1
|
Jafari AS, Mozaffari Nejad AS, Faraji H, Abdel-Moneim AS, Asgari S, Karami H, Kamali A, Kheirkhah Vakilabad AA, Habibi A, Faramarzpour M. Diagnostic Challenges in Fungal Coinfections Associated With Global COVID-19. SCIENTIFICA 2025; 2025:6840605. [PMID: 40370518 PMCID: PMC12077979 DOI: 10.1155/sci5/6840605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
The early diagnosis of opportunistic infections is a critical concern for patient care worldwide, particularly in the context of the COVID-19 pandemic. This review examines the challenges and advancements in the management and early diagnosis of opportunistic fungal infections, which have become increasingly prominent during the pandemic. Using multiple sources, including curated databases such as PubMed and Scopus, as well as Google Scholar for broader literature searches, we systematically reviewed studies on COVID-19-associated fungal infections, with a focus on candidiasis, mucormycosis, and aspergillosis. The inclusion criteria encompassed peer-reviewed articles, clinical case reports, and cohort studies that discussed diagnostic methods, clinical outcomes, and treatment responses. Data were systematically extracted and analyzed to identify key trends and gaps in current diagnostic practices. Given the significance of opportunistic fungal infections-particularly the selected species-this review provides a comprehensive analysis of diagnostic challenges and advancements in the context of COVID-19 and beyond. Currently, there is no definitive strategy for effectively addressing these opportunistic pathogens, highlighting the need for continued research and innovation. Despite advancements in medical technology, opportunistic fungal infections continue to pose significant challenges to early and accurate diagnosis. The COVID-19 pandemic has exacerbated these challenges, with secondary fungal infections contributing to increased morbidity and mortality rates. This review highlights the complexities of diagnosing fungal coinfections and emphasizes the urgent need for improved diagnostic strategies. Enhancing the early and accurate detection of these infections is critical for effective patient management, particularly during viral pandemics. Addressing the challenges outlined in this review requires innovative diagnostic approaches to improve patient outcomes and reduce the burden of opportunistic infections on global healthcare systems.
Collapse
Affiliation(s)
- Ariyo Shahin Jafari
- Department of Medical Parasitology and Virology, Sechenov University, Moscow, Russia
| | - Amir Sasan Mozaffari Nejad
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Universal Scientific Education and Research Network (USERN) JMU Office, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hossein Faraji
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ahmed S. Abdel-Moneim
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Saeme Asgari
- Department of Biochemistry and Biophysics, TeMS.C., Islamic Azad University, Tehran, Iran
| | - Hakime Karami
- Universal Scientific Education and Research Network (USERN) JMU Office, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ali Kamali
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Ali Habibi
- Department of Accounting and Management, Islamic Azad University, Pardis Branch, Pardis, Iran
| | - Motahareh Faramarzpour
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
2
|
Cafarchia C, Mendoza-Roldan JA, Rhimi W, C I Ugochukwu I, Miglianti M, Beugnet F, Giuffrè L, Romeo O, Otranto D. Candida auris from the Egyptian cobra: Role of snakes as potential reservoirs. Med Mycol 2024; 62:myae056. [PMID: 38816207 DOI: 10.1093/mmy/myae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy , 70010
| | | | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | - Iniobong C I Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria, 410001
| | - Mara Miglianti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | | | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Clinical Sciences, City University of Hong Kong, 518057
| |
Collapse
|
3
|
Melinte V, Tudor AD, Bujoi AG, Radu MA, Văcăriou MC, Cismaru IM, Holban TS, Mîrzan CL, Popescu R, Ciupan RC, Baciu A, Moraru OE, Popa-Cherecheanu M, Gheorghiță V. Candida auris Outbreak in a Multidisciplinary Hospital in Romania during the Post-Pandemic Era: Potential Solutions and Challenges in Surveillance and Epidemiological Control. Antibiotics (Basel) 2024; 13:325. [PMID: 38667001 PMCID: PMC11047361 DOI: 10.3390/antibiotics13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Candida auris is a newly emerging yeast, which is raising public health concerns due to its outbreak potential, lack of protocols for decontamination and isolation of patients or contacts, increased resistance to common antifungals, and associated high mortality. This research aimed to describe the challenges related to identifying the outbreak, limiting further contamination, and treating affected individuals. We retrospectively analyzed all cases of C. auris detected between October 2022 and August 2023, but our investigation focused on a three-month-long outbreak in the department of cardio-vascular surgery and the related intensive care unit. Along with isolated cases in different wards, we identified 13 patients who became infected or colonized in the same area and time, even though the epidemiological link could only be traced in 10 patients, according to the epidemiologic investigation. In conclusion, our study emphasizes the substantial challenge encountered in clinical practice when attempting to diagnose and limit the spread of an outbreak. Therefore, it is crucial to promptly apply contact precaution measures and appropriate environmental cleaning, from the first positive case detected.
