1
|
Das S, Unhale T, Marinach C, Valeriano Alegria BDC, Roux C, Madry H, Mohand Oumoussa B, Amino R, Iwanaga S, Briquet S, Silvie O. Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei. Sci Rep 2025; 15:2949. [PMID: 39849074 PMCID: PMC11758014 DOI: 10.1038/s41598-025-87114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes. Conventional reverse genetic tools cannot be used to study essential genes of the asexual blood stages, thereby necessitating the development of conditional strategies. Among various such strategies, the rapamycin-inducible dimerisable Cre (DiCre) recombinase system emerged as a powerful approach for conditional editing of essential genes in human-infecting P. falciparum and in the rodent malaria model parasite P. berghei. We previously generated a DiCre-expressing P. berghei line and validated it by conditionally deleting several essential asexual stage genes, revealing their important role also in sporozoites. Another potent tool is the CRISPR/Cas9 technology, which has enabled targeted genome editing with higher accuracy and specificity and greatly advanced genome engineering in Plasmodium spp. Here, we developed new P. berghei parasite lines by integrating the DiCre cassette and a fluorescent marker in parasites constitutively expressing Cas9. Owing to the dual integration of CRISPR/Cas9 and DiCre, these new lines allow unparalleled levels of gene modification and conditional regulation simultaneously. To illustrate the versatility of this new tool, we conditionally knocked out the essential gene encoding the claudin-like apicomplexan micronemal protein (CLAMP) in P. berghei and confirmed the role of CLAMP during invasion of erythrocytes.
Collapse
Affiliation(s)
- Samhita Das
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Tanaya Unhale
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Carine Marinach
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Belsy Del Carmen Valeriano Alegria
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
- Institut Pasteur, Laboratory of Ecology and Emergence of Arthropod-borne Pathogens, Paris, France
| | - Camille Roux
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Hélène Madry
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, F-75015 Paris, France
| | - Shiroh Iwanaga
- Research Center for Infectious Disease Control, Department of Molecular Protozoology, Suita, Osaka 565-0871, Japan
| | - Sylvie Briquet
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| | - Olivier Silvie
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| |
Collapse
|
2
|
Loubens M, Marinach C, Paquereau CE, Hamada S, Hoareau-Coudert B, Akbar D, Franetich JF, Silvie O. The claudin-like apicomplexan microneme protein is required for gliding motility and infectivity of Plasmodium sporozoites. PLoS Pathog 2023; 19:e1011261. [PMID: 36928686 PMCID: PMC10047546 DOI: 10.1371/journal.ppat.1011261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/28/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites.
Collapse
Affiliation(s)
- Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Clara-Eva Paquereau
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Bénédicte Hoareau-Coudert
- Sorbonne Université, INSERM, UMS PASS, Plateforme de cytométrie de la Pitié-Salpêtrière (CyPS), Paris, France
| | - David Akbar
- Sorbonne Université, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris Brain Institute, ICM Quant Cell imaging Core Facility, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
3
|
Fernandes P, Loubens M, Marinach C, Coppée R, Baron L, Grand M, Andre TP, Hamada S, Langlois AC, Briquet S, Bun P, Silvie O. Plasmodium sporozoites require the protein B9 to invade hepatocytes. iScience 2023; 26:106056. [PMID: 36761022 PMCID: PMC9906020 DOI: 10.1016/j.isci.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium sporozoites are transmitted to a mammalian host during blood feeding by an infected mosquito and invade hepatocytes for initial replication of the parasite into thousands of erythrocyte-invasive merozoites. Here we report that the B9 protein, a member of the 6-cysteine domain protein family, is secreted from sporozoite micronemes and is required for productive invasion of hepatocytes. The N-terminus of B9 forms a beta-propeller domain structurally related to CyRPA, a cysteine-rich protein forming an essential invasion complex in Plasmodium falciparum merozoites. The beta-propeller domain of B9 is essential for sporozoite infectivity and interacts with the 6-cysteine proteins P36 and P52 in a heterologous expression system. Our results suggest that, despite using distinct sets of parasite and host entry factors, Plasmodium sporozoites and merozoites may share common structural modules to assemble protein complexes for invasion of host cells.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Romain Coppée
- Université de Paris, UMR 261 MERIT, IRD, 75006 Paris, France
| | - Ludivine Baron
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Morgane Grand
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Thanh-Phuc Andre
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), 75013 Paris, France
| | - Anne-Claire Langlois
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Philippe Bun
- INSERM U1266, NeurImag Facility, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Corresponding author
| |
Collapse
|
4
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
5
|
