1
|
Shabani S, Serbus LR. Pfs16: A Key Parasitophorous Vacuole Membrane Protein Crucial for Malaria Parasite Development and Transmission. Protein J 2025; 44:133-146. [PMID: 39979562 DOI: 10.1007/s10930-025-10260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Malaria remains a formidable challenge to global health, claiming the lives of nearly half a million individuals annually despite vigorous efforts to curb its spread. Among the myriad factors influencing the persistence and virulence of this disease, the role of specific proteins during the Plasmodium development cycle is critical. The protein of interest, Pfs16, is a Parasitophorous Vacuole Membrane Protein expressed from the earliest asexual stages, which encompass the development of Plasmodium falciparum in the host, to the final stage of the parasite's development in the mosquito, the sporozoite, playing a crucial role in this lifecycle. Understanding the function and mechanism of this conserved protein is pivotal for advancing our strategies to combat malaria. In this review, we examine the work on Pfs16 in both the asexual and sexual stages of parasite development, aiming to gain a better understanding of this protein as a promising candidate for drug and vaccine development.
Collapse
Affiliation(s)
- Sadeq Shabani
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA.
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
3
|
Ardestani H, Nazarian S, Hajizadeh A, Sadeghi D, Kordbacheh E. In silico and in vivo approaches to recombinant multi-epitope immunogen of GroEL provides efficient cross protection against S. Typhimurium, S. flexneri, and S. dysenteriae. Mol Immunol 2022; 144:96-105. [PMID: 35217247 DOI: 10.1016/j.molimm.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Stress or Heat Shock Proteins (HSPs) have been included in various operations like protein folding, autophagy, and apoptosis. HSP families recognize as protective antigens in a wide range of bacteria because they have been conserved through evolution. Due to their homology as well as antigenicity they are competent for applying in cross-protection against bacterial diseases. METHODS In the present study, bioinformatics approaches utilized to design epitope-based construction of Hsp60 (or GroEL) protein. In this regard, potential B-cell and T-cell epitopes except for allergenic sequences were selected by immunoinformatic tools. The structural and functional aspects of the DNA, RNA, and protein levels were assessed by bioinformatics software. Following in silico investigations, recombinant GroEL multi-epitope of Salmonella typhi was expressed, purified, and validated. Mouse groups were immunized with recombinant protein and humoral immune response was measured by enzyme linked immunosorbent assay (ELISA). Animal challenge against Salmonella Typhimurium, Shigella flexneri, and Shigella dysenteriae was evaluated. RESULTS recombinant protein expression and purification with 14.3 kilodaltons (kDa) was confirmed by SDS-PAGE and western blotting. After animal administration, the immunoglobulins evaluated increase after each immunization. Immunized antisera exhibited 80%, 40%, and 40% protection against the lethal dose infection by S. Typhimurium, S. flexneri, and S. dysenteriae respectively. Passive immunization conferred 50%, 30%, and 30% protection in mice against S. Typhimurium, S. flexneri and S. dysentery respectively. In addition, bacterial organ load had exhibited a significant decrease in colony forming unit (CFU) in the liver and spleen of the immunized mice compared to the control. CONCLUSION Our study demonstrates the efficacy of S. Typhi recombinant GroEL multi-epitope to consider as a universal immunogen candidate versus multiple bacterial pathogens.
Collapse
Affiliation(s)
- Hassan Ardestani
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Abbas Hajizadeh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Davoud Sadeghi
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
4
|
Application of Reverse Vaccinology and Immunoinformatic Strategies for the Identification of Vaccine Candidates Against Shigella flexneri. Methods Mol Biol 2021. [PMID: 34784029 DOI: 10.1007/978-1-0716-1900-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.
