1
|
Aguirre-Botero MC, Pacios O, Celli S, Aliprandini E, Gladston A, Thiberge JM, Formaglio P, Amino R. Late killing of Plasmodium berghei sporozoites in the liver by an anti-circumsporozoite protein antibody. eLife 2025; 14:RP105291. [PMID: 39951341 PMCID: PMC11828480 DOI: 10.7554/elife.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Plasmodium sporozoites are inoculated into the skin during the bite of an infected mosquito. This motile stage invades cutaneous blood vessels to reach the liver and infect hepatocytes. The circumsporozoite protein (CSP) on the sporozoite surface is an important antigen targeted by protective antibodies (Abs) in immunoprophylaxis or elicited by vaccination. Antibody-mediated protection mainly unfolds during parasite skin migration, but rare and potent protective Abs additionally neutralize sporozoite in the liver. Here, using a rodent malaria model, microscopy and bioluminescence imaging, we show a late-neutralizing effect of 3D11 anti-CSP monoclonal antibody (mAb) in the liver. The need for several hours to eliminate parasites in the liver was associated with an accumulation of 3D11 effects, starting with the inhibition of sporozoite motility, sinusoidal extravasation, cell invasion, and terminating with the parasite killing inside the invaded cell. This late-neutralizing activity could be helpful to identify more potent therapeutic mAbs with stronger activity in the liver.
Collapse
Affiliation(s)
| | - Olga Pacios
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Susanna Celli
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Eduardo Aliprandini
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Anisha Gladston
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Jean-Michel Thiberge
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| |
Collapse
|
2
|
Mishra A, Rajput S, Srivastava PN, Shabeer Ali H, Mishra S. Autophagy protein Atg7 is essential for maintaining malaria parasite cellular homeostasis and organelle biogenesis. mBio 2025; 16:e0273524. [PMID: 39714137 PMCID: PMC11796356 DOI: 10.1128/mbio.02735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Plasmodium parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components. Here, we show that the Plasmodium berghei autophagy-related E1-like enzyme Atg7 is expressed in the blood, sporozoites, and liver stages, localized to the parasite cytosol, and is essential for the localization of Atg8 on the membrane and the development of parasite blood and liver forms. We found that depleting Atg7 abolishes Atg8 lipidation, exocytosis of micronemes, organelle biogenesis, and the formation of merozoites during liver-stage development. Overall, this study establishes the essential functions of Atg7 in Plasmodium blood and liver stages, and highlights its role in maintaining the parasite's cellular homeostasis and organelle biogenesis.IMPORTANCEThe malaria life cycle involves two hosts, mosquitoes and vertebrates. Plasmodium parasites undergo complex intracellular and extracellular stages during this transition. Here, we report that an autophagy-related E1-like enzyme Atg7 is required to conjugate Atg8 on the apicoplast membrane. Atg7 depletion in Plasmodium berghei resulted in the loss of Atg8 lipidation and multiple defects like clearance of micronemes, organelle biogenesis, and maturation of hepatic schizonts during liver-stage development. The essentiality of Plasmodium Atg7 in blood and liver stages suggests it is a prospective target for developing autophagy-specific inhibitors. These results highlight the importance of autophagy in malaria parasite development.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suryansh Rajput
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - H. Shabeer Ali
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
4
|
Scheiner M, Burda PC, Ingmundson A. Moving on: How malaria parasites exit the liver. Mol Microbiol 2024; 121:328-340. [PMID: 37602900 DOI: 10.1111/mmi.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.