Fernandes P, Loubens M, Le Borgne R, Marinach C, Ardin B, Briquet S, Vincensini L, Hamada S, Hoareau-Coudert B, Verbavatz JM, Weiner A, Silvie O. The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts. PLoS Pathog 2022; 18:e1010643. [PMID: 35731833 PMCID: PMC9255738 DOI: 10.1371/journal.ppat.1010643] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/05/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies. Malaria is caused by Plasmodium parasites, which are transmitted by mosquitoes. Infectious stages of the parasite known as sporozoites colonize the mosquito salivary glands and are injected into the host when the insect probes the skin for blood feeding. Sporozoites rapidly migrate to the host liver, invade hepatocytes and differentiate into the next invasive forms, the merozoites, which invade and replicate inside red blood cells. Merozoites invade cells through a specialized structure, known as the moving junction, formed by proteins called AMA1 and RONs. The role of these proteins in sporozoites remains unclear. Here we used conditional genome editing in a rodent malaria model to generate AMA1- and RON-deficient sporozoites. Phenotypic analysis of the mutants revealed that sporozoites use the AMA1-RON complex twice, first in the mosquito to safely enter the salivary glands and ensure successful parasite transmission, then in the mammalian host liver to establish a replicative niche. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and might represent potential targets for transmission-blocking antimalarial strategies.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, Université Paris Cité, CNRS, UMR 7592, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Béatrice Ardin
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Laetitia Vincensini
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Bénédicte Hoareau-Coudert
- Sorbonne Université, INSERM, UMS PASS, Plateforme de cytométrie de la Pitié-Salpêtrière (CyPS), Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, Université Paris Cité, CNRS, UMR 7592, Paris, France
| | - Allon Weiner
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Amanzougaghene N, Tajeri S, Yalaoui S, Lorthiois A, Soulard V, Gego A, Rametti A, Risco-Castillo V, Moreno A, Tefit M, van Gemert GJ, Sauerwein RW, Vaillant JC, Ravassard P, Pérignon JL, Froissard P, Mazier D, Franetich JF. The Host Protein Aquaporin-9 is Required for Efficient Plasmodium falciparum Sporozoite Entry into Human Hepatocytes. Front Cell Infect Microbiol 2021; 11:704662. [PMID: 34268141 PMCID: PMC8276244 DOI: 10.3389/fcimb.2021.704662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte invasion by Plasmodium sporozoites represents a promising target for innovative antimalarial therapy, but the molecular events mediating this process are still largely uncharacterized. We previously showed that Plasmodium falciparum sporozoite entry into hepatocytes strictly requires CD81. However, CD81-overexpressing human hepatoma cells remain refractory to P. falciparum infection, suggesting the existence of additional host factors necessary for sporozoite entry. Here, through differential transcriptomic analysis of human hepatocytes and hepatoma HepG2-CD81 cells, the transmembrane protein Aquaporin-9 (AQP9) was found to be among the most downregulated genes in hepatoma cells. RNA silencing showed that sporozoite invasion of hepatocytes requires AQP9 expression. AQP9 overexpression in hepatocytes increased their permissiveness to P. falciparum. Moreover, chemical disruption with the AQP9 inhibitor phloretin markedly inhibited hepatocyte infection. Our findings identify AQP9 as a novel host factor required for P. falciparum sporozoite hepatocyte-entry and indicate that AQP9 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Samir Yalaoui
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Audrey Lorthiois
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Valérie Soulard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Audrey Gego
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Armelle Rametti
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | | | - Alicia Moreno
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Maurel Tefit
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, MMB-NCMLS, Nijmegen, Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, MMB-NCMLS, Nijmegen, Netherlands
| | - Jean-Christophe Vaillant
- AP-HP, Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - Philippe Ravassard
- CR-ICM - LGN CNRS UMR-7991, IFR des Neurosciences, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Pérignon
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Patrick Froissard
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
7
|
Hopp CS, Kanatani S, Archer NK, Miller RJ, Liu H, Chiou KK, Miller LS, Sinnis P. Comparative intravital imaging of human and rodent malaria sporozoites reveals the skin is not a species-specific barrier. EMBO Mol Med 2021; 13:e11796. [PMID: 33750026 PMCID: PMC8033530 DOI: 10.15252/emmm.201911796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
Malaria infection starts with the injection of Plasmodium sporozoites into the host’s skin. Sporozoites are motile and move in the skin to find and enter blood vessels to be carried to the liver. Here, we present the first characterization of P. falciparum sporozoites in vivo, analyzing their motility in mouse skin and human skin xenografts and comparing their motility to two rodent malaria species. These data suggest that in contrast to the liver and blood stages, the skin is not a species‐specific barrier for Plasmodium. Indeed, P. falciparum sporozoites enter blood vessels in mouse skin at similar rates to the rodent malaria parasites. Furthermore, we demonstrate that antibodies targeting sporozoites significantly impact the motility of P. falciparum sporozoites in mouse skin. Though the sporozoite stage is a validated vaccine target, vaccine trials have been hampered by the lack of good animal models for human malaria parasites. Pre‐clinical screening of next‐generation vaccines would be significantly aided by the in vivo platform we describe here, expediting down‐selection of candidates prior to human vaccine trials.