Collapse
Affiliation(s)
- Violeta Melinte
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alexandra Daniela Tudor
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Adrian Georgian Bujoi
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria-Adelina Radu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria Cristina Văcăriou
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ioana Miriana Cismaru
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Tiberiu Sebastian Holban
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Carmen Luminița Mîrzan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ruxandra Popescu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Robert Cătălin Ciupan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alin Baciu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Oriana Elena Moraru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Matei Popa-Cherecheanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Valeriu Gheorghiță
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| |
Collapse
|
4
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 PMCID: PMC11657238 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
5
|
Marena GD, Ruiz-Gaitán A, Garcia-Bustos V, Tormo-Mas MÁ, Pérez-Royo JM, López A, Bernarbe P, Pérez Ruiz MD, Zaragoza Macian L, Vicente Saez C, Avalos Mansilla A, Gómez EV, Carvalho GC, Bauab TM, Chorilli M, Pemán J. Nanoemulsion Increases the Antifungal Activity of Amphotericin B against Four Candida auris Clades: In Vitro and In Vivo Assays. Microorganisms 2023; 11:1626. [PMID: 37512799 PMCID: PMC10386465 DOI: 10.3390/microorganisms11071626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Victor Garcia-Bustos
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | | | | | - Alejandro López
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Patricia Bernarbe
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | | | | | | | | | - Eulogio Valentín Gómez
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
6
|
Taori SK, Rhodes J, Khonyongwa K, Szendroi A, Smith M, Borman AM, Kumarage J, Brown CS, Moore G, Desai N. First experience of implementing Candida auris real-time PCR for surveillance in the UK: detection of multiple introductions with two international clades and improved patient outcomes. J Hosp Infect 2022; 127:111-120. [PMID: 35753522 DOI: 10.1016/j.jhin.2022.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Candida auris has been associated with rapid transmission and high mortality. A novel PCR-based surveillance programme was initiated at a London teaching hospital from January 2018. The results of this implementation until March 2019 are presented along with the clinical, transmission and phylogenetic characteristics encountered in that setting. METHODS A real-time PCR assay for C. auris was developed, validated, and implemented for direct use on skin swabs and urine. Environmental swabs were also tested by PCR as an emergency outbreak-control measure. Clinical risk factors and outcomes of patients were determined. Environmental dispersal was assessed using 24 h settle plate cultures around nine colonized patients followed by air sampling around one colonized patient during high- and low-turbulence activities. Sequencing was performed using Illumina HiSeq and maximum likelihood phylogenies were constructed using rapid bootstrap analysis. RESULTS Twenty-one C. auris colonized patients were identified. Median turnaround time of colonization detection reduced from 141 h (5.8 days) to approximately 24 h enabling rapid infection-control precautions. Settle plates detected 70-600 cfu/m2 around colonized patients over 24 h and air sampling suggested dispersal during turbulent activities. C. auris DNA was detected from 35.7% environmental swabs. Despite being in a high-risk setting, no patients developed invasive infection. Sequencing analysis of isolates from this centre identified two introductions of the South Asian (Clade I) and one of the South African (Clade III) strain. CONCLUSION The PCR offers a rapid, scalable method of screening and supports clinical risk reduction in settings likely to encounter multiple introductions.
Collapse
Affiliation(s)
- S K Taori
- Department of Medical Microbiology, NHS Lothian, Edinburgh, UK.
| | - J Rhodes
- Imperial College London, London, UK
| | - K Khonyongwa
- Information Services, UK Health Security Agency, London, UK
| | - A Szendroi
- Department of Infection Sciences, King's College Hospital NHS Foundation Trust, London, UK
| | - M Smith
- Department of Infection Sciences, King's College Hospital NHS Foundation Trust, London, UK
| | - A M Borman
- UK National Mycology Reference Laboratory, National Infection Service, UK Health Security Agency and Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - J Kumarage
- Department of Infection Sciences, King's College Hospital NHS Foundation Trust, London, UK
| | - C S Brown
- HCAI/AMR, National Infection Service, UK Health Security Agency, London, UK
| | - G Moore
- Biosafety, Air and Water Microbiology Group, National Infection Service, UK Health Security Agency, London, UK
| | - N Desai
- Department of Infection Sciences, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Effects of Sodium Hexametaphosphate and Fluoride on the pH and Inorganic Components of Streptococcus mutans and Candida albicans Biofilm after Sucrose Exposure. Antibiotics (Basel) 2022; 11:antibiotics11081044. [PMID: 36009913 PMCID: PMC9405115 DOI: 10.3390/antibiotics11081044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
In order to improve the anticaries effects of fluoridated products, the supplementation of these products has been considered a promising alternative for caries control. This study evaluated the effects of sodium hexametaphosphate (HMP) and/or fluoride (F) on the inorganic components and pH of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated 72, 78, and 96 h after the beginning of their formation with 0.25, 0.5, or 1% HMP-containing solutions with or without F (500 ppm, as sodium fluoride). F-containing solutions (500 ppm and 1100 ppm) and artificial saliva were used as controls. The biofilms were exposed to a 20% sucrose solution after the third treatment. Along with the biofilm pH, the concentrations of F, calcium, phosphorus (P), and HMP were determined. HMP, combined with F, increased F levels and decreased P levels in the biofilm fluid compared to that of the solution with 500 ppm F. Exposure to sucrose decreased the concentrations of all ions in the biomass, except for HMP; 1% HMP, combined with F, promoted the highest pH. It can be concluded that HMP affected the inorganic composition of the biofilm and exerted a buffering effect on the biofilm pH.
Collapse
|
8
|
Dekkerová J, Černáková L, Kendra S, Borghi E, Ottaviano E, Willinger B, Bujdáková H. Farnesol Boosts the Antifungal Effect of Fluconazole and Modulates Resistance in Candida auris through Regulation of the CDR1 and ERG11 Genes. J Fungi (Basel) 2022; 8:jof8080783. [PMID: 35893151 PMCID: PMC9332773 DOI: 10.3390/jof8080783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is considered a serious fungal pathogen frequently exhibiting a high resistance to a wide range of antifungals. In this study, a combination of the quorum-sensing molecule farnesol (FAR) and fluconazole (FLU) was tested on FLU-resistant C. auris isolates (C. auris S and C. auris R) compared to the susceptible C. auris H261. The aim was to assess the possible synergy between FAR and FLU, by reducing the FLU minimal inhibitory concentration, and to determine the mechanism underlying the conjunct effect. The results confirmed a synergic effect between FAR and FLU with a calculated FIC index of 0.75 and 0.4 for C. auris S and C. auris R, respectively. FAR modulates genes involved in azole resistance. When FAR was added to the cells in combination with FLU, a significant decrease in the expression of the CDR1 gene was observed in the resistant C. auris isolates. FAR seems to block the Cdr1 efflux pump triggering a restoration of the intracellular content of FLU. These results were supported by observed increasing accumulation of rhodamine 6G by C. auris cells. Moreover, C. auris treated with FAR showed an ERG11 gene down-regulation. Overall, these results suggest that FAR is an effective modulator of the Cdr1 efflux pump in C. auris and, in combination with FLU, enhances the activity of this azole, which might be a promising strategy to control infections caused by azole-resistant C. auris.
Collapse
Affiliation(s)
- Jaroslava Dekkerová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Elisa Borghi
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
- Correspondence: ; Tel.: +421-2-9014-9436
| |
Collapse
|
9
|
Abstract
Candida auris is an emerging yeast species that has the unique characteristics of patient skin colonization and rapid transmission within healthcare facilities and the ability to rapidly develop antifungal resistance. When C. auris first started appearing in clinical microbiology laboratories, it could only be identified using DNA sequencing. In the decade since its first identification outside of Japan there have been many improvements in the detection of C. auris. These include the expansion of MALDI-TOF databases to include C. auris, the development of both laboratory-developed tests and commercially available kits for its detection, and special CHROMagar for identification from laboratory specimens. Here we discuss the current tools and resources that are available for C. auris identification and detection.