Collapse
Affiliation(s)
- Mattea Scheiner
- Molecular Parasitology, Humboldt University Berlin, Berlin, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
5
|
Miyazaki Y, Vos MW, Geurten FJA, Bigeard P, Kroeze H, Yoshioka S, Arisawa M, Inaoka DK, Soulard V, Dechering KJ, Franke-Fayard B, Miyazaki S. A versatile Plasmodium falciparum reporter line expressing NanoLuc enables highly sensitive multi-stage drug assays. Commun Biol 2023; 6:713. [PMID: 37438491 DOI: 10.1038/s42003-023-05078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Transgenic luciferase-expressing Plasmodium falciparum parasites have been widely used for the evaluation of anti-malarial compounds. Here, to screen for anti-malarial drugs effective against multiple stages of the parasite, we generate a P. falciparum reporter parasite that constitutively expresses NanoLuciferase (NanoLuc) throughout its whole life cycle. The NanoLuc-expressing P. falciparum reporter parasite shows a quantitative NanoLuc signal in the asexual blood, gametocyte, mosquito, and liver stages. We also establish assay systems to evaluate the anti-malarial activity of compounds at the asexual blood, gametocyte, and liver stages, and then determine the 50% inhibitory concentration (IC50) value of several anti-malarial compounds. Through the development of this robust high-throughput screening system, we identify an anti-malarial compound that kills the asexual blood stage parasites. Our study highlights the utility of the NanoLuc reporter line, which may advance anti-malarial drug development through the improved screening of compounds targeting the human malarial parasite at multiple stages.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Martijn W Vos
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Pierre Bigeard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shohei Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Valerie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
| |
Collapse
|
6
|
der Wel AVV, Hofman SO, Kocken CHM. Isolation of GFP-expressing Malarial Hypnozoites by Flow Cytometry Cell Sorting. Bio Protoc 2021; 11:e4006. [PMID: 34124306 DOI: 10.21769/bioprotoc.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 11/02/2022] Open
Abstract
Hypnozoites are dormant liver-stage parasites unique to relapsing malarial species, including the important human pathogen Plasmodium vivax, and pose a barrier to the elimination of malaria. Little is known regarding the biology of these stages, largely due to their inaccessible location. Hypnozoites can be cultured in vitro but these cultures always consist of a mixture of hepatocytes, developing forms, and hypnozoites. Here, using a GFP-expressing line of the hypnozoite model parasite Plasmodium cynomolgi, we describe a protocol for the FACS-based isolation of malarial hypnozoites. The purified hypnozoites can be used for a range of '-omics' studies to dissect the biology of this cryptic stage of the malarial life cycle.
Collapse
Affiliation(s)
| | - Sam O Hofman
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
7
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
8
|
Goswami D, Betz W, Locham NK, Parthiban C, Brager C, Schäfer C, Camargo N, Nguyen T, Kennedy SY, Murphy SC, Vaughan AM, Kappe SH. A replication-competent late liver stage-attenuated human malaria parasite. JCI Insight 2020; 5:135589. [PMID: 32484795 DOI: 10.1172/jci.insight.135589] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Navin K Locham
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Carolyn Brager
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
De Niz M, Carvalho T, Penha-Gonçalves C, Agop-Nersesian C. Intravital imaging of host-parasite interactions in organs of the thoracic and abdominopelvic cavities. Cell Microbiol 2020; 22:e13201. [PMID: 32149435 DOI: 10.1111/cmi.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
10
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
11
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Tedla MG, Every AL, Scheerlinck JPY. Investigating immune responses to parasites using transgenesis. Parasit Vectors 2019; 12:303. [PMID: 31202271 PMCID: PMC6570953 DOI: 10.1186/s13071-019-3550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Parasites comprise diverse and complex organisms, which substantially impact human and animal health. Most parasites have complex life-cycles, and by virtue of co-evolution have developed multifaceted, often life-cycle stage-specific relationships with the immune system of their hosts. The complexity in the biology of many parasites often limits our knowledge of parasite-specific immune responses, to in vitro studies only. The relatively recent development of methods to stably manipulate the genetic make-up of many parasites has allowed a better understanding of host-parasite interactions, particularly in vivo. In this regard, the use of transgenic parasites can facilitate the study of immunomodulatory mechanisms under in vivo conditions. Therefore, in this review, we specifically highlighted the current developments in the use of transgenic parasites to unravel the host's immune response to different life-cycle stages of some key parasite species such as Leishmania, Schistosoma, Toxoplasma, Plasmodium and Trypanosome and to some degree, the use of transgenic nematode parasites is also briefly discussed.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Present Address: College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086 Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
13
|
Gupta DK, Dembele L, Voorberg-van der Wel A, Roma G, Yip A, Chuenchob V, Kangwanrangsan N, Ishino T, Vaughan AM, Kappe SH, Flannery EL, Sattabongkot J, Mikolajczak S, Bifani P, Kocken CH, Diagana TT. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife 2019; 8:43362. [PMID: 31094679 PMCID: PMC6542585 DOI: 10.7554/elife.43362] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2-positive parasites, while LISP2-negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Laurent Dembele
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), MRTC - DEAP, Bamako, Mali
| | | | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andy Yip
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | | | - Tomoko Ishino
- Graduate School of Medicine, Ehime University, Toon, Japan
| | | | - Stefan H Kappe
- Center for Infectious Disease Research, Seattle, United States
| | | | | | - Sebastian Mikolajczak
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Center for Infectious Disease Research, Seattle, United States
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Singapore Immunology Network (SIgN), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clemens Hm Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Thierry Tidiane Diagana
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| |
Collapse
|
14
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
15
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025486. [PMID: 28242785 DOI: 10.1101/cshperspect.a025486] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109.,Department of Global Health, University of Washington, Seattle, Washington 98195
| |
Collapse
|
17
|
Zuck M, Ellis T, Venida A, Hybiske K. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol 2016; 19. [PMID: 27739160 DOI: 10.1111/cmi.12683] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
The precise strategies that intracellular pathogens use to exit host cells have a direct impact on their ability to disseminate within a host, transmit to new hosts, and engage or avoid immune responses. The obligate intracellular bacterium Chlamydia trachomatis exits the host cell by two distinct exit strategies, lysis and extrusion. The defining characteristics of extrusions, and advantages gained by Chlamydia within this unique double-membrane structure, are not well understood. Here, we define extrusions as being largely devoid of host organelles, comprised mostly of Chlamydia elementary bodies, and containing phosphatidylserine on the outer surface of the extrusion membrane. Extrusions also served as transient, intracellular-like niches for enhanced Chlamydia survival outside the host cell. In addition to enhanced extracellular survival, we report the key discovery that chlamydial extrusions are phagocytosed by primary bone marrow-derived macrophages, after which they provide a protective microenvironment for Chlamydia. Extrusion-derived Chlamydia staved off macrophage-based killing and culminated in the release of infectious elementary bodies from the macrophage. Based on these findings, we propose a model in which C. trachomatis extrusions serve as "trojan horses" for bacteria, by exploiting macrophages as vehicles for dissemination, immune evasion, and potentially transmission.