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin K Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Fernandes P, Briquet S, Patarot D, Loubens M, Hoareau-Coudert B, Silvie O. The dimerisable Cre recombinase allows conditional genome editing in the mosquito stages of Plasmodium berghei. PLoS One 2020; 15:e0236616. [PMID: 33044964 PMCID: PMC7549836 DOI: 10.1371/journal.pone.0236616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 01/18/2023] Open
Abstract
Asexual blood stages of the malaria parasite are readily amenable to genetic modification via homologous recombination, allowing functional studies of parasite genes that are not essential in this part of the life cycle. However, conventional reverse genetics cannot be applied for the functional analysis of genes that are essential during asexual blood-stage replication. Various strategies have been developed for conditional mutagenesis of Plasmodium, including recombinase-based gene deletion, regulatable promoters, and mRNA or protein destabilization systems. Among these, the dimerisable Cre (DiCre) recombinase system has emerged as a powerful approach for conditional gene deletion in P. falciparum. In this system, the bacteriophage Cre is expressed in the form of two separate, enzymatically inactive polypeptides, each fused to a different rapamycin-binding protein. Rapamycin-induced heterodimerization of the two components restores recombinase activity. We have implemented the DiCre system in the rodent malaria parasite P. berghei, and show that rapamycin-induced excision of floxed DNA sequences can be achieved with very high efficiency in both mammalian and mosquito parasite stages. This tool can be used to investigate the function of essential genes not only in asexual blood stages, but also in other parts of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Delphine Patarot
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Manon Loubens
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Bénédicte Hoareau-Coudert
- UMS PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière (CyPS), Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes. Sci Rep 2020; 10:13509. [PMID: 32782257 PMCID: PMC7419504 DOI: 10.1038/s41598-020-70468-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023] Open
Abstract
Sporozoite forms of the Plasmodium parasite, the causative agent of malaria, are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. Two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the scavenger receptor class B type 1 (SR-B1), play an important role during the entry of Plasmodium sporozoites into hepatocytes. In contrast to HCV entry, which requires both CD81 and SR-B1 together with additional host factors, CD81 and SR-B1 operate independently during malaria liver infection. Sporozoites from human-infecting P. falciparum and P. vivax rely respectively on CD81 or SR-B1. Rodent-infecting P. berghei can use SR-B1 to infect host cells as an alternative pathway to CD81, providing a tractable model to investigate the role of SR-B1 during Plasmodium liver infection. Here we show that mouse SR-B1 is less functional as compared to human SR-B1 during P. berghei infection. We took advantage of this functional difference to investigate the structural determinants of SR-B1 required for infection. Using a structure-guided strategy and chimeric mouse/human SR-B1 constructs, we could map the functional region of human SR-B1 within apical loops, suggesting that this region of the protein may play a crucial role for interaction of sporozoite ligands with host cells and thus the very first step of Plasmodium infection.