Collapse
|
10
|
Yadav A, Singh A, Chowdhary A. Isolation of Candida auris in Clinical Specimens. Methods Mol Biol 2022; 2517:3-20. [PMID: 35674941 DOI: 10.1007/978-1-0716-2417-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Candida auris is a multidrug-resistant yeast causing healthcare-associated outbreaks of blood stream infections worldwide. Currently, C. auris isolation and identification is complicated by issues such as misidentification and long turnaround time associated with application of commonly used diagnostic tools. Based on phenotypic characteristics, differentiation of C. auris from related Candida haemulonii complex spp. is problematic. Candida auris can be misidentified using biochemical-based systems such as VITEK 2 YST, API 20C, BD Phoenix yeast identification system, and MicroScan. C. auris growth at 42 °C and in the presence of 10% NaCl helps in presumptive identification of this yeast from related Candida haemulonii complex spp. A new CHROMagar™ Candida Plus agar is an excellent alternative to current conventional mycological media for the screening of patients colonized/infected with Candida auris. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) can differentiate C. auris from other Candida species, but not all the reference databases included in MALDI-TOF devices allow for detection. Currently, accurate identification of C. auris can be performed using the updated FDA-approved libraries or "research use-only" libraries. Molecular techniques have greatly enhanced the diagnosis of C. auris. Sequencing of rDNA genetic loci, namely, internal transcribed spacer and D1/D2 region of large subunit (LSU), and PCR/qPCR assays has successfully been applied for identification of C. auris. Real-time PCR assays bear incomparable potential of being the most efficient tool for high-throughput screening of surveillance samples. If properly validated, they can deliver the diagnostic result within several hours, since the DNA can be isolated directly from the patient specimen without the need of obtaining a colony. In this chapter we detailed the isolation of Candida auris from various clinical specimens and its currently available identification methods and hitches.
Collapse
Affiliation(s)
- Anamika Yadav
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Ibe C, Oladele RO, Alamir O. Our pursuit for effective antifungal agents targeting fungal cell wall components, where are we? Int J Antimicrob Agents 2021; 59:106477. [PMID: 34798234 DOI: 10.1016/j.ijantimicag.2021.106477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Invasive mycotic infections account for an unacceptably high mortality rates in humans. These infections are initiated by the fungal cell wall which mediates host-fungi interactions. The cell wall is fused to the physiology of fungi, and it is involved in essential functions in the entire cell functionality. Components of the cell wall are synthesised and modified in the cell wall space by the activities of cell wall proteins through a range of signalling pathways that have only been described in many fungi, therefore making them suitable drug targets. The echinocandins class of cell wall-active drugs block cell wall β-1,3-glucan biosynthesis through inhibiting the catalytic subunit of the synthetic protein complex. Resistance to echinocandins can be through the acquisition of single nucleotide polymorphisms and/or through activation of cell wall signalling pathways resulting in altered cell wall proteome and elevated chitin content in the cell wall. Countering the cell wall remodelling process will enhance the effectiveness of β-1,3-glucan-active antifungal agents. Cell surface proteins are also important antifungal targets which can be used to develop rapid and robust diagnostics and more effective therapeutics. The cell wall remains a crucial target in fungi that needs to be harnessed to combat mycotic infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000 Uturu, Abia State, Nigeria.
| | - Rita O Oladele
- Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Omran Alamir
- Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Al Asimah, Kuwait
| |
Collapse
|
12
|
Dennis EK, Chaturvedi S, Chaturvedi V. So Many Diagnostic Tests, So Little Time: Review and Preview of Candida auris Testing in Clinical and Public Health Laboratories. Front Microbiol 2021; 12:757835. [PMID: 34691009 PMCID: PMC8529189 DOI: 10.3389/fmicb.2021.757835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens. C. auris had likely remained unrecognized for a long time as accurate tests were not available. The laboratory community responded to the C. auris challenge by publishing 35 new or revised diagnostic methods between 2014 and early 2021. The commercial sector also modified existing diagnostic devices. These C. auris diagnostic tests run the gamut from traditional culture-based differential and selective media, biochemical assimilations, and rapid protein profiles, as well as culture-independent DNA-based diagnostics. We provide an overview of these developments, especially the tests with validation data that were subsequently adopted for common use. We share a workflow developed in our laboratory to process over 37,000 C. auris surveillance samples and 5,000 C. auris isolates from the outbreak in the New York metropolitan area. Our preview covers new devices and diagnostic approaches on the horizon based on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap, stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient isolation, admission screening, and environmental control. Among the urgent needs is a lateral flow assay or similar device for presumptive C. auris identification. All laboratories will benefit from devices that allow rapid antifungal susceptibility testing, including detection of mutations conferring drug resistance. Hopefully, multiplex test panels are on the horizon for synergy of C. auris testing with ongoing surveillance of other healthcare-associated infections. C. auris genome analysis has a proven role for outbreak investigations, and diagnostic laboratories need quick access to regional and national genome analysis networks.
Collapse
Affiliation(s)
- Emily K Dennis
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
13
|
Borman AM, Fraser M, Johnson EM. CHROMagarTM Candida Plus: A novel chromogenic agar that permits the rapid identification of Candida auris. Med Mycol 2021; 59:253-258. [PMID: 32525988 DOI: 10.1093/mmy/myaa049] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/21/2020] [Indexed: 02/05/2023] Open
Abstract
Candida auris is a serious nosocomial health risk, with widespread outbreaks in hospitals worldwide. Successful management of such outbreaks has depended upon intensive screening of patients to identify those that are colonized and the subsequent isolation or cohorting of affected patients to prevent onward transmission. Here we describe the evaluation of a novel chromogenic agar, CHROMagarTM Candida Plus, for the specific identification of Candida auris isolates from patient samples. Candida auris colonies on CHROMagarTM Candida Plus are pale cream with a distinctive blue halo that diffuses into the surrounding agar. Of over 50 different species of Candida and related genera that were cultured in parallel, only the vanishingly rare species Candida diddensiae gave a similar appearance. Moreover, both the rate of growth and number of colonies of C. auris recovered from swabs of pure and mixed Candida species were substantially increased on CHROMagarTM Candida Plus agar when compared with growth on the traditional mycological isolation medium, Sabouraud dextrose agar. Taken together, the present data suggest that CHROMagarTM Candida Plus agar is an excellent alternative to current conventional mycological media for the screening of patients who are potentially colonized/infected with Candida auris, can be reliably used to identify this emerging fungal pathogen, and should be tested in a clinical setting. LAY ABSTRACT Candida auris is a novel pathogenic yeast that has been associated with large hospital outbreaks across several continents. Affected patients become colonized, predominantly on the skin, with large quantities of C. auris which they then shed into the hospital environment. Identification of C. auris is challenging using routine laboratory methods, and time consuming when patients are colonized with a mixture of different Candida species. Here we demonstrate that a novel chromogenic agar, CHROMagarTM Candida Plus, permits the rapid differentiation of C. auris from a wide range of other yeast species and is potentially ideally suited to screening of patients that are suspected of being colonized or infected with this medically important yeast.