Collapse
Affiliation(s)
- Meghan Zuck
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA.,Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California, USA
| | - Tisha Ellis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Anthony Venida
- Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California, USA
| | - Kevin Hybiske
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J 2016; 15:358. [PMID: 27405995 PMCID: PMC4942956 DOI: 10.1186/s12936-016-1400-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.
Collapse
Affiliation(s)
- Surasak Kasetsirikul
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jirayut Buranapong
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Werayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Morakot Kaewthamasorn
- Animal Vector-Borne Diseases Research Group, The Veterinary Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Akbari M, Kimura K, Houts JT, Yui K. Intravital imaging of the immune responses during liver-stage malaria infection: An improved approach for fixing the liver. Parasitol Int 2016; 65:502-505. [PMID: 26921520 DOI: 10.1016/j.parint.2016.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
The host-parasite relationship is one of the main themes of modern parasitology. Recent revolutions in science, including the development of various fluorescent proteins/probes and two-photon microscopy, have made it possible to directly visualize and study the mechanisms underlying the interaction between the host and pathogen. Here, we describe our method of preparing and setting-up the liver for our experimental approach of using intravital imaging to examine the interaction between Plasmodium berghei ANKA and antigen-specific CD8+ T cells during the liver-stage of the infection in four dimensions. Since the liver is positioned near the diaphragm, neutralization of respiratory movements is critical during the imaging process. In addition, blood circulation and temperature can be affected by the surgical exposure due to the anatomy and tissue structure of the liver. To control respiration, we recommend anesthesia with isoflurane inhalation at 1% during the surgery. In addition, our protocol introduces a cushion of gauze around the liver to avoid external pressure on the liver during intravital imaging using an inverted microscope, which makes it possible to image the liver tissue for long periods with minimal reduction in the blood circulation and with minimal displacement and tissue damage. The key point of this method is to reduce respiratory movements and external pressure on the liver tissue during intravital imaging.
Collapse
Affiliation(s)
- Masoud Akbari
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - James T Houts
- Patterson Scientific, 1160 Chess Drive Suite #9, Foster City, CA 94404, USA.
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
20
|
Mokgethi-Morule T, N'Da DD. Cell based assays for anti-Plasmodium activity evaluation. Eur J Pharm Sci 2016; 84:26-36. [PMID: 26776968 DOI: 10.1016/j.ejps.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/28/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Abstract
Malaria remains one of the most common and deadly infectious diseases worldwide. The severity of this global public health challenge is reflected by the approximately 198 million people, who were reportedly infected in 2013 and by the more than 584,000 related deaths in that same year. The rising emergence of drug resistance towards the once effective artemisinin combination therapies (ACTs) has become a serious concern and warrants more robust drug development strategies, with the objective of eradicating malaria infections. The intricate biology and life cycle of Plasmodium parasites complicate the understanding of the disease in such a way that would enhance the development of more effective chemotherapies that would achieve radical clinical cure and that would prevent disease relapse. Phenotypic cell based assays have for long been a valuable approach and involve the screening and analysis of diverse compounds with regards to their activities towards whole Plasmodium parasites in vitro. To achieve the Millennium Development Goal (MDG) of malaria eradication by 2020, new generation drugs that are active against all parasite stages (erythrocytic (blood), exo-erythrocytic (liver stages and gametocytes)) are needed. Significant advances are being made in assay development to overcome some of the practical challenges of assessing drug efficacy, particularly in the liver and transmission stage Plasmodium models. This review discusses primary screening models and the fundamental progress being made in whole cell based efficacy screens of anti-malarial activity. Ongoing challenges and some opportunities for improvements in assay development that would assist in the discovery of effective, safe and affordable drugs for malaria treatments are also discussed.