Collapse
|
5
|
Structural roles of PCV2 capsid protein N-terminus in PCV2 particle assembly and identification of PCV2 type-specific neutralizing epitope. PLoS Pathog 2019; 15:e1007562. [PMID: 30822338 PMCID: PMC6415871 DOI: 10.1371/journal.ppat.1007562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/13/2019] [Accepted: 01/04/2019] [Indexed: 11/19/2022] Open
Abstract
Postweaning multisystemic wasting disease (PMWS) in piglets caused by porcine circovirus type 2 (PCV2) is one of the major threats to most pig farms worldwide. Among all the PCV types, PCV2 is the dominant genotype causing PMWS and associated diseases. Considerable efforts were made to study the virus-like-particle (VLP) assembly and the specific PCV2-associated epitope(s) in order to establish the solid foundation for engineered PCV2 vaccine development. Although the N-terminal fragment including Nuclear Localization Signal (NLS) sequence seems important for recombinant PCV2 capsid protein expression and VLP assembly, the detailed structural and functional information regarding this important fragment are largely unknown. In this study, we report crystal structure of PCV2 VLP assembled from N-terminal NLS truncated PCV2 capsid protein at 2.8 Å resolution and cryo-EM structure of PCV2 VLP assembled from full-length PCV2 capsid protein at 4.1Å resolution. Our in vitro PCV2 VLP assembly results show that NLS-truncated PCV2 capsid protein only forms instable VLPs which were easily disassembled in solution, whereas full-length PCV2 capsid protein forms stable VLPs due to interaction between 15PRSHLGQILRRRP27(α-helix) and 33RHRYRWRRKN42(NLS-B) in a repeated manner. In addition, our results also showed that N-terminal truncation of PCV2 capsid protein up to 27 residues still forms PCV2 particles in solution with similar size and immunogenicity, while N-terminal truncation of PCV2 capsid protein with more than 30 residues is not able to form stable PCV2 particles in solution, demonstrating the importance of interaction between the α-helix at N-terminal and NLS-B in PCV2 VLP formation. Moreover, we also report the cryo-EM structure of PCV2 VLP in complex with 3H11-Fab, a PCV2 type-specific neutralizing antibody, at 15 Å resolution. MAb-3H11 specifically recognizes one exposed epitope located on the VLP surface EF-loop (residues 128–143), which is further confirmed by PCV1-PCV2 epitope swapping assay. Hence, our results have revealed the structural roles of N-terminal fragment of PCV2 capsid protein in PCV2 particle assembly and pinpointed one PCV2 type-specific neutralizing epitope for the first time, which could provide clear clue for next generation PCV2 vaccine and diagnostic kits development. Porcine circovirus type 2 (PCV2) is considered as one of the most wide-spread pathogens threatening swine production by causing postweaning multisystemic wasting disease (PMWS) in piglets worldwide. Several VLP-based PCV2 vaccines are commercially available which significantly reduce the viral burden and virally induced lesions. However, prophylactic efficacy of VLP-based PCV2 vaccine largely relies on the correct VLP assembly from the individual PCV2 capsid protein. Notably, limited structural information of PCV2 N-terminal fragment containing arginine-rich patches significantly delays our understanding of PCV2 assembly at the molecular level, and the lack of solid evidence in identification of PCV2 type-specific epitope delays the development of PCV2 type-specific diagnosis kits. In this study, through the combination of structural and immunological approaches, we are able, for the first time, to disclose the structural details of the N-terminal Nuclear Localization Signal (NLS) region of PCV2 capsid protein. We show that the interaction between the α-helix from one capsid protein and the NLS-B from an adjacent capsid protein within the pentamer stabilizes the assembled PCV2 VLP in solution. Moreover, by the combination of structural determination and biochemical mapping, we have identified that a short linear sequence (134KATALT139) located within PCV2 EF-loop is a unique PCV2 type-specific neutralizing epitope. Therefore, our work has revealed the detailed structural information of PCV2 particle assembly and a PCV2 type-specific neutralizing epitope, which should provide insightful information for virus-host interaction studies and next-generation PCV2 vaccine and type-specific diagnostic kits development.
