H, Zhao P, Xu P, Sun L, Bao Y, Yu P, Zhang Y. The top 100 cited studies on bacterial persisters: A bibliometric analysis. Front Pharmacol 2022; 13:1001861. [PMID: 36176451 PMCID: PMC9513396 DOI: 10.3389/fphar.2022.1001861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Bacterial persisters are thought to be responsible for the recalcitrance and relapse of persistent infections, and they also lead to antibiotic treatment failure in clinics. In recent years, researches on bacterial persisters have attracted worldwide attention and the number of related publications is increasing. The purpose of this study was to better understand research trends on bacterial persisters by identifying and bibliometrics analyzing the top 100 cited publications in this field. Methods: The Web of Science Core Collection was utilized to retrieve the highly cited publications on bacterial persisters, and these publications were cross-matched with Google Scholar and Scopus. The top 100 cited publications were identified after reviewing the full texts. The main information of each publication was extracted and analyzed using Excel, SPSS, and VOSviewer. Results: The top 100 cited papers on bacterial persisters were published between 1997 and 2019. The citation frequency of each publication ranged from 147 to 1815 for the Web of Science Core Collection, 153 to 1883 for Scopus, and 207 to 2,986 for Google Scholar. Among the top 100 cited list, there were 64 original articles, 35 review articles, and 1 editorial material. These papers were published in 51 journals, and the Journal of Bacteriology was the most productive journal with 8 papers. A total of 14 countries made contributions to the top 100 cited publications, and 64 publications were from the United States. 15 institutions have published two or more papers and nearly 87% of them were from the United States. Kim Lewis from Northeastern University was the most influential author with 18 publications. Furthermore, keywords co-occurrence suggested that the main topics on bacterial persisters were mechanisms of persister formation or re-growth. Finally, "Microbiology" was the most frequent category in this field. Conclusion: This study identified and analyzed the top 100 cited publications related to bacterial persisters. The results provided a general overview of bacterial persisters and might help researchers to better understand the classic studies, historical developments, and new findings in this field, thus providing ideas for further research.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Haiyue Long
- Department of Pharmacy, the Air Force Hospital of Western Theater Command, Chengdu, China
| | - Ping Zhao
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Ping Xu
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Luwei Sun
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Yongqing Bao
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Pingjing Yu
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Yu Zhang
- Sichuan University Library, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Manandhar S, Singh A, Varma A, Pandey S, Shrivastava N. High level of persister frequency in clinical staphylococcal isolates. BMC Microbiol 2022; 22:109. [PMID: 35448965 PMCID: PMC10124895 DOI: 10.1186/s12866-022-02529-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is a notorious human pathogen that causes often lethal systemic conditions that are mostly medical device associated biofilm infections. Similarly, coagulase negative staphylococci are emerging as leading pathogen for nosocomial infections owing to their ability to form biofilm on implanted medical equipment. Chronic in nature, these infections are difficult to treat. Such recalcitrance of these infections is caused mainly due to the presence of persister cells, which exhibit transient yet extreme tolerance to antibiotics. Despite tremendous clinical significance, there is lack of studies on persister cells formation among clinical bacterial isolates. Considering the importance of factors influencing persister formation, in this study, we evaluate the association of antibiotic tolerance with biofilm production, antibiotic stress, growth phase, specimen type, and dependency on staphylococcal species. Biofilm formation was detected among 375 clinical staphylococcal isolates by quantitative tissue culture plate method (TCP) and icaAD genes by genotypic method. The antibiotic susceptibility was determined by Kirby Bauer disc diffusion method while minimum inhibitory concentration values were obtained by agar dilution method. Persister cells were measured in the susceptible staphylococcal isolates in the presence of clinically relevant antibiotics. RESULTS In the study, 161 (43%) S. aureus and 214 (57%) coagulase negative staphylococci (CNS) were isolated from different clinical samples. TCP method detected biofilm production in 84 (52.2%) S. aureus and 90 (42.1%) CNS isolates. The genotypic method detected icaAD genes in 86 (22.9%) isolates. Majority (> 90%) of both the biofilm producers and non-producers were sensitive to chloramphenicol and tetracycline but were resistant to penicillin. Interestingly, all isolates were sensitive to vancomycin irrespective of biofilm production. While high persister frequency was observed among all staphylococci isolates in the stationary growth phase, the persister frequency in exponential growth phase was statistically high among isolates possessing icaAD genes compared to icaAD negative isolates. CONCLUSION The research findings provide strong evidence that the clinical staphylococcal isolates exhibit extreme antibiotic tolerance suggesting their causal link with treatment failures. Understanding the factors influencing the formation and maintenance of persister cells are of utmost important aspect to design therapeutics and control recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Sarita Manandhar
- Tri-Chandra Multiple College, Tribhuvan University, Kathmandu, Nepal.