Collapse
Affiliation(s)
- Thabang Mokgethi-Morule
- Drug Design, Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa
| | - David D N'Da
- Drug Design, Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
21
|
Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections. Nat Commun 2015; 6:8775. [PMID: 26531182 PMCID: PMC4659947 DOI: 10.1038/ncomms9775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023] Open
Abstract
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. Malaria parasites obtain amino acids primarily from the host, but possess a gene encoding a putative asparagine synthetase. Here, the authors show that this enzyme is functional and that asparagine is crucial for the development of the parasite's sexual stages in mosquitoes and liver stages in mice.
Collapse
|
22
|
Siddiqui AJ, Bhardwaj J, Goyal M, Prakash K, Soni A, Tiwari V, Puri SK. Assessment of real-time method to detect liver parasite burden under different experimental conditions in mice infected with Plasmodium yoelii sporozoites. Microb Pathog 2015; 89:35-42. [PMID: 26341953 DOI: 10.1016/j.micpath.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Use of highly specific, sensitive and quantitative Real-Time PCR (qRT-PCR) based methods greatly facilitate the monitoring of experimental drug intervention and vaccination efficacy targeting liver stage malaria parasite. Here, in this study we have used qRT-PCR to detect the growing liver stage parasites following inoculation of Plasmodium yoelii sporozoite. Route of sporozoite administration and size of the sporozoite inoculums are two major determinants that affect the liver stage parasite load and therefore its detection and quantification. Thus, these factors need to be addressed to determine the accuracy of detection and quantification of Real-Time PCR method. Furthermore, applicability of quantitative RT-PCR system needs to be confirmed by analyzing the effect of different antimalarials on liver stage parasite burden. We have observed that parasite burden in mice infected via intravenous route was higher compared to that in subcutaneous, intradermal and intraperitoneal route infected mice. Moreover, this method detected liver stage parasite load with as low as 50 sporozoites. The inhibition studies with primaquine and atovaquone revealed inhibition of liver stage parasite and well correlated with patency and course of blood stage infection. This study characterized the simplicity, accuracy, and quantitative analysis of liver stage parasite development by real time PCR under different experimental conditions. Use of real time PCR method greatly improves the reproducibility and applicability to estimate the efficacy and potency of vaccine or drug candidates targeting liver stage parasite.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Jyoti Bhardwaj
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Manish Goyal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Kirtika Prakash
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Awakash Soni
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| | - Sunil K Puri
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
23
|
Dumoulin PC, Trop SA, Ma J, Zhang H, Sherman MA, Levitskaya J. Flow Cytometry Based Detection and Isolation of Plasmodium falciparum Liver Stages In Vitro. PLoS One 2015; 10:e0129623. [PMID: 26070149 PMCID: PMC4466555 DOI: 10.1371/journal.pone.0129623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs.
Collapse
Affiliation(s)
- Peter C. Dumoulin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Stefanie A. Trop
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Jinxia Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Hao Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Matthew A. Sherman
- Triangle Research Labs, 6 Davis Drive, Durham, NC, 27709, United States of America
| | - Jelena Levitskaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
- * E-mail:
| |
Collapse
|
24
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|
25
|
Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, Daneman R, Frevert U. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog 2014; 10:e1004528. [PMID: 25474413 PMCID: PMC4256476 DOI: 10.1371/journal.ppat.1004528] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.
Collapse
Affiliation(s)
- Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Fabien Sohet
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Natasha M. Girgis
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Uma Mahesh Gundra
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - P'ng Loke
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. EUKARYOTIC CELL 2014; 14:96-103. [PMID: 25416236 DOI: 10.1128/ec.00166-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.
Collapse
|
27
|
Krzych U, Zarling S, Pichugin A. Memory T cells maintain protracted protection against malaria. Immunol Lett 2014; 161:189-95. [PMID: 24709142 PMCID: PMC6499475 DOI: 10.1016/j.imlet.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response.
Collapse
Affiliation(s)
- Urszula Krzych
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | - Stasya Zarling
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | - Alexander Pichugin
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| |
Collapse
|
28
|
AAV8-mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites. Mol Ther 2014; 22:2130-2141. [PMID: 25189739 DOI: 10.1038/mt.2014.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/25/2014] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.