Collapse
|
11
|
Pre-clinical evaluation of a P. berghei-based whole-sporozoite malaria vaccine candidate. NPJ Vaccines 2018; 3:54. [PMID: 30510775 PMCID: PMC6258718 DOI: 10.1038/s41541-018-0091-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/17/2018] [Indexed: 11/11/2022] Open
Abstract
Whole-sporozoite vaccination/immunization induces high levels of protective immunity in both rodent models of malaria and in humans. Recently, we generated a transgenic line of the rodent malaria parasite P. berghei (Pb) that expresses the P. falciparum (Pf) circumsporozoite protein (PfCS), and showed that this parasite line (PbVac) was capable of (1) infecting and developing in human hepatocytes but not in human erythrocytes, and (2) inducing neutralizing antibodies against the human Pf parasite. Here, we analyzed PbVac in detail and developed tools necessary for its use in clinical studies. A microbiological contaminant-free Master Cell Bank of PbVac parasites was generated through a process of cyclic propagation and clonal expansion in mice and mosquitoes and was genetically characterized. A highly sensitive qRT-PCR-based method was established that enables PbVac parasite detection and quantification at low parasite densities in vivo. This method was employed in a biodistribution study in a rabbit model, revealing that the parasite is only present at the site of administration and in the liver up to 48 h post infection and is no longer detectable at any site 10 days after administration. An extensive toxicology investigation carried out in rabbits further showed the absence of PbVac-related toxicity. In vivo drug sensitivity assays employing rodent models of infection showed that both the liver and the blood stage forms of PbVac were completely eliminated by Malarone® treatment. Collectively, our pre-clinical safety assessment demonstrates that PbVac possesses all characteristics necessary to advance into clinical evaluation. PbVac is a transgenic malaria parasite expressing circumsporozoite antigen from the human parasite Plasmodium falciparum. PbVac elicits neutralizing P. falciparum antibodies and can infect human hepatocytes but not erythrocytes, suggesting that humans would be non-permissive. Miguel Prudêncio and colleagues at the Institute of Molecular Medicine in Lisbon perform a detailed in vivo analysis and toxicology of PbVac. Extensive biodistribution analysis using a highly sensitive qPCR in non-permissive rabbit hosts shows PbVac are present at the initial bite site early on with later appearance in the liver, but by day 10 is undetectable. Importantly no PbVac could be detected in the blood at any time-point. PbVac was well tolerated with no apparent pathological signatures. In permissive mouse hosts PbVac could be effectively eliminated from both the blood and liver and could thereby act as a potential clinical ‘safety net’ in the event of an erythrocytic stage or persistence in the liver.
Collapse
|
12
|
Langlois AC, Marinach C, Manzoni G, Silvie O. Plasmodium sporozoites can invade hepatocytic cells independently of the Ephrin receptor A2. PLoS One 2018; 13:e0200032. [PMID: 29975762 PMCID: PMC6033427 DOI: 10.1371/journal.pone.0200032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Sporozoite forms of the malaria parasite Plasmodium are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. In previous studies, two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the Scavenger Receptor BI (SR-BI), were shown to play an important role during entry of Plasmodium sporozoites into hepatocytic cells. In contrast to HCV entry, which requires both CD81 and SR-BI together with additional host factors, CD81 and SR-BI operate independently during malaria liver infection, as sporozoites can use CD81 and/or SR-BI, depending on the Plasmodium species, to invade hepatocytes. However, the molecular function of CD81 and SR-BI during parasite entry remains unknown. Another HCV entry factor, the Ephrin receptor A2 (EphA2), was recently reported to play a key role as a host cell entry factor during malaria liver infection. Here, we investigated the contribution of EphA2 during CD81-dependent and SR-BI-dependent sporozoite infection. Using small interfering RNA (siRNA) and antibodies against EphA2, combined with direct detection of parasites by flow cytometry or microscopy, we show that blocking EphA2 has no significant impact on P. yoelii or P. berghei host cell infection, irrespective of the entry route. Thus, our findings argue against an important role of EphA2 during malaria liver infection.