Collapse
Affiliation(s)
- Andrew M Borman
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| | - Elizabeth M Johnson
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| |
Collapse
|
14
|
Zhang SX, Babady NE, Hanson KE, Harrington AT, Larkin PMK, Leal SM, Luethy PM, Martin IW, Pancholi P, Procop GW, Riedel S, Seyedmousavi S, Sullivan KV, Walsh TJ, Lockhart SR. Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). J Clin Microbiol 2021; 59:e0178420. [PMID: 33504591 PMCID: PMC8218742 DOI: 10.1128/jcm.01784-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are a rising threat to our immunocompromised patient population, as well as other nonimmunocompromised patients with various medical conditions. However, little progress has been made in the past decade to improve fungal diagnostics. To jointly address this diagnostic challenge, the Fungal Diagnostics Laboratory Consortium (FDLC) was recently created. The FDLC consists of 26 laboratories from the United States and Canada that routinely provide fungal diagnostic services for patient care. A survey of fungal diagnostic capacity among the 26 members of the FDLC was recently completed, identifying the following diagnostic gaps: lack of molecular detection of mucormycosis; lack of an optimal diagnostic algorithm incorporating fungal biomarkers and molecular tools for early and accurate diagnosis of Pneumocystis pneumonia, aspergillosis, candidemia, and endemic mycoses; lack of a standardized molecular approach to identify fungal pathogens directly in formalin-fixed paraffin-embedded tissues; lack of robust databases to enhance mold identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; suboptimal diagnostic approaches for mold blood cultures, tissue culture processing for Mucorales, and fungal respiratory cultures for cystic fibrosis patients; inadequate capacity for fungal point-of-care testing to detect and identify new, emerging or underrecognized, rare, or uncommon fungal pathogens; and performance of antifungal susceptibility testing. In this commentary, the FDLC delineates the most pressing unmet diagnostic needs and provides expert opinion on how to fulfill them. Most importantly, the FDLC provides a robust laboratory network to tackle these diagnostic gaps and ultimately to improve and enhance the clinical laboratory's capability to rapidly and accurately diagnose fungal infections.
Collapse
Affiliation(s)
- Sean X. Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - N. Esther Babady
- Clinical Microbiology Service and Infectious Disease Service, Departments of Laboratory Medicine and Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Kimberly E. Hanson
- Department of Pathology, Section of Clinical Microbiology, University of Utah and ARUP Laboratories, Salt Lake City, Utah, USA
| | - Amanda T. Harrington
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Paige M. K. Larkin
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sixto M. Leal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul M. Luethy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Preeti Pancholi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Gary W. Procop
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan Riedel
- Clinical Microbiology Laboratories, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyedmojtaba Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaede V. Sullivan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Thomas J. Walsh
- Division of Infectious Diseases, Weill Cornell Medicine of Cornell University, New York-Presbyterian Hospital, New York City, New York, USA
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
15
|
MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv Pharmacol Pharm Sci 2021; 2021:9928238. [PMID: 34041492 PMCID: PMC8121603 DOI: 10.1155/2021/9928238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
There is a range of proteomics methods to spot and analyze bacterial protein contents such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), which give comprehensive information about the microorganisms that may be helpful within the diagnosis and coverings of infections. Microorganism identification by mass spectrometry is predicted on identifying a characteristic spectrum of every species so matched with an outsized database within the instrument. MALDI-TOF MS is one of the diagnostic methods, which is a straightforward, quick, and precise technique, and is employed in microbial diagnostic laboratories these days and may replace other diagnostic methods. This method identifies various microorganisms such as bacteria, fungi, parasites, and viruses, which supply comprehensive information. One of the MALDI-TOF MS's crucial applications is bacteriology, which helps identify bacterial species, identify toxins, and study bacterial antibiotic resistance. By knowing these cases, we will act more effectively against bacterial infections.
Collapse
|
16
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
De Carolis E, Marchionni F, La Rosa M, Meis JF, Chowdhary A, Posteraro B, Sanguinetti M. Are We Ready for Nosocomial Candida auris Infections? Rapid Identification and Antifungal Resistance Detection Using MALDI-TOF Mass Spectrometry May Be the Answer. Front Cell Infect Microbiol 2021; 11:645049. [PMID: 33796487 PMCID: PMC8007968 DOI: 10.3389/fcimb.2021.645049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
The occurrence of multidrug-resistant Candida auris isolates and the increased mortality associated with invasive infections or outbreaks due to this Candida species have been reported in many healthcare settings. Therefore, accurate and rapid identification at the species level of clinical C. auris isolates as well as their timely differentiation as susceptible or resistant to antifungal drugs is mandatory. Aims of the present study were to implement the MALDI-TOF mass spectrometry (MS) Bruker Daltonics Biotyper® database with C. auris spectrum profiles and to develop a fast and reproducible MS assay for detecting anidulafungin (AFG) resistance in C. auris isolates. After creation of main C. auris spectra, a score-oriented dendrogram was generated from hierarchical cluster analysis, including spectra of isolates from C. auris and other Candida (C. glabrata, C. guilliermondii, C. haemulonii, C. lusitaniae, and C. parapsilosis) or non-Candida (Rhodotorula glutinis) species. Cluster analysis allowed to group and classify the isolates according to their species designation. Then, a three-hour incubation antifungal susceptibility testing (AFST) assay was developed. Spectra obtained at null, intermediate, or maximum AFG concentrations were used to create composite correlation index matrices for eighteen C. auris isolates included in the study. All six resistant C. auris isolates were detected as resistant whereas 11 of 12 susceptible C. auris isolates were detected as susceptible by the MS-AFST assay. In conclusion, our MS-based assay offers the possibility of rapidly diagnosing and appropriately treating patients with C. auris infection.