Collapse
|
29
|
Thieleke-Matos C, da Silva ML, Cabrita-Santos L, Pires CF, Ramalho JS, Ikonomov O, Seixas E, Shisheva A, Seabra MC, Barral DC. Host PI(3,5)P2 activity is required for Plasmodium berghei growth during liver stage infection. Traffic 2014; 15:1066-82. [PMID: 24992508 DOI: 10.1111/tra.12190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/18/2023]
Abstract
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; IGC, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Claser C, Malleret B, Peng K, Bakocevic N, Gun SY, Russell B, Ng LG, Rénia L. Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitol Int 2014; 63:187-94. [DOI: 10.1016/j.parint.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
31
|
Highly sensitive quantitative real-time PCR for the detection of Plasmodium liver-stage parasite burden following low-dose sporozoite challenge. PLoS One 2013; 8:e77811. [PMID: 24098596 PMCID: PMC3788780 DOI: 10.1371/journal.pone.0077811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
The pre-erythrocytic stages of Plasmodiumspp. are increasingly recognised as ideal targets for prophylactic vaccines and drug treatments. Intense research efforts in the last decade have been focused on in vitro culture and in vivo detection and quantification of liver stage parasites to assess the effects of candidate vaccines or drugs. Typically, the onset of blood stage parasitaemia is used as a surrogate endpoint to estimate the efficacy of vaccines and drugs targeting pre-erythrocytic parasite stages in animal models. However, this provides no information on the parasite burden in the liver after vaccination or treatment and therefore does not detect partial efficacy of any vaccine or drug candidates. Herein, we describe a quantitative RT-PCR method adapted to detect and quantitate Plasmodium yoelii liver stages in mice with increased sensitivity even after challenge with as few as 50 cryopreserved sporozoites (corresponding to approximately 5-10 freshly isolated sporozoites). We have validated our quantitative RT-PCR assay according to the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and established high reproducibility and accuracy. Our assay provides a rapid and reproducible assessment of liver stage parasite burden in rodent malaria models, thereby facilitating the evaluation of the efficacy of anti-malarial drugs or prophylactic vaccines with high precision and efficacy.
Collapse
|
32
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
33
|
Pearce EJ, Lok JB. Imaging trematode and nematode parasites. Parasite Immunol 2013; 35:248-55. [DOI: 10.1111/pim.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/03/2013] [Indexed: 11/27/2022]
Affiliation(s)
- E. J. Pearce
- Division of Immunobiology; Department of Pathology and Immunology; Washington University School of Medicine; St. Louis; MO; USA
| | - J. B. Lok
- Department of Pathobiology; University of Pennsylvania School of Veterinary Medicine; Philadelphia; PA; USA
| |
Collapse
|
34
|
In vivo CD8+ T cell dynamics in the liver of Plasmodium yoelii immunized and infected mice. PLoS One 2013; 8:e70842. [PMID: 23967119 PMCID: PMC3743839 DOI: 10.1371/journal.pone.0070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/21/2013] [Indexed: 12/28/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.
Collapse
|
35
|
Kaushansky A, Ye AS, Austin LS, Mikolajczak SA, Vaughan AM, Camargo N, Metzger PG, Douglass AN, MacBeath G, Kappe SHI. Suppression of host p53 is critical for Plasmodium liver-stage infection. Cell Rep 2013; 3:630-7. [PMID: 23478020 DOI: 10.1016/j.celrep.2013.02.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/14/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022] Open
Abstract
Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver-stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays, we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation, and autophagy. Notably, the prodeath protein p53 was substantially decreased in infected hepatocytes, suggesting that it could be targeted by the parasite to foster survival. Indeed, mice that express increased levels of p53 showed reduced liver-stage parasite burden, whereas p53 knockout mice suffered increased liver-stage burden. Furthermore, boosting p53 levels with the use of the small molecule Nutlin-3 dramatically reduced liver-stage burden in vitro and in vivo. We conclude that perturbation of the hepatocyte p53 pathway critically impacts parasite survival. Thus, host pathways might constitute potential targets for host-based antimalarial prophylaxis.
Collapse
Affiliation(s)
- Alexis Kaushansky
- Malaria Program, Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of Malaria hypnozoite-forms. PLoS One 2013; 8:e54888. [PMID: 23359816 PMCID: PMC3554669 DOI: 10.1371/journal.pone.0054888] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/17/2012] [Indexed: 01/29/2023] Open
Abstract
A major challenge for strategies to combat the human malaria parasite Plasmodium vivax is the presence of hypnozoites in the liver. These dormant forms can cause renewed clinical disease after reactivation through unknown mechanisms. The closely related non-human primate malaria P. cynomolgi is a frequently used model for studying hypnozoite-induced relapses. Here we report the generation of the first transgenic P. cynomolgi parasites that stably express fluorescent markers in liver stages by transfection with novel DNA-constructs containing a P. cynomolgi centromere. Analysis of fluorescent liver stages in culture identified, in addition to developing liver-schizonts, uninucleate persisting parasites that were atovaquone resistant but primaquine sensitive, features associated with hypnozoites. We demonstrate that these hypnozoite-forms could be isolated by fluorescence-activated cell sorting. The fluorescently-tagged parasites in combination with FACS-purification open new avenues for a wide range of studies for analysing hypnozoite biology and reactivation.