Collapse
Affiliation(s)
- Anne-Claire Langlois
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Giulia Manzoni
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
13
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Yang ASP, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, Boddey JA. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol 2017; 19. [PMID: 28371168 DOI: 10.1111/cmi.12745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Collapse
Affiliation(s)
- Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
Affiliation(s)
- Giulia Manzoni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Carine Marinach
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Selma Topçu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Sylvie Briquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Morgane Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Matthieu Tolle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Marion Gransagne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Julien Lescar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Huby
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition, UMR_S 1166, Paris, France
| | - Eric Rubinstein
- INSERM, U935, Villejuif, France
- Université Paris Sud, Institut André Lwoff, Villejuif, France
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
- Assistance Publique Hôpitaux de Paris, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| |
Collapse
|
16
|
Risco-Castillo V, Topçu S, Marinach C, Manzoni G, Bigorgne A, Briquet S, Baudin X, Lebrun M, Dubremetz JF, Silvie O. Malaria Sporozoites Traverse Host Cells within Transient Vacuoles. Cell Host Microbe 2015; 18:593-603. [DOI: 10.1016/j.chom.2015.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 12/28/2022]
|
17
|
Longley RJ, Bauza K, Ewer KJ, Hill AVS, Spencer AJ. Development of an in vitro assay and demonstration of Plasmodium berghei liver-stage inhibition by TRAP-specific CD8+ T cells. PLoS One 2015; 10:e0119880. [PMID: 25822951 PMCID: PMC4379172 DOI: 10.1371/journal.pone.0119880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 01/20/2023] Open
Abstract
The development of an efficacious vaccine against the Plasmodium parasite remains a top priority. Previous research has demonstrated the ability of a prime-boost virally vectored sub-unit vaccination regimen, delivering the liver-stage expressed malaria antigen TRAP, to produce high levels of antigen-specific T cells. The liver-stage of malaria is the main target of T cell-mediated immunity, yet a major challenge in assessing new T cell inducing vaccines has been the lack of a suitable pre-clinical assay. We have developed a flow-cytometry based in vitro T cell killing assay using a mouse hepatoma cell line, Hepa1-6, and Plasmodium berghei GFP expressing sporozoites. Using this assay, P. berghei TRAP-specific CD8+ T cell enriched splenocytes were shown to inhibit liver-stage parasites in an effector-to-target ratio dependent manner. Further development of this assay using human hepatocytes and P. falciparum would provide a new method to pre-clinically screen vaccine candidates and to elucidate mechanisms of protection in vitro.
Collapse
Affiliation(s)
- Rhea J Longley
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Karolis Bauza
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Risco-Castillo V, Topçu S, Son O, Briquet S, Manzoni G, Silvie O. CD81 is required for rhoptry discharge during host cell invasion by Plasmodium yoelii sporozoites. Cell Microbiol 2014; 16:1533-48. [PMID: 24798694 DOI: 10.1111/cmi.12309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022]
Abstract
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and first infect the liver of their mammalian host, where they develop as liver stages before the onset of erythrocytic infection and malaria symptoms. Sporozoite entry into hepatocytes is an attractive target for anti-malarial prophylactic strategies but remains poorly understood at the molecular level. Apicomplexan parasites invade host cells by forming a parasitophorous vacuole that is essential for parasite development, a process that involves secretion of apical organelles called rhoptries. We previously reported that the host membrane protein CD81 is required for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 acts at an early stage of infection, possibly at the entry step, but the mechanisms involved are still unknown. To investigate the role of CD81 during sporozoite entry, we generated transgenic P. yoelii parasites expressing fluorescent versions of three known rhoptry proteins, RON2, RON4 and RAP2/3. We observed that RON2 and RON4 are lost following rhoptry discharge during merozoite and sporozoite entry. In contrast, our data indicate that RAP2/3 is secreted into the parasitophorous vacuole during infection. We further show that sporozoite rhoptry discharge occurs only in the presence of CD81, providing the first direct evidence for a role of CD81 during sporozoite productive invasion.
Collapse
Affiliation(s)
- Veronica Risco-Castillo
- Sorbonne Universités, UPMC Univ Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013, Paris, France; INSERM, U1135, CIMI-Paris, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, F-75013, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Manzoni G, Briquet S, Risco-Castillo V, Gaultier C, Topçu S, Ivănescu ML, Franetich JF, Hoareau-Coudert B, Mazier D, Silvie O. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites. Sci Rep 2014; 4:4760. [PMID: 24755823 PMCID: PMC3996467 DOI: 10.1038/srep04760] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development.