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, UP, 201303, India
| | - Shanti Pandey
- The University of Southern Mississippi, Hattiesburg, MS-39406, USA
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, UP, 201303, India
| |
Collapse
|
17
|
Wang WY, Wang R, Abbas G, Wang G, Zhao ZG, Deng LW, Wang L. Aggregation enhances the activity and growth rate of anammox bacteria and its mechanisms. CHEMOSPHERE 2022; 291:132907. [PMID: 34780744 DOI: 10.1016/j.chemosphere.2021.132907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The aggregation of anaerobic ammonium oxidation (anammox) bacteria is important for the start-up and biomass retention of anammox processes. However, it is unclear whether it is beneficial to the activity, growth and reproduction of anammox bacteria. In this study, four reactor systems were developed to explore the effects of aggregation on anammox activity, growth and reproduction, after excluding the contribution of aggregation to sludge settling and retention. Results demonstrated that (i) compared with free-living planktonic bacteria, the aggregated bacteria had a higher volumetric nitrogen removal rate (0.75 kg-N/(m³·d)) and specific nitrogen removal activity (1.097 kg-N/VSS/d). And after 67 days cultivation, it had the higher sludge concentration and relative abundance (92.4%); (ii) compared with acidic polysaccharides and α-d-glucopyranose polysaccharides, β-d-glucopyranose polysaccharide play more essential roles of anammox aggregation; (iii) norspermidine triggered the secretion of α-d-glucopyranose polysaccharides to combat the toxicity, and inhibited biomass growth rate; (iv) immobilization in polyvinyl alcohol (10%) or sodium alginate (2%) gel beads was better than sodium alginate-chitosan gel beads and norspermidine (biofilm inhibitor) for the cultivation of free-living planktonic anammox bacteria. This is the first comparative study of three methods for cultivating free-living anammox bacteria. In conclusion, we found that the aggregation of anammox sludge not only facilitates biomass retention but also enhances the bioactivity, relative abundance, growth, and reproduction rate of anammox bacteria. The work is helpful to understand the formation of anammox granular sludge and contribute to the fast start-up and stable operation in anammox application.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Gang Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Zhi-Guo Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; China National Heavy Machinery Research Institute. Co., Ltd., Xi'an, 710055, PR China.
| | - Liang-Wei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
18
|
Tao J, Yan S, Zhou C, Liu Q, Zhu H, Wen Z. Total flavonoids from Potentilla kleiniana Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114383. [PMID: 34214645 DOI: 10.1016/j.jep.2021.114383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Potentilla kleiniana Wight et Arn is a wide-spread wild plant in the mountainous areas in southern China. The whole herb has been used as a traditional herbal medicine to treat fever, arthritis, malaria, insect and snake bites, hepatitis, and traumatic injury. In vitro studies have reported the antibacterial activity use of the plant in traditional medicinal systems. AIM OF THE STUDY The aim of this study was to investigate the inhibitory activity of total flavonoid from Potentilla kleiniana Wight et Arn (TFP) on methicillin-resistant Staphylococcus aureus (MRSA) in planktonic state and biofilm state. MATERIALS AND METHODS Antibacterial activities of TFP on planktonic MRSA were determined by agar diffusion method, microtiter plate assay and time-kill curve assay. Electrical conductivity, membrane permeability, membrane potential and autoaggregation were analyzed to study TFP effects on planktonic MRSA growth. Crystal violet (CV) staining and confocal laser scanning microscopy (CLSM) were analyzed to study TFP effects on aggregation and maturation of MRSA biofilm. After TFP treatment, extracellular polymeric substances (EPS) production were examined. Morphological changes in planktonic and MRSA biofilm following TFP treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, α-Toxin protein expression and adhesion-related gene expression were also determined. RESULTS The minimum inhibitory concentration (MIC) of TFP against MRSA was 20 μg/mL. The agar diffusion method and time-kill curve assay results indicated that TFP inhibited planktonic MRSA growth. TFP treatment significantly inhibited planktonic MRSA growth by inhibiting autoaggregation, α-hemolysin activity, α-Toxin protein expression, but increasing electrolyte leakage, membrane permeability and membrane potential and impacting cell structure. Moreover, TFP treatment significantly inhibited aggregation and maturation on MRSA biofilm by decreasing surface hydrophobicity, EPS production and adhesion-related gene expression. CONCLUSION The results of this trial provide scientific experimental data on the traditional use of Potentilla Kleiniana Wight et Arn for traumatic injury treatment and further demonstrate the potential of TFP to be developed as a novel anti-biofilm drug.