Collapse
|
37
|
LaCrue AN, Sáenz FE, Cross RM, Udenze KO, Monastyrskyi A, Stein S, Mutka TS, Manetsch R, Kyle DE. 4(1H)-Quinolones with liver stage activity against Plasmodium berghei. Antimicrob Agents Chemother 2013; 57:417-24. [PMID: 23129047 PMCID: PMC3535941 DOI: 10.1128/aac.00793-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/27/2012] [Indexed: 11/20/2022] Open
Abstract
With the exception of primaquine, tafenoquine, and atovaquone, there are very few antimalarials that target liver stage parasites. In this study, a transgenic Plasmodium berghei parasite (1052Cl1; PbGFP-Luc(con)) that expresses luciferase was used to assess the anti-liver stage parasite activity of ICI 56,780, a 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), as well as two 3-phenyl-4(1H)-quinolones (P4Q), P4Q-146 and P4Q-158, by using bioluminescent imaging (BLI). Results showed that all of the compounds were active against liver stage parasites; however, ICI 56,780 and P4Q-158 were the most active, with low nanomolar activity in vitro and causal prophylactic activity in vivo. This potent activity makes these compounds ideal candidates for advancement as novel antimalarials.
Collapse
Affiliation(s)
- Alexis N. LaCrue
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Fabián E. Sáenz
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - R. Matthew Cross
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Kenneth O. Udenze
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | | | - Steven Stein
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Tina S. Mutka
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Dennis E. Kyle
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
38
|
A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle. Mol Biochem Parasitol 2012; 186:143-7. [PMID: 23107927 DOI: 10.1016/j.molbiopara.2012.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 01/06/2023]
Abstract
Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages.
Collapse
|
39
|
Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 2012; 8:e1002982. [PMID: 23133375 PMCID: PMC3486917 DOI: 10.1371/journal.ppat.1002982] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. Plasmodium falciparum, the deadliest of all human malaria parasites, can cause cerebral malaria, a severe and frequently fatal complication of this devastating disease. Young children are predominantly at risk and may progress rapidly from the first signs of neurological involvement to coma and death. Here we used a murine model for high-resolution in vivo imaging to demonstrate that cerebral malaria, but not high parasitemia and severe anemia, is associated with extensive leakage of fluid from cerebral blood vessels into the brain tissue. This vascular leakage occurs downstream from the capillary bed, at the neuroimmunological blood brain barrier, a site recently recognized as the immune cell entry point into the brain during neuroinflammation. Vascular leakage is closely associated with the appearance of neurological signs suggesting that the ultimate cause of brain edema, coma and death in cerebral malaria is a widespread opening of the neuroimmunological blood brain barrier. Indeed, vascular leakage, neurological signs, and death from ECM can be prevented with endothelial barrier-stabilizing drugs. Based on the unique role of this anatomical feature in neuroinflammation, our findings are expected to have implications for other infectious diseases and autoimmune disorders of the central nervous system.
Collapse
Affiliation(s)
- Adela Nacer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Baer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Malaria chemotherapy is under constant threat from the emergence and spread of multidrug resistance of Plasmodium falciparum. Resistance has been observed to almost all currently used antimalarials. Some drugs are also limited by toxicity. A fundamental component of the strategy for malaria chemotherapy is based on prompt, effective and safe antimalarial drugs. To counter the threat of resistance of P. falciparum to existing monotherapeutic regimens, current malaria treatment is based principally on the artemisinin group of compounds, either as monotherapy or artemisinin-based combination therapies for treatment of both uncomplicated and severe falciparum malaria. Key advantages of artemisinins over the conventional antimalarials include their rapid and potent action, with good tolerability profiles. Their action also covers transmissible gametocytes, resulting in decreased disease transmission. Up to now there has been no prominent report of drug resistance to this group of compounds. Treatment of malaria in pregnant women requires special attention in light of limited treatment options caused by potential teratogenicity coupled with a paucity of safety data for the mother and fetus. Treatment of other malaria species is less problematic and chloroquine is still the drug of choice, although resistance of P. vivax to chloroquine has been reported. Multiple approaches to the identification of new antimalarial targets and promising antimalarial drugs are being pursued in order to cope with drug resistance.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee 12121, Thailand.