Collapse
Affiliation(s)
- Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marchionni
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marilisa La Rosa
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands.,Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Anuradha Chowdhary
- Vallabhbhai Patel Chest Institute, Department of Medical Mycology, University of Delhi, Delhi, India
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
18
|
Di Pilato V, Codda G, Ball L, Giacobbe DR, Willison E, Mikulska M, Magnasco L, Crea F, Vena A, Pelosi P, Bassetti M, Marchese A. Molecular Epidemiological Investigation of a Nosocomial Cluster of C. auris: Evidence of Recent Emergence in Italy and Ease of Transmission during the COVID-19 Pandemic. J Fungi (Basel) 2021; 7:140. [PMID: 33672021 PMCID: PMC7919374 DOI: 10.3390/jof7020140] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/15/2023] Open
Abstract
Candida auris is an emerging MDR pathogen raising major concerns worldwide. In Italy, it was first and only identified in July 2019 in our hospital (San Martino Hospital, Genoa), where infection or colonization cases have been increasingly recognized during the following months. To gain insights into the introduction, transmission dynamics, and resistance traits of this fungal pathogen, consecutive C. auris isolates collected from July 2019 to May 2020 (n = 10) were subjected to whole-genome sequencing (WGS) and antifungal susceptibility testing (AST); patients' clinical and trace data were also collected. WGS resolved all isolates within the genetic clade I (South Asian) and showed that all but one were part of a cluster likely stemming from the index case. Phylogenetic molecular clock analyses predicted a recent introduction (May 2019) in the hospital setting and suggested that most transmissions were associated with a ward converted to a COVID-19-dedicated ICU during the pandemic. All isolates were resistant to amphotericin B, voriconazole, and fluconazole at high-level, owing to mutations in ERG11(K143R) and TACB1(A640V). Present data demonstrated that the introduction of MDR C. auris in Italy was a recent event and suggested that its spread could have been facilitated by the COVID-19 pandemic. Continued efforts to implement stringent infection prevention and control strategies are warranted to limit the spread of this emerging pathogen within the healthcare system.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
| | - Giulia Codda
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Anesthesia and Intensive Care, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Edward Willison
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| | - Malgorzata Mikulska
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Francesca Crea
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Anesthesia and Intensive Care, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| |
Collapse
|
19
|
Alvarado M, Bartolomé Álvarez J, Lockhart SR, Valentín E, Ruiz-Gaitán AC, Eraso E, de Groot PWJ. Identification of Candida auris and related species by multiplex PCR based on unique GPI protein-encoding genes. Mycoses 2021; 64:194-202. [PMID: 33128788 PMCID: PMC11979674 DOI: 10.1111/myc.13204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogen Candida auris is rapidly gaining clinical importance because of its resistance to antifungal treatments and its persistence in hospital environments. Early and accurate diagnosis of C. auris infections is crucial, and however, the fungus has often been misidentified by commercial systems. OBJECTIVES To develop conventional and real-time PCR methods for accurate and rapid identification of C. auris and its discrimination from closely related species by exploiting the uniqueness of certain glycosylphosphatidylinositol (GPI)-modified protein-encoding genes. METHODS Species-specific primers for two unique putative GPI protein-encoding genes per species were designed for C. auris, C. haemulonii, C. pseudohaemulonii, C. duobushaemulonii, C. lusitaniae and C. albicans. Primers were blind tested for their specificity and efficiency in conventional and real-time multiplex PCR set-up. RESULTS All primers combinations showed excellent species specificity. In multiplex mode, correct identification was aided by different-sized amplicons for each species. Efficiency of the C. auris primers was validated using a panel of 155 C. auris isolates, including all known genetically diverse clades. In real-time multiplex PCR, different melting points of the amplicons allowed the distinction of C. auris from four related species. C. auris limit of detection was 5 CFU/reaction with a threshold value of 32. The method was also able to detect C. auris in spiked blood and serum. CONCLUSIONS PCR identification based on unique GPI protein-encoding genes allows for accurate and rapid species identification of C. auris and related species without need for expensive equipment when applied in conventional PCR set-up.
Collapse
Affiliation(s)
- María Alvarado
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Joaquín Bartolomé Álvarez
- Complejo Hospitalario Universitario de Albacete, Servicio de Salud de Castilla-La Mancha, Albacete, Spain
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eulogio Valentín
- GMCA Research Unit, Departamento de Microbiología y Ecología, Universidad de Valencia, Burjassot, Spain
| | | | - Elena Eraso
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
20
|
Ibrahim A, Baron SA, Yousfi H, Hadjadj L, Lalaoui R, Morand S, Rolain JM, Bittar F. Development and standardization of a specific real-time PCR assay for the rapid detection of Candida auris. Eur J Clin Microbiol Infect Dis 2021; 40:1547-1551. [PMID: 33515096 DOI: 10.1007/s10096-021-04176-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Candida auris is an emerging multiresistant pathogen causing nosocomial fungal infection. Specific detection and identification are necessary. Our goal is to develop a new qPCR system that enables rapid detection of C. auris, based on a GPI (glycosyl-phosphatidylinositol) protein-encoding gene. This system is reproducible and sensitive with a limit of detection of 13 C. auris CFU/qPCR reaction. The 100% specificity of this system is confirmed on 2073 clinical and environmental samples, 50 different bacterial species, and 9 Candida spp. (70 strains). This system is suitable to correctly identify C. auris infections and to trace its source.
Collapse
Affiliation(s)
- Ahmad Ibrahim
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Hanane Yousfi
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Rym Lalaoui
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Évolution, CNRS-IRD-UM2, CC065, Université Montpellier 2, Montpellier, France
| | - Jean-Marc Rolain
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France.
- IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
21
|
Al-Rashdi A, Al-Maani A, Al-Wahaibi A, Alqayoudhi A, Al-Jardani A, Al-Abri S. Characteristics, Risk Factors, and Survival Analysis of Candida auris Cases: Results of One-Year National Surveillance Data from Oman. J Fungi (Basel) 2021; 7:jof7010031. [PMID: 33430221 PMCID: PMC7825686 DOI: 10.3390/jof7010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Candida auris (C. auris) is an emerging healthcare-associated pathogen resulting in significant morbidity and mortality. The aim of this study is to report data from the national C. auris surveillance system for 2019 and conduct a survival analysis of the reported cohort. Methods: a retrospective analysis was conducted for all C. auris cases reported nationally to the Oman Antimicrobial Surveillance System (OMASS) in 2019, and isolates were sent to the Central Public Health Laboratories (CPHL). Clinical and demographic data were obtained through the E-Surveillance reporting system and the Electronic System (NEHR Al-Shifa) at CPHL. Statistical analysis was done using Kaplan–Meier analysis and Cox proportional hazard models. Results: One hundred and twenty-nine isolates of C. auris were grown from 108 inpatients; 87% were isolated from clinical samples, of which blood was the most common (38.9%). Forty (37%) were ≥65 years of age, 72 (66.7%) were males, and 85 (78.7%) were Omani nationals. Of the total isolates, 43.5% were considered as colonization; 56.5% were considered infection, of which 61.8% of them were candidemia. At least one risk factor was present in 98.1% of patients. The mean time from admission to infection was 1.7 months (SD = 2.8), and the mean length of hospital stay was 3.5 months (SD = 4). Totals of 94.8% and 96.1% of the isolates were non-susceptible to fluconazole and amphotericin, respectively. The variables found to be significantly associated with longer survival post C. auris diagnosis (p < 0.05) were age < 65 years, absence of comorbidities, length of stay < 3 months, colonization, and absence of candidemia. The infection fatality rate was 52.5%. Conclusion: Including C. auris in an ongoing antimicrobial surveillance program provides important data for the comprehensive management of this growing public health threat. The current study shows health care outbreaks of C. auris are ongoing, with 52.5% infection fatality, although our isolates remained sensitive to Echinocandins in vitro.
Collapse
Affiliation(s)
- Azza Al-Rashdi
- Central Public Health Laboratories, Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman;
- Correspondence: (A.A.-R.); (A.A.-M.)
| | - Amal Al-Maani
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
- Correspondence: (A.A.-R.); (A.A.-M.)
| | - Adil Al-Wahaibi
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| | - Abdullah Alqayoudhi
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| | - Amina Al-Jardani
- Central Public Health Laboratories, Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman;
| | - Seif Al-Abri
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| |
Collapse
|
22
|
White PL, Price JS, Cordey A, Backx M. Molecular Diagnosis of Yeast Infections. CURRENT FUNGAL INFECTION REPORTS 2021; 15:67-80. [PMID: 34178207 PMCID: PMC8212580 DOI: 10.1007/s12281-021-00421-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The use of molecular tests to aid the diagnosis of invasive yeast infection, in particular invasive candidosis, has been described for over two decades, yet widespread application is limited, and diagnosis remains heavily dependent on classical microbiology. This article will review developments from the past decade in attempt to build on existing knowledge. It will highlight clinical performance and limitations while reviewing developments on recognized procedures; it will also provide insight into novel approaches incorporated in response to clinical demand (e.g. C. auris and antifungal resistance) or technological advances (e.g. next-generation sequencing). RECENT FINDINGS Limited methodological standardization and, until recently, unavailability of commercial options have hindered the integration of molecular diagnostics for yeasts. The development of certain, novel commercial methods has received considerable evaluation allowing a greater understanding of individual assay performance, but widespread multicentre evaluation of most commercial kits is lacking. The detection of emerging pathogens (e.g. C. auris) has been enhanced by the development of molecular tests. Molecular methods are providing a better understanding of the mycobiome, mechanisms of resistance and epidemiology/phylogeny. SUMMARY Despite over two decades of use, the incorporation of molecular methods to enhance the diagnosis of yeast infections remains limited to certain specialist centres. While the development of commercial tests will provide stimulus for broader application, further validation and reduced costs are required. Over the same period of time, Aspergillus PCR has become more widely accepted driven by international efforts to standardize methodology; it is critical that yeast PCR follows suit. Next-generation sequencing will provide significant information on the mycobiome, antifungal resistance mechanism and even broad-range detection directly from the specimen, which may be critical for the molecular detection of yeasts other than Candida species, which is currently limited.
Collapse
Affiliation(s)
- P. Lewis White
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Jessica S. Price
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Alan Cordey
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Matthijs Backx
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| |
Collapse
|
23
|
Pla L, Santiago-Felipe S, Tormo-Mas MÁ, Ruiz-Gaitán A, Pemán J, Valentín E, Sancenón F, Aznar E, Martínez-Máñez R. Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples. Emerg Microbes Infect 2020; 10:407-415. [PMID: 33372852 PMCID: PMC7954474 DOI: 10.1080/22221751.2020.1870411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modulation and cargo delivery is controlled by successful DNA recognition. C. auris is detected at a concentration as low as 6 CFU/mL allowing obtaining a diagnostic result in clinical samples in one hour with no prior DNA extraction or amplification steps.
Collapse
Affiliation(s)
- Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - María Ángeles Tormo-Mas
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Alba Ruiz-Gaitán
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Javier Pemán
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eulogio Valentín
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain.,GMCA Research Unit, Departamento de Microbiología y Ecología, Universitat de Valencia, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
24
|
Candida duobushaemulonii: An Old But Unreported Pathogen. J Fungi (Basel) 2020; 6:jof6040374. [PMID: 33348882 PMCID: PMC7766551 DOI: 10.3390/jof6040374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023] Open
Abstract
Candidiasis caused by species of the Candida haemulonii complex (Candida haemulonii and Candida duobushaemulonii) and closely related species, Candida auris and Candida pseudohaemulonii are increasing. These species often show reduced susceptibility to antifungal drugs, such as azoles and amphotericin B or, less frequently, echinocandins. However, conventional phenotypic identification methods are unable to accurately differentiate these species and, therefore, their prevalence may have been underestimated. In this study, 150 isolates that were probably misidentified were reanalyzed using two novel PCR approaches. We found that one isolate previously identified in 1996 as Candida intermedia was C. duobushaemulonii, being one of the oldest isolates of this species described to date. We also found that this isolate had reduced susceptibility to fluconazole, itraconazole, and amphotericin B.
Collapse
|
25
|
Candida auris: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9110778. [PMID: 33167419 PMCID: PMC7694398 DOI: 10.3390/antibiotics9110778] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
The multidrug-resistant yeast Candida auris is associated with invasive infections in critically ill patients and has been isolated in different countries worldwide. Ease of spread, prolonged persistence in the environment and antifungal drug resistance pose a significant concern for the prevention of transmission and management of patients with C. auris infections. Early and correct identification of patients colonized with C. auris is critical in containing its spread. However, this may be complicated by C. auris strains being misidentified as other phylogenetically related pathogens. In this review, we offer a brief overview highlighting some of the critical aspects of sample collection, laboratory culture-dependent and independent identification and the susceptibility profile of C. auris.