Collapse
|
6
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Proof of concept in utilizing in-trans surface display system of Lactobacillus plantarum as mucosal tuberculosis vaccine via oral administration in mice. BMC Biotechnol 2018; 18:63. [PMID: 30309359 PMCID: PMC6182793 DOI: 10.1186/s12896-018-0461-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
Background Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world’s population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0–80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed. Results A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice’s spleen, lung and GIT. Conclusions This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development. Electronic supplementary material The online version of this article (10.1186/s12896-018-0461-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Khalouie F, Mousavi SL, Nazarian S, Amani J, Pourfarzam P. Immunogenic evaluation of chimeric recombinant protein against ETEC, EHEC and Shigella. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:101-112. [PMID: 29071279 PMCID: PMC5640892 DOI: 10.22099/mbrc.2017.4081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diarrheal diseases still remain health problem worldwide and out of many bacteria responsible for, Shigella and pathogenic Escherichia cause the most diarrheas in the world. Shigellacause bacterial dysenteries and shigellosis through invasion where the most effective proteins for pathogenesis is Ipac. Critical virulence protein for ETEC infection is CFA/I with two subunits called cfab and cfae. . Attachment of EHEC is the main step of infection and the protein Intimin plays the key role in this function. Protection against the vast majority of responsible pathogens of diarrheas requires development of the combination vaccine against Shigella, ETEC and EHEC. In the present study, a multisubunitprotein (CII) containing immunologically significant parts of CfaB, IpaC and Intimin was designed. The chimeric gene (CII) was codon optimized and analyzed with different bioinformatic servers, then synthesized and expressed in E. coli. Mice, Guinea pig and, Caco-2 Cell line were used as challenge models for EHEC, shigella and ETEC respectively. The chimeric protein induced significant immune response and therefore could be a suitable vaccine candidate against these three pathogens.
Collapse
Affiliation(s)
- Farzane Khalouie
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Poune Pourfarzam
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Nguyen HT, Thu Nguyen TT, Tsai MA, Ya-Zhen E, Wang PC, Chen SC. A formalin-inactivated vaccine provides good protection against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2017; 65:118-126. [PMID: 28419854 DOI: 10.1016/j.fsi.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Vibrio harveyi is one of the most common threats to farmed grouper, so considerable efforts are in practice to control the pathogen. This study presents a highly effective vaccine against V. harveyi in the orange-spotted grouper with the help of a single intraperitoneal immunization. The vaccine candidate was in form of whole, formalin-inactivated V. harveyi cells combined with a metabolizable ISA763 AVG adjuvant. Our results indicated that the vaccine triggered a remarkably higher expression level of interleukin (IL)-1β, IL-6, IL-8, and IL-10 in the groupers' kidneys and spleens, as recorded after 1 and 3 days of immunization. Antibody titers were significantly elevated in the vaccinated fish. A pivotal observation was that the vaccine highly protected the grouper from a homologous V. harveyi strain challenge with relative percentage survival values of 100% and 91.7% at 6 and 12 weeks post-immunization, respectively. Vaccinated fish also demonstrated strong cross-protection against a heterologous bacterial isolate challenge. Therefore, the inactivated V. harveyi vaccine is a promising candidate that could stimulate good immune responses and confer remarkable protection in farmed groupers.