| |
Collapse
|
41
|
Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, Bial J, Ploss A, Kappe SHI. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest 2012; 122:3618-28. [PMID: 22996664 DOI: 10.1172/jci62684] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase-deficient mouse (Fah-/-, Rag2-/-, Il2rg-/-, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS-to-blood-stage transition of a human malaria parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Voza T, Miller JL, Kappe SHI, Sinnis P. Extrahepatic exoerythrocytic forms of rodent malaria parasites at the site of inoculation: clearance after immunization, susceptibility to primaquine, and contribution to blood-stage infection. Infect Immun 2012; 80:2158-64. [PMID: 22431651 PMCID: PMC3370592 DOI: 10.1128/iai.00246-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 02/04/2023] Open
Abstract
Plasmodium sporozoites are inoculated into the skin of the mammalian host as infected mosquitoes probe for blood. A proportion of the inoculum enters the bloodstream and goes to the liver, where the sporozoites invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic, or liver, stage. Here, we show that a small fraction of the inoculum remains in the skin and begins to develop into exoerythrocytic forms that can persist for days. Skin exoerythrocytic forms were observed for both Plasmodium berghei and Plasmodium yoelii, two different rodent malaria parasites, suggesting that development in the skin of the mammalian host may be a common property of plasmodia. Our studies demonstrate that skin exoerythrocytic stages are susceptible to destruction in immunized mice, suggesting that their aberrant location does not protect them from the host's adaptive immune response. However, in contrast to their hepatic counterparts, they are not susceptible to primaquine. We took advantage of their resistance to primaquine to test whether they could initiate a blood-stage infection directly from the inoculation site, and our data indicate that these stages are not able to initiate malaria infection.
Collapse
Affiliation(s)
- Tatiana Voza
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | | | | | - Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
43
|
Nsango SE, Abate L, Thoma M, Pompon J, Fraiture M, Rademacher A, Berry A, Awono-Ambene PH, Levashina EA, Morlais I. Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae. Int J Parasitol 2012; 42:589-95. [PMID: 22554991 DOI: 10.1016/j.ijpara.2012.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 01/13/2023]
Abstract
Mosquito infections with natural isolates of Plasmodium falciparum are notoriously variable and pose a problem for reliable evaluation of efficiency of transmission-blocking agents for malaria control interventions. Here, we show that monoclonal P. falciparum isolates produce higher parasite loads than mixed ones. Induction of the mosquito immune responses by wounding efficiently decreases Plasmodium numbers in monoclonal infections but fails to do so in infections with two or more parasite genotypes. Our results point to the parasites genetic complexity as a potentially crucial component of mosquito-parasite interactions.
Collapse
Affiliation(s)
- Sandrine E Nsango
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP 288, Yaoundé, Cameroon
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lindner SE, Miller JL, Kappe SHI. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell Microbiol 2012; 14:316-24. [PMID: 22151703 DOI: 10.1111/j.1462-5822.2011.01734.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For those stricken with malaria, the classic clinical symptoms are caused by the parasite's cyclic infection of red blood cells. However, this erythrocytic phase of the parasite's life cycle initiates from an asymptomatic pre-erythrocytic phase: the injection of sporozoites via the bite of a parasite-carrying Anopheline mosquito, and the ensuing infection of the liver. With the increased capabilities of studying liver stages in mice, much progress has been made elucidating the cellular and molecular basis of the parasite's progression through this bottleneck of its life cycle. Here we review relevant findings on how sporozoites prepare for infection of the liver and factors crucial to liver stage development as well as key host/parasite interactions.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | |
Collapse
|
45
|
Quantification of sporozoite invasion, migration, and development by microscopy and flow cytometry. Methods Mol Biol 2012; 923:385-400. [PMID: 22990793 DOI: 10.1007/978-1-62703-026-7_27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is an important role for in vitro assays to better understand the initial steps of malaria infection. In this section, we describe both microscopy-based and flow cytometry-based sporozoite invasion, migration and development assays with the rodent malaria parasites, Plasmodium berghei and Plasmodium yoelii, and the human malaria parasite, Plasmodium falciparum.
Collapse
|
46
|
Prudêncio M, Mota MM, Mendes AM. A toolbox to study liver stage malaria. Trends Parasitol 2011; 27:565-74. [PMID: 22015112 DOI: 10.1016/j.pt.2011.09.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/28/2023]
Abstract
The first obligatory phase of mammalian infection by Plasmodium parasites, the causative agents of malaria, occurs in the liver of the host. This stage of Plasmodium infection bears enormous potential for anti-malarial intervention. Recent technological progress has strongly contributed to overcoming some of the long-standing difficulties in experimentally assessing hepatic infection by Plasmodium. Here, we review appropriate infection models and infection assessment tools, and provide a comprehensive description of recent advances in experimental strategies to investigate the liver stage of malaria. These issues are discussed in the context of current challenges in the field to provide researchers with the technical tools that enable effective experimental approaches to study liver stage malaria.