Collapse
|
26
|
Abstract
First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida auris is becoming a worldwide public health threat that has been attracting considerable attention due to its rapid and widespread emergence over the past decade. The reasons behind the recent emergence of this fungus remain a mystery to date. Genetic analyses indicate that this fungal pathogen emerged simultaneously in several different continents, where 5 genetically distinct clades of C. auris were isolated from distinct geographical locations. Although C. auris belongs to the CTG clade (its constituent species translate the CTG codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal species that is more closely related to the haploid and often multidrug-resistant species Candida haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically common fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks caused by C. auris in hospitals settings have been rising over the past several years. Difficulty in its identification, multidrug resistance properties, evolution of virulence factors, associated high mortality rates in patients, and long-term survival on surfaces in the environment make C. auris particularly problematic in clinical settings. Here, we review progress made over the past decade on the biological and clinical aspects of C. auris. Future efforts should be directed toward understanding the mechanistic details of its biology, epidemiology, antifungal resistance, and pathogenesis with a goal of developing novel tools and methods for the prevention, diagnosis, and treatment of C. auris infections.
Collapse
|
27
|
Candida auris Direct Detection from Surveillance Swabs, Blood, and Urine Using a Laboratory-Developed PCR Method. J Fungi (Basel) 2020; 6:jof6040224. [PMID: 33076352 PMCID: PMC7711490 DOI: 10.3390/jof6040224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging fungal pathogen with cases reported in countries around the world and in 19 states within the United States as of August 2020. The CDC has recommended that hospitals perform active surveillance upon admission for patients with the appropriate risk factors. Currently, active surveillance requires that local hospitals send surveillance swabs to a public health laboratory for analysis. In this work, a real-time PCR assay was developed for the specific detection of C. auris from surveillance swabs, blood, and urine to enable rapid detection of this pathogen. The assay uses commercially available primers and reporter probes and it was verified on the LightCycler 480 PCR platform. Contrived specimens and prospectively collected composite groin/axilla surveillance swabs were used to validate the assay. The performance of the PCR assay on surveillance swabs was also compared to a second PCR assay targeting C. auris that was performed at the Minnesota Department of Health–Public Health Laboratory (MDH-PHL). Our PCR assay is able to detect and differentiate C. auris from closely related Candida species such as C. duobushaemulonii, C. haemulonii, and C. pseudohaemulonii on the basis of melting curve temperature differences.
Collapse
|
28
|
Crea F, Codda G, Orsi A, Battaglini A, Giacobbe DR, Delfino E, Ungaro R, Marchese A. Isolation of Candida auris from invasive and non-invasive samples of a patient suffering from vascular disease, Italy, July 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31530343 PMCID: PMC6749772 DOI: 10.2807/1560-7917.es.2019.24.37.1900549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently isolated Candida auris from a blood culture and cutaneous swabs of a patient in her mid-70s. Our routine phenotypic methods failed to identify the microorganism, but it was identified by molecular tests and MALDI-TOF MS analysis. Our report, the first from Italy, further underlines the geographically wide distribution of C. auris and the need to confirm species identification of any suspicious colony as soon as possible to stop its spread.
Collapse
Affiliation(s)
- Francesca Crea
- FC and GC contributed equally to this article.,Unità Operativa di Microbiologia, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Giulia Codda
- Microbiology Unit, DISC University of Genoa, Genoa, Italy.,FC and GC contributed equally to this article
| | - Andrea Orsi
- Unità Operativa di Igiene, University of Genoa (DISSAL) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Alberto Battaglini
- Unità Operativa di Igiene, University of Genoa (DISSAL) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Unità Operativa Clinica Malattie Infettive, University of Genoa (DISSAL) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Emanuele Delfino
- Unità Operativa Clinica Malattie Infettive, University of Genoa (DISSAL) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Riccardo Ungaro
- Unità Operativa Clinica Malattie Infettive, University of Genoa (DISSAL) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Anna Marchese
- Unità Operativa di Microbiologia, University of Genoa (DISC) and Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| |
Collapse
|
29
|
Isolation and Identification of Fungi with Glucoamylase Activity from Loog-pang-khao-mak (A Thai Traditional Fermentation Starter). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Identification of Cryptic Species of Four Candida Complexes in a Culture Collection. J Fungi (Basel) 2019; 5:jof5040117. [PMID: 31861048 PMCID: PMC6958398 DOI: 10.3390/jof5040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/11/2023] Open
Abstract
Candida spp. are one of the most common causes of fungal infections worldwide. The taxonomy of Candida is controversial and has undergone recent changes due to novel genetically related species. Therefore, some complexes of cryptic species have been proposed. In clinical settings, the correct identification of Candida species is relevant since some species are associated with high resistance to antifungal drugs and increased virulence. This study aimed to identify the species of four Candida complexes (C. albicans, C. glabrata, C. parapsilosis, and C. haemulonii) by molecular methods. This is the first report of six cryptic Candida species in Honduras: C. dubliniensis, C. africana, C. duobushaemulonii, C. orthopsilosis, and C. metapsilosis, and it is also the first report of the allele hwp1-2 of C. albicans sensu stricto. It was not possible to demonstrate the existence of C. auris among the isolates of the C. haemulonii complex. We also propose a simple method based on PCR-RFLP for the discrimination of the multi-resistant pathogen C. auris within the C. haemulonii complex.
Collapse
|
31
|
Kordalewska M, Perlin DS. Molecular Diagnostics in the Times of Surveillance for Candida auris. J Fungi (Basel) 2019; 5:jof5030077. [PMID: 31434222 PMCID: PMC6787578 DOI: 10.3390/jof5030077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, global health professionals have been significantly challenged by the emergence of Candida auris and its propensity to colonize human skin, persist in the healthcare environment, and cause healthcare-associated outbreaks. Additionally, C. auris isolates are often characterized by elevated minimal inhibitory concentration (MIC) values for antifungal drugs. Thus, rapid detection and accurate identification of C. auris together with an assessment of potential antifungal drug resistance has become essential for effective patient management, and infection prevention and control in healthcare facilities. Surprisingly, almost all of the commonly available diagnostic tools rely on recovery (growth) of yeast colonies from collected samples, which delays the diagnostic result by several days or longer. To circumvent these issues, molecular-based DNA amplification assays have been developed to identify C. auris DNA directly from patient samples. Moreover, allele discriminating detection probes can be used to rapidly assess validated mechanisms of echinocandin and azole resistance.