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - E Ya-Zhen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
9
|
von Eichborn J, Woelke AL, Castiglione F, Preissner R. VaccImm: simulating peptide vaccination in cancer therapy. BMC Bioinformatics 2013; 14:127. [PMID: 23586423 PMCID: PMC3651379 DOI: 10.1186/1471-2105-14-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/19/2013] [Indexed: 12/25/2022] Open
Abstract
Background Despite progress in conventional cancer therapies, cancer is still one of the leading causes of death in industrial nations. Therefore, an urgent need of progress in fighting cancer remains. A promising alternative to conventional methods is immune therapy. This relies on the fact that low-immunogenic tumours can be eradicated if an immune response against them is induced. Peptide vaccination is carried out by injecting tumour peptides into a patient to trigger a specific immune response against the tumour in its entirety. However, peptide vaccination is a highly complicated treatment and currently many factors like the optimal number of epitopes are not known precisely. Therefore, it is necessary to evaluate how certain parameters influence the therapy. Results We present the VaccImm Server that allows users to simulate peptide vaccination in cancer therapy. It uses an agent-based model that simulates peptide vaccination by explicitly modelling the involved cells (immune system and cancer) as well as molecules (antibodies, antigens and semiochemicals). As a new feature, our model uses real amino acid sequences to represent molecular binding sites of relevant immune cells. The model is used to generate detailed statistics of the population sizes and states of the single cell types over time. This makes the VaccImm web server well suited to examine the parameter space of peptide vaccination in silico. VaccImm is publicly available without registration on the web at http://bioinformatics.charite.de/vaccimm; all major browsers are supported. Conclusions The VaccImm Server provides a convenient way to analyze properties of peptide vaccination in cancer therapy. Using the server, we could gain interesting insights into peptide vaccination that reveal the complex and patient-specific nature of peptide vaccination.
Collapse
|
10
|
Szijártó V, Hunyadi-Gulyás E, Emődy L, Pál T, Nagy G. Cross-protection provided by live Shigella mutants lacking major antigens. Int J Med Microbiol 2013; 303:167-75. [PMID: 23567193 DOI: 10.1016/j.ijmm.2013.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/03/2013] [Accepted: 02/24/2013] [Indexed: 12/11/2022] Open
Abstract
The immune response elicited by Shigella infections is dominated by serotype-specific antibodies recognizing the LPS O-antigens. Although a marked antibody response to invasion plasmid antigens (Ipa-s) shared by all virulent strains is also induced, the varying level of immunity elicited by natural infections is serotype-restricted. Previous vaccines have tried to mimic and achieve this serotype-specific, infection-induced immunity. As, however, the four Shigella species can express 50 different types of O-antigens, current approaches with the aim to induce a broad coverage use a mixture of the most common O-antigens combined in single vaccines. In the current study we present data on an alternative approach to generate immunity protective against multiple serotypes. Mutants lacking both major immune-determinant structures (i.e. the Ipa and O-antigens) were not only highly attenuated, but, unlike their avirulent counterparts still expressing these antigens, elicited a protective immune response to heterologous serotypes in a murine model. Evidence is provided that protection was mediated by the enhanced immunogenic potential of minor conserved antigens. Furthermore, the rough, non-invasive double mutants triggered an immune response different from that induced by the smooth, invasive strains regarding the isotype of antibodies generated. These non-invasive, rough mutants may represent promising candidates for further development into live vaccines for the prophylaxis of bacillary dysentery in areas with multiple endemic serotypes.
Collapse
Affiliation(s)
- Valéria Szijártó
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
11
|
Hatfaludi T, Al-Hasani K, Gong L, Boyce JD, Ford M, Wilkie IW, Quinsey N, Dunstone MA, Hoke DE, Adler B. Screening of 71 P. multocida proteins for protective efficacy in a fowl cholera infection model and characterization of the protective antigen PlpE. PLoS One 2012; 7:e39973. [PMID: 22792202 PMCID: PMC3390355 DOI: 10.1371/journal.pone.0039973] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/05/2012] [Indexed: 12/26/2022] Open
Abstract
Background There is a strong need for a recombinant subunit vaccine against fowl cholera. We used a reverse vaccinology approach to identify putative secreted or cell surface associated P. multocida proteins that may represent potential vaccine candidate antigens. Principal Findings A high-throughput cloning and expression protocol was used to express and purify 71 recombinant proteins for vaccine trials. Of the 71 proteins tested, only one, PlpE in denatured insoluble form, protected chickens against fowl cholera challenge. PlpE also elicited comparable levels of protection in mice. PlpE was localized by immunofluorescence to the bacterial cell surface, consistent with its ability to elicit a protective immune response. To explore the role of PlpE during infection and immunity, a plpE mutant was generated. The plpE mutant strain retained full virulence for mice. Conclusion These studies show that PlpE is a surface exposed protein and was the only protein of 71 tested that was able to elicit a protective immune response. However, PlpE is not an essential virulence factor. This is the first report of a denatured recombinant protein stimulating protection against fowl cholera.