Collapse
Affiliation(s)
- Miguel Prudêncio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Emily R. Derbyshire
- Deparment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Jon Clardy
- Deparment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Vera IM, Beatty WL, Sinnis P, Kim K. Plasmodium protease ROM1 is important for proper formation of the parasitophorous vacuole. PLoS Pathog 2011; 7:e1002197. [PMID: 21909259 PMCID: PMC3164628 DOI: 10.1371/journal.ppat.1002197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/22/2011] [Indexed: 11/18/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host. Plasmodium parasites are obligate intracellular organisms that invade cells by an active mechanism mediated by the secretion of contents from specialized secretory organelles, the micronemes and rhoptries. Invaded parasites reside and replicate within a membrane-bound compartment called the parasitophorous vacuole (PV). PV formation is exclusive to development within mammalian specific host cells, the erythrocytes and hepatocytes. Proper modification of the PV is important to protect the parasite from host defenses and to serve as a gateway for nutrient acquisition and communication with the environment. The rhomboid proteins, a class of intramembrane serine proteases, are implicated in the invasion process. We studied the microneme rhomboid protease, ROM1 in the rodent malaria parasite, Plasmodium yoelii. We find that pyROM1 is not important for efficient invasion into host cells and instead is important for survival within the host cells. Analysis of parasites developing within hepatocytes reveals a defect in PV development. We propose that pyROM1 provides a fitness advantage to parasites developing within host cells by promoting the proper modification of the PV.
Collapse
Affiliation(s)
- Iset Medina Vera
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Photini Sinnis
- Department of Microbiology, New York University Langone School of Medicine, New York, New York, United States of America
| | - Kami Kim
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
MacKellar DC, Vaughan AM, Aly ASI, DeLeon S, Kappe SHI. A systematic analysis of the early transcribed membrane protein family throughout the life cycle of Plasmodium yoelii. Cell Microbiol 2011; 13:1755-67. [PMID: 21819513 DOI: 10.1111/j.1462-5822.2011.01656.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The early transcribed membrane proteins (ETRAMPs) are a family of small, highly charged transmembrane proteins unique to malaria parasites. Some members of the ETRAMP family have been localized to the parasitophorous vacuole membrane that separates the intracellular parasite from the host cell and thus presumably have a role in host-parasite interactions. Although it was previously shown that two ETRAMPs are critical for rodent malaria parasite liver-stage development, the importance of most ETRAMPs during the parasite life cycle remains unknown. Here, we comprehensively identify nine new etramps in the genome of the rodent malaria parasite Plasmodium yoelii, and elucidate their conservation in other malaria parasites. etramp expression profiles are diverse throughout the parasite life cycle as measured by RT-PCR. Epitope tagging of two ETRAMPs demonstrates protein expression in blood and liver stages, and reveals differences in both their timing of expression and their subcellular localization. Gene targeting studies of each of the nine uncharacterized etramps show that two are refractory to deletion and thus likely essential for blood-stage replication. Seven etramps are not essential for any life cycle stage. Systematic characterization of the members of the ETRAMP family reveals the diversity in importance of each family member at the interface between host and parasite throughout the developmental cycle of the malaria parasite.
Collapse
Affiliation(s)
- Drew C MacKellar
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Malaria is a vector-borne infectious disease caused by unicellular parasites of the genus Plasmodium. These obligate intracellular parasites have the unique capacity to infect and replicate within erythrocytes, which are terminally differentiated host cells that lack antigen presentation pathways. Prior to the cyclic erythrocytic infections that cause the characteristic clinical symptoms of malaria, the parasite undergoes an essential and clinically silent expansion phase in the liver. By infecting privileged host cells, employing programs of complex life stage conversions and expressing varying immunodominant antigens, Plasmodium parasites have evolved mechanisms to downmodulate protective immune responses against ongoing and even future infections. Consequently, anti-malaria immunity develops only gradually over many years of repeated and multiple infections in endemic areas. The identification of immune correlates of protection among the abundant non-protective host responses remains a research priority. Understanding the molecular and immunological mechanisms of the crosstalk between the parasite and the host is a prerequisite for the rational discovery and development of a safe, affordable, and protective anti-malaria vaccine.
Collapse
Affiliation(s)
- Julius Clemence Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | |
Collapse
|