Collapse
Affiliation(s)
- Junyu Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Shilun Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Chuyue Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China.
| |
Collapse
|
19
|
Khryanin AA, Knorring GY. Bacterial vaginosis: controversial issues. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The purpose of the review. Consideration of the most controversial issues regarding the possibility of sexual transmission of BV-associated microorganisms (bacterias) in women and men.
Basic provisions. Bacterial vaginosis (BV) is a common disease associated with an increased risk of contracting sexually transmitted infections (including human papillomavirus and human immunodeficiency virus) in women and their male sexual partners. BV is characterized by polymicrobial transformations caused by Gardnerella vaginalis, which is the main etiological microorganism of this disease. G. vaginalis has a proven ability to form microbial biofilms on the mucosal surface. As a rule, from 10 to 12 different G. vaginalis genotypes can simultaneously reside in one biofilm, which provides it with a longer lifespan and viability. It has been shown that microorganisms in the biofilm acquire properties that reduce sensitivity to standard etiotropic therapy even at high doses of antibiotics. It was found that the cause of BV is a polymicrobial gardnerella biofilm, all components of which are transferred as a whole (for example, with the help of key cells), including during sexual contact. In this regard, the article discusses the possibility of using a new term biofilm gardnerellosis, which more accurately reflects the essence of this problem. Microbial biofilms organized by G. vaginalis are found in a significant number of women with BV and their sexual partners.
Collapse
|
20
|
Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation. Int J Oral Sci 2020; 12:32. [PMID: 33243983 PMCID: PMC7693325 DOI: 10.1038/s41368-020-00099-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/06/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Platelet-rich fibrin (PRF) has been widely used owing to its ability to stimulate tissue regeneration. To date, few studies have described the antibacterial properties of PRF. Previously, PRF prepared by horizontal centrifugation (H-PRF) was shown to contain more immune cells than leukocyte- and platelet-rich fibrin (L-PRF). This study aimed to compare the antimicrobial effects of PRFs against Staphylococcus aureus and Escherichia coli in vitro and to determine whether the antibacterial effects correlated with the number of immune cells. Blood samples were obtained from eight healthy donors to prepare L-PRF and H-PRF. The sizes and weights of L-PRF and H-PRF were first evaluated, and their antibacterial effects against S. aureus and E. coli were then tested in vitro using the inhibition ring and plate-counting test methods. Flow-cytometric analysis of the cell components of L-PRF and H-PRF was also performed. No significant differences in size or weight were observed between the L-PRF and H-PRF groups. The H-PRF group contained more leukocytes than the L-PRF group. While both PRFs had notable antimicrobial activity against S. aureus and E. coli, H-PRF demonstrated a significantly better antibacterial effect than L-PRF. Furthermore, the antimicrobial ability of the PRF solid was less efficient than that of wet PRF. In conclusion, H-PRF exhibited better antibacterial activity than L-PRF, which might have been attributed to having more immune cells.
Collapse
|
21
|
Balikci E, Yilmaz B, Tahmasebifar A, Baran ET, Kara E. Surface modification strategies for hemodialysis catheters to prevent catheter-related infections: A review. J Biomed Mater Res B Appl Biomater 2020; 109:314-327. [PMID: 32864803 DOI: 10.1002/jbm.b.34701] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Insertion of a central venous catheter is one of the most common invasive procedures applied in hemodialysis therapy for end-stage renal disease. The most important complication of a central venous catheter is catheter-related infections that increase hospitalization and duration of intensive care unit stay, cost of treatment, mortality, and morbidity rates. Pathogenic microorganisms, such as, bacteria and fungi, enter the body from the catheter insertion site and the surface of the catheter can become colonized. The exopolysaccharide-based biofilms from bacterial colonies on the surface are the main challenge in the treatment of infections. Catheter lock solutions and systemic antibiotic treatment, which are commonly used in the treatment of hemodialysis catheter-related infections, are insufficient to prevent and terminate the infections and eventually the catheter needs to be replaced. The inadequacy of these approaches in termination and prevention of infection revealed the necessity of coating of hemodialysis catheters with bactericidal and/or antiadhesive agents. Silver compounds and nanoparticles, anticoagulants (e.g., heparin), antibiotics (e.g., gentamicin and chlorhexidine) are some of the agents used for this purpose. The effectiveness of few commercial hemodialysis catheters that were coated with antibacterial agents has been tested in clinical trials against catheter-related infections of pathogenic bacteria, such as Staphylococcus aureus and Staphylococcus epidermidis with promising results. Novel biomedical materials and engineering techniques, such as, surface micro/nano patterning and the conjugation of antimicrobial peptides, enzymes, metallic cations, and hydrophilic polymers (e.g., poly [ethylene glycol]) on the surface, has been suggested recently.