Collapse
Affiliation(s)
- Giulia Manzoni
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Sylvie Briquet
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Veronica Risco-Castillo
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Charlotte Gaultier
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Selma Topçu
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Maria Larisa Ivănescu
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Jean-François Franetich
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Bénédicte Hoareau-Coudert
- Sorbonne Universités, UPMC Univ Paris 06, Plateforme de Cytométrie en Flux CyPS, site Pitié-Salpêtrière, Paris, France
| | - Dominique Mazier
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4] Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Parasitologie-Mycologie, Paris, France
| | - Olivier Silvie
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| |
Collapse
|
20
|
Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis 2014; 5:343-8. [DOI: 10.1016/j.ttbdis.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 11/26/2022]
|
21
|
Silvie O, Briquet S, Müller K, Manzoni G, Matuschewski K. Post-transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is important for host switch. Mol Microbiol 2014; 91:1200-13. [PMID: 24446886 DOI: 10.1111/mmi.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 01/15/2023]
Abstract
Plasmodium sporozoites are transmitted by mosquitoes and first infect hepatocytes of their mammalian host, wherein they develop as liver stages, surrounded by the parasitophorous vacuole membrane (PVM). The parasite must rapidly adapt to its changing environment after switching host. Shortly after invasion, the PVM is remodelled by insertion of essential parasite proteins of the early transcribed membrane protein family such as UIS4. Here, using the rodent malaria model Plasmodium berghei, we show that transcripts encoding UIS4 are stored in a translationally repressed state in sporozoites, allowing UIS4 protein synthesis only after host cell invasion. Using a series of reporter transgenic parasite lines we could demonstrate that the open reading frame of UIS4 mRNA is critical for gene silencing, whereas the 5' and 3' untranslated regions are dispensable. Our data further indicate that the UIS4 translational repression machinery is present only in mature sporozoites in the mosquito salivary glands, and that premature expression of UIS4 protein results in a loss of parasite infectivity. Our findings reveal the importance of specific post-transcriptional control in sporozoites, and establish that host switch requires high levels of translationally silent UIS4 RNA, which permits stage conversion, yet avoids premature expression of this liver stage-specific protein.
Collapse
Affiliation(s)
- Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, CR7, 75013, Paris, France; INSERM, U1135, 75013, Paris, France; CNRS, ERL 8255, 75013, Paris, France
| | | | | | | | | |
Collapse
|
22
|
March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan D, Carpenter A, Thomas D, Lee Sim BK, Mota MM, Hoffman SL, Bhatia SN. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 2013; 14:104-15. [PMID: 23870318 PMCID: PMC3780791 DOI: 10.1016/j.chom.2013.06.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 01/15/2013] [Accepted: 06/05/2013] [Indexed: 01/21/2023]
Abstract
The Plasmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult. Undoubtedly, a major barrier has been the lack of robust, reliable, and reproducible in vitro liver-stage cultures. Here, we establish the liver stages for both Plasmodium falciparum and Plasmodium vivax in a microscale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells. Using this system, we have successfully recapitulated the full liver stage of P. falciparum, including the release of infected merozoites and infection of overlaid erythrocytes, as well as the establishment of small forms in late liver stages of P. vivax. Finally, we validate the potential of this platform as a tool for medium-throughput antimalarial drug screening and vaccine development.
Collapse
Affiliation(s)
- Sandra March
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
- Broad Institute, Cambridge, MA, 02142, United States of America
| | - Shengyong Ng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
| | | | - Ani Galstian
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
- Broad Institute, Cambridge, MA, 02142, United States of America
| | - Jing Shan
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
| | - David Logan
- Broad Institute, Cambridge, MA, 02142, United States of America
| | - Anne Carpenter
- Broad Institute, Cambridge, MA, 02142, United States of America
| | - David Thomas
- Broad Institute, Cambridge, MA, 02142, United States of America
| | - B. Kim Lee Sim
- Sanaria Inc., Rockville, MD, 20850, United States of America
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Sangeeta N. Bhatia
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
- Howard Hughes Medical Institute, Koch Institute, and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA; Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States of America
- Broad Institute, Cambridge, MA, 02142, United States of America
| |
Collapse
|
23
|
Nganou-Makamdop K, Ploemen I, Behet M, Van Gemert GJ, Hermsen C, Roestenberg M, Sauerwein RW. Reduced Plasmodium berghei sporozoite liver load associates with low protective efficacy after intradermal immunization. Parasite Immunol 2013; 34:562-9. [PMID: 23171040 DOI: 10.1111/pim.12000.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies in animal models suggest that protection against malaria induced by intradermal (ID) administration of sporozoites is less effective compared to intravenous injection (IV). We investigated in a murine model the protective efficacy and immune responses after ID or IV immunization of sporozoites. Mice were immunized via either IV or ID route with Plasmodium berghei sporozoites in combination with chloroquine treatment (CPS) (allowing full liver stage development) or by γ-radiation-attenuated sporozoites (RAS) (early liver stage arrest). While IV immunization with both RAS and CPS generated 90-100% protection, ID immunization resulted in reduced levels of protection with either immunization strategy in both Balb/cByJ (50%) and C57BL/6j mice (7-13%). Lower protection by ID routing associated with a 30-fold lower parasite liver load [P < 0.001 (χ(2) = 49.08, d.f. = 1)] assessed by real-time in vivo imaging of bioluminescent P. berghei parasites. Unlike IV, ID immunization did not result in expansion of CD8+ T cells with effector memory phenotype and showed lower IFNγ responses irrespective of the immunization regime. In conclusion, protection against sporozoite infection is likely dependent on parasite liver infection and subsequently generated cellular immune responses.