Collapse
Affiliation(s)
- Tamás Hatfaludi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Microbial pathogens have developed complex and efficient ways of counteracting and evading innate and adaptive immune mechanisms. The strategies used by pathogens determine strongly the type of immune response a vaccine should elicit and how the vaccine should be formulated. Improved knowledge of immune response mechanisms has brought successes in the development of vaccines that protect against challenging pathogens as well as vaccines that can be used in immunocompromised and elderly populations. This includes the production of highly purified antigens that provide a better reactogenicity and safety profile than some of the early whole-pathogen vaccines. Successful attempts to improve antigen purity, however, can result in weakened immunogenicity. The search for approaches to overcome this has led to new technologies, such as live vector vaccines, DNA vaccines and novel adjuvant formulations, which have been based on growing knowledge of the interplay between innate and adaptive immune systems and the central role played by antigen-presenting cells. Of these technologies, one of the most promising to date is based on the use of innovative adjuvants combined with careful antigen selection. Vaccine design has therefore become more tailored, and in turn has opened up the potential of extending its application in immunotherapies to tackle diseases such as cancer, Alzheimer disease and immune-mediated disorders.
Collapse
Affiliation(s)
- Fred Zepp
- University Medical Center, Department of Pediatrics, Mainz, Germany.
| |
Collapse
|
13
|
Kong Q, Liu Q, Jansen AM, Curtiss R. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 2010; 28:6094-103. [PMID: 20599580 DOI: 10.1016/j.vaccine.2010.06.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 12/22/2022]
Abstract
The Salmonella rfc gene encodes the O-antigen polymerase. We constructed three strains in which we replaced the native rfc promoter with the arabinose-dependent araC P(BAD) promoter so that rfc expression was dependent on exogenously supplied arabinose provided during in vitro growth. The three mutant strains were designed to synthesize different amounts of Rfc by altering the ribosome-binding sequence and start codon. We examined these strains for a number of in vitro characteristics compared to an isogenic Deltarfc mutant and the wild-type parent strain. One promoter-replacement mutation, DeltaP(rfc174), yielded an optimal profile, exhibiting wild-type characteristics when grown with arabinose, and Deltarfc characteristics when grown without arabinose. In addition, when administered orally, the DeltaP(rfc174) strain was completely attenuated in for virulence in mice. The DeltaP(rfc174) mutation was introduced into attenuated Salmonella vaccine strain chi9241 (DeltapabA DeltapabB DeltaasdA) followed by introduction of an Asd(+) balanced-lethal plasmid to designed for expression of the pneumococcal surface protein PspA. Mice immunized with either chi9241 or its DeltaP(rfc174) derivative expressing pspA were protected against S. pneumoniae challenge.
Collapse
Affiliation(s)
- Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
14
|
Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 2010; 30:1-29. [PMID: 20370617 PMCID: PMC3038989 DOI: 10.1615/critrevimmunol.v30.i1.10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.