Collapse
Affiliation(s)
- Elif Balikci
- Department of Tissue Engineering, University of Health Sciences Turkey, Istanbul, 34668, Turkey
| | - Bengi Yilmaz
- Department of Tissue Engineering, University of Health Sciences Turkey, Istanbul, 34668, Turkey.,Department of Biomaterials, University of Health Sciences Turkey, Istanbul, 34668, Turkey
| | - Aydin Tahmasebifar
- Department of Tissue Engineering, University of Health Sciences Turkey, Istanbul, 34668, Turkey.,Department of Biomaterials, University of Health Sciences Turkey, Istanbul, 34668, Turkey
| | - Erkan Türker Baran
- Department of Tissue Engineering, University of Health Sciences Turkey, Istanbul, 34668, Turkey.,Department of Biomaterials, University of Health Sciences Turkey, Istanbul, 34668, Turkey
| | - Ekrem Kara
- Department of Internal Medicine, Division of Nephrology, School of Medicine, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
22
|
Le TN, Lee CK. Surface Functionalization of Poly(N-Vinylpyrrolidone) onto Poly(Dimethylsiloxane) for Anti-Biofilm Application. Appl Biochem Biotechnol 2020; 191:29-44. [DOI: 10.1007/s12010-020-03238-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/08/2020] [Indexed: 11/24/2022]
|
23
|
Mehrabi Z, Taheri-Kafrani A, Asadnia M, Razmjou A. Bienzymatic modification of polymeric membranes to mitigate biofouling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116464] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Metabolic Profiles of Clinical Strain of Staphylococcus aureus to Subtle Changes in the Environmental Parameters at Different Phases of Growth. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Anti-biofilm Effect of β-Lapachone and Lapachol Oxime Against Isolates of Staphylococcus aureus. Curr Microbiol 2019; 77:204-209. [DOI: 10.1007/s00284-019-01818-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
26
|
|
27
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
28
|
Shrestha LB, Baral R, Khanal B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infect Drug Resist 2019; 12:957-963. [PMID: 31118702 PMCID: PMC6503499 DOI: 10.2147/idr.s200988] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Gram-positive cocci have emerged to be an important cause of urinary tract infection (UTI) both in community-acquired UTI (Com-UTI) and catheter-associated urinary tract infection (CA-UTI). The objective of this study was to investigate the frequency of Gram-positive cocci urinary tract infections, their susceptibility patterns to commonly used antimicrobial agents and the biofilm forming property with respect to catheter-associated UTI and community-acquired UTI. Methods: A total of 1,360 urine samples from indwelling catheter and 10,423 from mid-stream urine were obtained during a 6-month period and processed following standard microbiological guidelines. Biofilm formation was detected using congo red agar (CRA), tube method (TM) and tissue culture plate (TCP) method. Chi-square test and independent sample t-test were employed to calculate the significance. Statistical significance was set at P-value ≤0.05. Results: The infection rate was significantly higher in CA-UTI as compared to Com-UTI (25% vs 18%, p=0.0001). Among 2,216 organisms isolated, 471 were Gram-positive cocci; 401 were obtained from Com-UTI while 70 were from CA-UTI. Enterococcus faecalis was the most common organism isolated from Com-UTI, while Staphylococcus aureus was commonest among CA-UTI. Multi-drug resistance, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci were also significantly higher in CA-UTI as compared to Com-UTI. Biofilm-forming property was significantly higher in CA-UTI than Com-UTI. The sensitivity of congo red agar method and tube method was 79% and 81.9% respectively and specificity was 98.5% each. Antimicrobial resistance was significantly higher in biofilm-formers as compared to non-formers. Conclusion: Gram-positive bacteria are a significant cause of both CA-UTI and Com-UTI with Enterococcus faecalis and Staphylococcus aureus as common pathogen. Biofilm formation and multi-drug resistance is significantly higher in CA-UTI than Com-UTI. Routine surveillance of antimicrobial resistance and biofilm formation is necessary in all cases of UTI to ensure the proper management of patients.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- Department of Microbiology & Infectious Diseases, B.P. Koirala Institute of Health Sciences, Dharan, Sunsari 56700, Nepal
| | - Ratna Baral
- Department of Microbiology & Infectious Diseases, B.P. Koirala Institute of Health Sciences, Dharan, Sunsari 56700, Nepal
| | - Basudha Khanal
- Department of Microbiology & Infectious Diseases, B.P. Koirala Institute of Health Sciences, Dharan, Sunsari 56700, Nepal
| |
Collapse
|
29
|
Sürmeli M, Maçin S, Akyön Y, Kayikçioğlu AU. The protective effect ofLactobacillus plantarumagainst meticillin-resistantStaphylococcus aureusinfections: an experimental animal model. J Wound Care 2019; 28:s29-s34. [DOI: 10.12968/jowc.2019.28.sup3b.s29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mehmet Sürmeli