Collapse
Affiliation(s)
- K Nganou-Makamdop
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Comparative proteomic analysis of HIV-1 particles reveals a role for Ezrin and EHD4 in the Nef-dependent increase of virus infectivity. J Virol 2013; 87:3729-40. [PMID: 23325686 DOI: 10.1128/jvi.02477-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.
Collapse
|
25
|
Risco-Castillo V, Son O, Franetich JF, Rubinstein E, Mazier D, Silvie O. [Plasmodium sporozoite entry pathways during malaria liver infection]. Biol Aujourdhui 2013; 207:219-29. [PMID: 24594570 DOI: 10.1051/jbio/2013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Indexed: 11/14/2022]
Abstract
Plasmodium parasites, the causative agents of malaria, are transmitted by female Anopheles mosquitoes, which inject sporozoites into the skin of the host. The motile sporozoites enter the blood stream and, upon reaching the liver, transform into liver stages inside hepatocytes. The parasites enter host cells actively, using their actomyosin motor machinery to propel themselves through a specialized structure called junction. Penetration inside an invagination of the host cell plasma membrane results in the formation of the parasitophorous vacuole, which is essential for parasite further development. The mechanisms of sporozoite entry into host cells remain poorly understood at the molecular level. We reported for the first time a host factor required for infection of hepatocytes by Plasmodium sporozoites, the tetraspanin CD81, which also serves as a receptor for the hepatitis C virus. CD81 is involved at an early step of the infection, however no evidence for a direct interaction between CD81 and the parasite could be found. Although sporozoites can use several independent pathways to enter hepatocytes, depending on the parasite species and the host cell type, we showed that P. falciparum, the deadliest human malaria parasite, depends on CD81 to infect hepatocytes. We identified structural determinants in the CD81 large extracellular domain, and demonstrated that CD81 function is regulated by its molecular environment in specialized tetraspanin-enriched membrane microdomains. Based on these data we propose that CD81 acts indirectly during malaria infection, by interacting with other essential but still unidentified factor(s), possibly a receptor for the sporozoites, within specific microdomains of the hepatocyte plasma membrane.