Collapse
Affiliation(s)
- Egest J. Pone
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Hong Zan
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Jinsong Zhang
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Ahmed Al-Qahtani
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Zhenming Xu
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Paolo Casali
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| |
Collapse
|
15
|
Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect Immun 2009; 77:5572-82. [PMID: 19805538 DOI: 10.1128/iai.00831-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RfaH is a transcriptional antiterminator that reduces the polarity of long operons encoding secreted and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O antigen and lipopolysaccharide core sugars. A DeltarfaH mutant strain is attenuated in mice (50% lethal dose [LD(50)], >10(8) CFU). To examine the potential for using rfaH in conjunction with other attenuating mutations, we designed a series of strains in which we replaced the native rfaH promoter with the tightly regulated arabinose-dependent araC P(BAD) promoter so that rfaH expression was dependent on exogenously supplied arabinose provided during in vitro growth. Following colonization of host lymphoid tissues, where arabinose was not available, the P(BAD) promoter was no longer active and rfaH was not expressed. In the absence of RfaH, O antigen and core sugars were not synthesized. We constructed three mutant strains that expressed different levels of RfaH by altering the ribosome-binding sequence and start codon. One mutation, DeltaP(rfaH178), was introduced into the attenuated vaccine strain chi9241 (DeltapabA DeltapabB DeltaasdA) expressing the pneumococcal surface protein PspA from an Asd(+) balanced-lethal plasmid. Mice immunized with this strain and boosted 4 weeks later induced higher levels of serum immunoglobulin G specific for PspA and for outer membrane proteins from other enteric bacteria than either an isogenic DeltarfaH derivative or the isogenic RfaH(+) parent. Eight weeks after primary oral immunization, mice were challenged with 200 LD(50) of virulent Streptococcus pneumoniae WU2. Immunization with DeltaP(rfaH178) mutant strains led to increased levels of protection compared to that of the parent chi9241 and of a DeltarfaH derivative of chi9241.
Collapse
|
16
|
Haas B, Nathens AB. Future diagnostic and therapeutic approaches in surgical infections. Surg Clin North Am 2009; 89:539-54, xi. [PMID: 19281899 DOI: 10.1016/j.suc.2008.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite ongoing efforts to standardize therapy and improve management, the morbidity and mortality associated with surgical infections remain high. Continued innovation is required to improve outcomes further, particularly in the face of the increasing prevalence of multidrug resistant organisms. Although they remain in the experimental stages, a number of recent advances have the potential to have significant impact on the management and outcomes of surgical infections. These include novel diagnostic strategies, antimicrobials targeting microbial virulence factors, novel vaccines, and risk stratification based on genetic profiling.
Collapse
Affiliation(s)
- Barbara Haas
- Department of Surgery, University of Toronto, Toronto, Ontario, M5G 1L5, Canada.
| | | |
Collapse
|
17
|
Fairlie-Clarke KJ, Shuker DM, Graham AL. Why do adaptive immune responses cross-react? Evol Appl 2008; 2:122-31. [PMID: 25567852 PMCID: PMC3352416 DOI: 10.1111/j.1752-4571.2008.00052.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/06/2008] [Indexed: 11/29/2022] Open
Abstract
Antigen specificity of adaptive immune responses is often in the host's best interests, but with important and as yet unpredictable exceptions. For example, antibodies that bind to multiple flaviviral or malarial species can provide hosts with simultaneous protection against many parasite genotypes. Vaccinology often aims to harness such imprecision, because cross-reactive antibodies might provide broad-spectrum protection in the face of antigenic variation by parasites. However, the causes of cross-reactivity among immune responses are not always known, and here, we explore potential proximate and evolutionary explanations for cross-reactivity. We particularly consider whether cross-reactivity is the result of constraints on the ability of the immune system to process information about the world of antigens, or whether an intermediate level of cross-reactivity may instead represent an evolutionary optimum. We conclude with a series of open questions for future interdisciplinary research, including the suggestion that the evolutionary ecology of information processing might benefit from close examination of immunological data.
Collapse
Affiliation(s)
- Karen J Fairlie-Clarke
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories King's Buildings, Edinburgh, UK
| | - David M Shuker
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories King's Buildings, Edinburgh, UK
| | - Andrea L Graham
- Institutes of Evolution, Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories King's Buildings, Edinburgh, UK
| |
Collapse
|
18
|
Vashisht K, Goldberg TL, Husmann RJ, Schnitzlein W, Zuckermann FA. Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus. Vaccine 2008; 26:4747-53. [DOI: 10.1016/j.vaccine.2008.06.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/25/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022]
|