- Plastic, Reconstructive and Aesthetic Surgery Specialist, Istanbul Bağcilar Research and Training Hospital, Merkez Mah, Department of Plastic, Reconstructive and Aesthetic Surgery, 34200 Bağcilar, Istanbul, Turkey
| | - Salih Maçin
- Microbiology and Medical Microbiology Specialist, Selçuk University Faculty of Medicine Departmant of Medical Microbiology, Konya, Turkey
| | - Yakut Akyön
- Professor of Microbiology and Medical Microbiology, Hacettepe University Faculty of Medicine, Sihhiye Ankara, Turkey
| | - Aycan Uğur Kayikçioğlu
- Professor of Plastic, Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Sihhiye Ankara, Turkey
| |
Collapse
|
30
|
Chajęcka-Wierzchowska W, Zadernowska A, Gajewska J. S. epidermidis strains from artisanal cheese made from unpasteurized milk in Poland - Genetic characterization of antimicrobial resistance and virulence determinants. Int J Food Microbiol 2019; 294:55-59. [PMID: 30771666 DOI: 10.1016/j.ijfoodmicro.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
In Poland artisanal cheese production is an important local economic activity. Artisanal cheese is usually produced using raw cow's milk, animal rennet and salt, without the addition of starter cultures. Coagulase negative staphylococci (CoNS) are often present in artisanal cheeses. Pathogenic potential of some CoNS species, especially S. epidermidis, suggests that they could correspond to emerging pathogens. The identified risk factors correspond to virulence, antibiotic resistance and biofilm formation. Therefore, we aimed to characterize S. epidermidis isolated along the artisanal raw milk production chain. Seventy artisanal cheeses samples from unpasteurized cow milk purchased in Podlasie and Warmia and Mazury region in Poland, were included in this study. A total of 26 S. epidermidis isolates were obtained. Most of them were antimicrobial resistant, such as to penicillin (84,6%), clindamycin (46,2%), tetracycline (42,3%), erythromycin (42,3%) and cefoxitin (26,9%). Only one isolate was susceptible to all antibiotics used in the study. All methicillin resistant S. epidermidis strains (26,9%) harbored mecA gene. Isolates, phenotypic resistant to tetracycline, harbored at least one tetracycline resistance determinant on which tet(M) was most frequent. Moreover, all tetracycline resistant strains harbored Tn916-Tn1545-like integrase family gene. In the erythromycin resistant isolates, the macrolide resistance genes ermC, ermB or msrA/B were present. Seven strains demonstrated a strong ability to form biofilm and moderate and weak biofilm was demonstrated by 4 strains, whereas 11 of S. epidermidis isolates were found to be unable to form a biofilm. All strains producing strong biofilm harbored the icaD gene which occurred independently or in combination with the icaA. Insertion element IS256, was identified in 15,4% of S. epidermidis strains, all of which were multidrug resistant. Arginine Catabolic Mobile Element (ACME) was identified in 13 of the 26 examined strains (50%). Most common was ACME type I (26,9%), followed by type III (15,4%) and type II (7,7%). Our data indicate that S. epidermidis are widely present in artisanal cheeses from raw whole cow milk in Poland. Many isolated strains containing more virulence factors and antibiotic resistant and carry mobile genetic elements which represent a potential source of resistance transmission to bacteria in humans.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Joanna Gajewska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
31
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
32
|
Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development. Microb Pathog 2018; 123:339-347. [DOI: 10.1016/j.micpath.2018.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023]
|
33
|
Adaptive Metabolism in Staphylococci: Survival and Persistence in Environmental and Clinical Settings. J Pathog 2018; 2018:1092632. [PMID: 30327733 PMCID: PMC6171259 DOI: 10.1155/2018/1092632] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/28/2018] [Accepted: 08/12/2018] [Indexed: 01/04/2023] Open
Abstract
Staphylococci are highly successful at colonizing a variety of dynamic environments, both nonpathogenic and those of clinical importance, and comprise the list of pathogens of global public health significance. Their remarkable survival and persistence can be attributed to a host of strategies, one of which is metabolic versatility—their ability to rapidly alter their metabolism in the presence of transient or long-term bacteriostatic and bactericidal conditions and facilitate cellular homeostasis. These attributes contribute to their widespread dissemination and challenging eradication particularly from clinical settings. The study of microbial behaviour at the metabolite level provides insight into mechanisms of survival and persistence under defined environmental and clinical conditions. This paper reviews the range of metabolic modulations that facilitate staphylococcal acclimatization and persistence in varying terrestrial and host conditions, and their public health ramifications in these settings.