Collapse
Affiliation(s)
- Milena Kordalewska
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA.
| |
Collapse
|
32
|
Kordalewska M, Perlin DS. Identification of Drug Resistant Candida auris. Front Microbiol 2019; 10:1918. [PMID: 31481947 PMCID: PMC6710336 DOI: 10.3389/fmicb.2019.01918] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023] Open
Abstract
Candida auris is a multidrug resistant yeast, recognized as a cause of invasive infections and health care associated outbreaks around the world. C. auris is of great public health concern, due to its propensity for drug resistance, mode and pace of its transmission, and the possibility that biologic and epidemiologic factors could exacerbate worldwide emergence of C. auris infections. Currently, outbreak response is complicated by limited treatment options and inadequate disinfection strategies, as well as by issues (misidentification, long turnaround time) associated with application of commonly used diagnostic tools. Misdiagnosis of C. auris is common since many diagnostic platforms available in clinical and public health laboratories depend on reference databases that have not fully incorporated C. auris. Moreover, the correlation between minimal inhibitory concentration values (MICs) and clinical outcomes is poorly understood resulting in the absence of C. auris-specific breakpoints. New, accurate and fast diagnostic methods have emerged to facilitate effective patient management and improve infection control measures, ultimately reducing the potential for C. auris transmission. This review provides an overview of available C. auris detection/identification and antifungal susceptibility determination methods and discusses their advantages and limitations. A special emphasis has been placed on culture-independent methods that have recently been developed and offer faster turnaround times.
Collapse
Affiliation(s)
- Milena Kordalewska
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| |
Collapse
|
33
|
Li X, Lau SKP, Woo PCY. Molecular characterisation of emerging pathogens of unexplained infectious disease syndromes. Expert Rev Mol Diagn 2019; 19:839-848. [PMID: 31385539 DOI: 10.1080/14737159.2019.1651200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: The discoveries of HIV and Helicobacter pylori in the 1980s were landmarks in identification of novel pathogens causing unexplained infectious syndromes using conventional microbiological technologies. In the last few decades, advancement of molecular technologies has provided us with more robust tools to expand our armamentarium in this microbial hunting process. Areas covered: In this article, we give a brief overview of the most important molecular technologies we use for identification of emerging microbes associated with unexplained infectious syndromes, including 16S rRNA and other conserved targets sequencing for bacteria, internal transcribed spacer (ITS) and other target gene sequencing for fungi, polymerase and other gene sequencing for viruses, as well as deep sequencing. Then, we use several representative examples to illustrate how these techniques have been used for the discoveries of a few notable bacterial, fungal and viral pathogens associated with unexplained infectious syndromes in the last 20-30 years. Expert opinion: In the past and present, characterization of emerging pathogens of unexplained infectious disease syndromes has relied on a combination of conventional culture- and phenotype-based technologies and nucleic acid amplification and sequencing. In the next era, we envisage more widespread adoption of next generation technologies that can detect both known and previously undescribed pathogens.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology, The University of Hong Kong , Hong Kong , China
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong , Hong Kong , China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong , Hong Kong , China.,Carol Yu Centre for Infection, The University of Hong Kong , Hong Kong , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University , Hangzhou , China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong , Hong Kong , China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong , Hong Kong , China.,Carol Yu Centre for Infection, The University of Hong Kong , Hong Kong , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University , Hangzhou , China
| |
Collapse
|
34
|
Lone SA, Ahmad A. Candida auris-the growing menace to global health. Mycoses 2019; 62:620-637. [PMID: 30773703 DOI: 10.1111/myc.12904] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
A paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of C. auris. C. auris, despite being a newly emerged multidrug-resistant fungal pathogen, is associated with severe invasive infections and outbreaks with high mortality rates. Initially reported from Japan in 2009, C. auris have now been found in different countries on all the continents except Antarctica. Due to its capability of nosocomial transmission and forming adherent biofilms on clinically important substrates, a high number of related hospital outbreaks have been reported worldwide. As C. auris is a multidrug-resistant pathogen and is prone to misidentification by available conventional methods, it becomes difficult to detect and manage C. auris infection and also limits the therapeutic options against this deadly pathogen. The emergence of multidrug-resistant C. auris advocates and amplifies the vigilance of early diagnosis and appropriate treatment of fungal infections. In this review, we discussed the nine-year-old history of C. auris-its trends in global emergence, epidemiological relatedness, isolation, mortality, associated risk factors, virulence factors, drug resistance and susceptibility testing, diagnostic challenges, microbiological characteristics, therapeutic options and infection prevention and control associated with this pathogen.
Collapse
Affiliation(s)
- Shabir A Lone
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Infection Control, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
35
|
Mahmoudi S, Agha Kuchak Afshari S, Aghaei Gharehbolagh S, Mirhendi H, Makimura K. Methods for identification of Candida auris, the yeast of global public health concern: A review. J Mycol Med 2019; 29:174-179. [DOI: 10.1016/j.mycmed.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
|
36
|
Arikan-Akdagli S, Ghannoum M, Meis JF. Antifungal Resistance: Specific Focus on Multidrug Resistance in Candida auris and Secondary Azole Resistance in Aspergillus fumigatus. J Fungi (Basel) 2018; 4:jof4040129. [PMID: 30563053 PMCID: PMC6308933 DOI: 10.3390/jof4040129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Antifungal resistance is a topic of concern, particularly for specific fungal species and drugs. Among these are the multidrug-resistant Candida auris and azole-resistant Aspergillus fumigatus. While the knowledge on molecular mechanisms of resistance is now accumulating, further data are also available for the clinical implications and the extent of correlation of in vitro resistance to clinical outcomes. This review article summarizes the epidemiology of C. auris infections, animal models focusing on the activity of novel antifungal compounds in C. auris infections, virulence factors, and the mechanisms of antifungal resistance for this multi-resistant Candida species. Regarding A. fumigatus, the significance of azoles in the treatment of A. fumigatus infections, reference methods available for the detection of resistance in vitro, molecular mechanisms of secondary azole resistance, routes of acquisition, and clinical implications of in vitro resistance are covered to provide guidance for the current status of azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Mycology Laboratory, Hacettepe University Medical School, TR-06100 Ankara, Turkey.
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 Nijmegen, The Netherlands.
- Centre of Expertise in Mycology Radboudumc/CWZ, 6532 Nijmegen, The Netherlands.
| |
Collapse
|