Collapse
|
34
|
Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb Drug Resist 2018; 25:72-79. [PMID: 30142035 DOI: 10.1089/mdr.2018.0027] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates.
Collapse
Affiliation(s)
- Virginio Cepas
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Yuly López
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Estela Muñoz
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Dora Rolo
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Carmen Ardanuy
- 2 Department of Microbiology, Hospital Universitari de Bellvitge , IDIBELL, Universitat de Barcelona, Barcelona, Spain .,3 CIBERes (CIBER de Enfermedades Respiratorias) , ISCIII, Madrid, Spain
| | - Sara Martí
- 2 Department of Microbiology, Hospital Universitari de Bellvitge , IDIBELL, Universitat de Barcelona, Barcelona, Spain .,3 CIBERes (CIBER de Enfermedades Respiratorias) , ISCIII, Madrid, Spain
| | - Mariona Xercavins
- 4 Department of Microbiology, Hospital Mutua de Terrassa , Terrassa, Spain
| | | | - Jordi Bosch
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain .,6 Department of Microbiology, Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Sara M Soto
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain .,6 Department of Microbiology, Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
35
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
Au-Duong AN, Lee CK. Facile protein-resistant and anti-biofilm surface coating based on catechol-conjugated poly(N-vinylpyrrolidone). Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4328-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Harraghy N, Seiler S, Jacobs K, Hannig M, Menger MD, Herrmann M. Advances in in Vitro and in Vivo Models for Studying the Staphylococcal Factors Involved in Implant Infections. Int J Artif Organs 2018; 29:368-78. [PMID: 16705605 DOI: 10.1177/039139880602900406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant infections due to staphylococci are one of the greatest threats facing patients receiving implant devices. For many years researchers have sought to understand the mechanisms involved in the adherence of the bacterium to the implanted device and the formation of the unique structure, the biofilm, which protects the indwelling bacteria from the host defence and renders them resistant to antibiotic treatment. A major goal has been to develop in vitro and in vivo models that adequately reflect the real-life situation. From the simple microtiter plate assay and scanning electron microscopy, tools for studying adherence and biofilm formation have since evolved to include specialised equipment for studying adherence, flow cell systems, real-time analysis of biofilm formation using reporter gene assays both in vitro and in vivo, and a wide variety of animal models. In this article, we discuss advances in the last few years in selected in vitro and in vivo models as well as future developments in the study of adherence and biofilm formation by the staphylococci.
Collapse
Affiliation(s)
- N Harraghy
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Montanaro L, Campoccia D, Arciola CR. A Glance at the Role of Exotoxins in Opportunistic Bacterial Infections. Int J Artif Organs 2018; 29:462-7. [PMID: 16705616 DOI: 10.1177/039139880602900417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The production and the mechanism of action of exotoxins from Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa are presented. The attack to the immune host's defenses is the main virulence factor of opportunistic bacteria in implant infections, favoring the invasion and colonization of compromised periprosthesis tissues.
Collapse
Affiliation(s)
- L Montanaro
- Research Laboratory on Biocompatibility of Implant Materials, Rizzoli Orthopedic Institute, Bologna and Experimental Pathology Department, University of Bologna, Italy.
| | | | | |
Collapse
|
39
|
Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Future Med Chem 2018; 10:283-296. [PMID: 29334249 DOI: 10.4155/fmc-2017-0159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Staphylococcus aureus is a major cause of severe hospital-acquired infections, and biofilm formation is an important part of staphylococcal pathogenesis. Therefore, developing new antimicrobial agents against both planktonic cells and biofilm of S. aureus is a major challenge. RESULTS Three 1,3,4-oxadiazole derivatives exhibited antimicrobial activity against seven S. aureus strains in vitro, with minimum inhibitory concentrations ranging from 4 to 32 μg/ml. At 4 × minimum inhibitory concentration, all compounds killed cells within 24 h, demonstrating bactericidal activity. In addition to their effects against planktonic cells, these compounds prevented biofilm formation in a dose-dependent manner, with inhibitory concentrations for biofilm formation ranging from 8 to 32 μg/ml. Interestingly, higher concentrations of these compounds were effective against mature biofilms and all compounds downregulated the transcription of the biofilm-related gene spa. CONCLUSION We report three new 1,3,4-oxadiazole derivatives that have bactericidal activity and could provide as alternatives to combat S. aureus.
Collapse
|
40
|
Águila-Arcos S, Álvarez-Rodríguez I, Garaiyurrebaso O, Garbisu C, Grohmann E, Alkorta I. Biofilm-Forming Clinical Staphylococcus Isolates Harbor Horizontal Transfer and Antibiotic Resistance Genes. Front Microbiol 2017; 8:2018. [PMID: 29085354 PMCID: PMC5650641 DOI: 10.3389/fmicb.2017.02018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Infections caused by staphylococci represent a medical concern, especially when related to biofilms located in implanted medical devices, such as prostheses and catheters. Unfortunately, their frequent resistance to high doses of antibiotics makes the treatment of these infections a difficult task. Moreover, biofilms represent a hot spot for horizontal gene transfer (HGT) by bacterial conjugation. In this work, 25 biofilm-forming clinical staphylococcal isolates were studied. We found that Staphylococcus epidermidis isolates showed a higher biofilm-forming capacity than Staphylococcus aureus isolates. Additionally, horizontal transfer and relaxase genes of two common staphylococcal plasmids, pSK41 and pT181, were detected in all isolates. In terms of antibiotic resistance genes, aac6-aph2a, ermC, and tetK genes, which confer resistance to gentamicin, erythromycin, and tetracycline, respectively, were the most prevalent. The horizontal transfer and antibiotic resistance genes harbored on these staphylococcal clinical strains isolated from biofilms located in implanted medical devices points to the potential risk of the development and dissemination of multiresistant bacteria.
Collapse
Affiliation(s)
- Sandra Águila-Arcos
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Itxaso Álvarez-Rodríguez
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Olatz Garaiyurrebaso
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER-Tecnalia, Derio, Spain
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences, Berlin, Germany
| | - Itziar Alkorta
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| |
Collapse
|
41
|
Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomater 2017; 61:169-179. [PMID: 28782724 DOI: 10.1016/j.actbio.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. STATEMENT OF SIGNIFICANCE Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on biomaterial surfaces.
Collapse
|
42
|
Development of Multilayered Chlorogenate-Peptide Based Biocomposite Scaffolds for Potential Applications in Ligament Tissue Engineering - An <i>In Vitro</i> Study. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2017. [DOI: 10.4028/www.scientific.net/jbbbe.34.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, for the first time, chlorogenic acid, a natural phytochemical, was conjugated to a lactoferrin derived antimicrobial peptide sequence RRWQWRMKKLG to develop a self-assembled template. To mimic the components of extracellular matrix, we then incorporated Type I Collagen, followed by a sequence of aggrecan peptide (ATEGQVRVNSIYQDKVSL) onto the self-assembled templates for potential applications in ligament tissue regeneration. Mechanical properties and surface roughness were studied and the scaffolds displayed a Young’s Modulus of 169 MP and an average roughness of 72 nm respectively. Thermal phase changes were studied by DSC analysis. Results showed short endothermic peaks due to water loss and an exothermic peak due to crystallization of the scaffold caused by rearrangement of the components. Biodegradability studies indicated a percent weight loss of 27.5 % over a period of 37 days. Furthermore, the scaffolds were found to adhere to fibroblasts, the main cellular component of ligament tissue. The scaffolds promoted cell proliferation and displayed actin stress fibers indicative of cell motility and attachment. Collagen and proteoglycan synthesis were also promoted, demonstrating increased expression and deposition of collagen and proteoglycans. Additionally, the scaffolds exhibited antimicrobial activity against Staphylococcus epidermis bacteria, which is beneficial for minimizing biofilm formation if potentially used as implants. Thus, we have developed a novel biocomposite that may open new avenues to enhance ligament tissue regeneration.
Collapse
|
43
|
Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8106491. [PMID: 29082256 PMCID: PMC5610830 DOI: 10.1155/2017/8106491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/06/2017] [Indexed: 01/07/2023]
Abstract
The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.
Collapse
|
44
|
The Status of Biofilms in Penile Implants. Microorganisms 2017; 5:microorganisms5020019. [PMID: 28420206 PMCID: PMC5488090 DOI: 10.3390/microorganisms5020019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 02/01/2023] Open
Abstract
Erectile dysfunction is prevalent among men and will continue to become more so with the aging population. Of the available treatment options, implantable prosthetic devices are typically thought of as a third line treatment even though they have the highest satisfaction rate and continually improving success rates. Infection and mechanical failure are the most common reasons for implant revision in the past. Since the development of more reliable devices, bacterial biofilms are coming to the forefront of discussion as causes of required revision. Biofilms are problematic as they are ubiquitous and exceedingly difficult to prevent or treat.
Collapse
|
45
|
Bao J, Wang J, Zhang XY, Nong XH, Qi SH. New Furanone Derivatives and Alkaloids from the Co-Culture of Marine-Derived Fungi Aspergillus sclerotiorum and Penicillium citrinum. Chem Biodivers 2017; 14. [PMID: 27936301 DOI: 10.1002/cbdv.201600327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
Abstract
Six new compounds including two furanone derivatives sclerotiorumins A and B (1 and 2), one novel oxadiazin derivative sclerotiorumin C (3), one pyrrole derivative 1-(4-benzyl-1H-pyrrol-3-yl)ethanone (4), and two complexes of neoaspergillic acid aluminiumneohydroxyaspergillin (5) and ferrineohydroxyaspergillin (6) were isolated from the co-culture of marine-derived fungi Aspergillus sclerotiorum and Penicillium citrinum. Compound 3 was the first natural 1,2,4-oxadiazin-6-one. Compound 5 showed significant and selective cytotoxicity against human histiocytic lymphoma U937 cell line (IC50 = 4.2 μm) and strong toxicity towards brine shrimp (LC50 = 6.1 μm), and oppositely increased the growth and biofilm formation of Staphylococcus aureus.
Collapse
Affiliation(s)
- Jie Bao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, P. R. China
| | - Jie Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, P. R. China
| | - Xiao-Yong Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, P. R. China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, P. R. China
| | - Shu-Hua Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, P. R. China
| |
Collapse
|
46
|
Brady AJ, Laverty G, Gilpin DF, Kearney P, Tunney M. Antibiotic susceptibility of planktonic- and biofilm-grown staphylococci isolated from implant-associated infections: should MBEC and nature of biofilm formation replace MIC? J Med Microbiol 2017; 66:461-469. [DOI: 10.1099/jmm.0.000466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Aaron J Brady
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT97BL, UK
| | - Garry Laverty
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT97BL, UK
| | - Deirdre F Gilpin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT97BL, UK
| | - Patricia Kearney
- Antrim Area Laboratory, United Hospitals Trust, Antrim, BT41, UK
| | - Michael Tunney
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT97BL, UK
| |
Collapse
|
47
|
Kato F, Yabuno Y, Yamaguchi Y, Sugai M, Inouye M. Deletion of mazF increases Staphylococcus aureus biofilm formation in an ica-dependent manner. Pathog Dis 2017; 75:3063887. [DOI: 10.1093/femspd/ftx026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
|
48
|
Dasgupta Q, Madras G, Chatterjee K. Controlled Release of Usnic Acid from Biodegradable Polyesters to Inhibit Biofilm Formation. ACS Biomater Sci Eng 2017; 3:291-303. [DOI: 10.1021/acsbiomaterials.6b00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Queeny Dasgupta
- Centre for Biosystems Science and Engineering, ‡Department of Chemical
Engineering, and §Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Centre for Biosystems Science and Engineering, ‡Department of Chemical
Engineering, and §Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Biosystems Science and Engineering, ‡Department of Chemical
Engineering, and §Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
49
|
Santarpia L, Buonomo A, Pagano MC, Alfonsi L, Foggia M, Mottola M, Marinosci GZ, Contaldo F, Pasanisi F. Central venous catheter related bloodstream infections in adult patients on home parenteral nutrition: Prevalence, predictive factors, therapeutic outcome. Clin Nutr 2016; 35:1394-1398. [DOI: 10.1016/j.clnu.2016.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
|
50
|
Dong X, Wang X, Chen X, Yan Z, Cheng J, Gao L, Liu Y, Li J. Genetic Diversity and Virulence Potential of Staphylococcus aureus Isolated from Crayfish (Procambarus clarkii). Curr Microbiol 2016; 74:28-33. [DOI: 10.1007/s00284-016-1147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
|