Collapse
Affiliation(s)
- Veronica Risco-Castillo
- Inserm, UMR S 945, 91 boulevard de l'Hôpital, 75013 Paris, France - Université Pierre et Marie Curie-Paris VI, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Olivia Son
- Inserm, UMR S 945, 91 boulevard de l'Hôpital, 75013 Paris, France - Université Pierre et Marie Curie-Paris VI, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Jean-François Franetich
- Inserm, UMR S 945, 91 boulevard de l'Hôpital, 75013 Paris, France - Université Pierre et Marie Curie-Paris VI, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Eric Rubinstein
- Inserm, U1004, Hôpital Paul Brousse, 14 avenue Paul Vaillant Couturier, 94807 Villejuif, France - Université Paris-Sud, Institut André Lwoff, 14 avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | - Dominique Mazier
- Inserm, UMR S 945, 91 boulevard de l'Hôpital, 75013 Paris, France - Université Pierre et Marie Curie-Paris VI, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France - Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Service Parasitologie-Mycologie, 75013 Paris, France
| | - Olivier Silvie
- Inserm, UMR S 945, 91 boulevard de l'Hôpital, 75013 Paris, France - Université Pierre et Marie Curie-Paris VI, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
26
|
Lindner SE, Miller JL, Kappe SHI. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell Microbiol 2012; 14:316-24. [PMID: 22151703 DOI: 10.1111/j.1462-5822.2011.01734.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For those stricken with malaria, the classic clinical symptoms are caused by the parasite's cyclic infection of red blood cells. However, this erythrocytic phase of the parasite's life cycle initiates from an asymptomatic pre-erythrocytic phase: the injection of sporozoites via the bite of a parasite-carrying Anopheline mosquito, and the ensuing infection of the liver. With the increased capabilities of studying liver stages in mice, much progress has been made elucidating the cellular and molecular basis of the parasite's progression through this bottleneck of its life cycle. Here we review relevant findings on how sporozoites prepare for infection of the liver and factors crucial to liver stage development as well as key host/parasite interactions.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | |
Collapse
|
27
|
Abstract
Unicellular parasites are of high medical relevance as they cause such devastating diseases as malaria or sleeping sickness. Besides the search for improved treatments, research on these parasites is valuable as they constitute interesting model cells to study basic processes of life. They can also serve as valuable reality checks for our presumed understanding of biological processes that emerge from the study of human or yeast cells, as our common ancestor with many parasites is much older than the one with yeast. But working with parasites can be tricky and time-consuming, if not outright impossible. Here, we focus on examples from imaging studies investigating the transmission of the malaria parasite. Achieving an understanding of the processes important for malaria transmission necessitates different imaging approaches and new molecular and material technologies. The discussed techniques will include in vivo imaging of pathogens in living animals, screening methodologies, and new materials as surrogate 3D environments.
Collapse
Affiliation(s)
- Mirko Singer
- Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | | |
Collapse
|
28
|
Graewe S, Stanway RR, Rennenberg A, Heussler VT. Chronicle of a death foretold:Plasmodiumliver stage parasites decide on the fate of the host cell. FEMS Microbiol Rev 2012; 36:111-30. [DOI: 10.1111/j.1574-6976.2011.00297.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022] Open
|
29
|
Rodriguez A, Mota MM. The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species. Nat Med 2011. [DOI: 10.1038/nm.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Abstract
Malaria is a vector-borne infectious disease caused by unicellular parasites of the genus Plasmodium. These obligate intracellular parasites have the unique capacity to infect and replicate within erythrocytes, which are terminally differentiated host cells that lack antigen presentation pathways. Prior to the cyclic erythrocytic infections that cause the characteristic clinical symptoms of malaria, the parasite undergoes an essential and clinically silent expansion phase in the liver. By infecting privileged host cells, employing programs of complex life stage conversions and expressing varying immunodominant antigens, Plasmodium parasites have evolved mechanisms to downmodulate protective immune responses against ongoing and even future infections. Consequently, anti-malaria immunity develops only gradually over many years of repeated and multiple infections in endemic areas. The identification of immune correlates of protection among the abundant non-protective host responses remains a research priority. Understanding the molecular and immunological mechanisms of the crosstalk between the parasite and the host is a prerequisite for the rational discovery and development of a safe, affordable, and protective anti-malaria vaccine.
Collapse
Affiliation(s)
- Julius Clemence Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | |
Collapse
|
31
|
Müller K, Matuschewski K, Silvie O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS One 2011; 6:e19860. [PMID: 21673790 PMCID: PMC3097211 DOI: 10.1371/journal.pone.0019860] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/06/2011] [Indexed: 12/11/2022] Open
Abstract
Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.
Collapse
Affiliation(s)
- Katja Müller
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
| | - Kai Matuschewski
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
| | - Olivier Silvie
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
| |
Collapse
|
32
|
Aly ASI, Lindner SE, MacKellar DC, Peng X, Kappe SHI. SAP1 is a critical post-transcriptional regulator of infectivity in malaria parasite sporozoite stages. Mol Microbiol 2010; 79:929-39. [PMID: 21299648 DOI: 10.1111/j.1365-2958.2010.07497.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmodium salivary gland sporozoites upregulate expression of a unique subset of genes, collectively called the UIS (upregulated in infectious sporozoites). Many UIS were shown to be essential for early liver stage development, although little is known about their regulation. We previously identified a conserved sporozoite-specific protein, SAP1, which has an essential role in Plasmodium liver infection. Targeted deletion of SAP1 in Plasmodium yoelii caused the depletion of a number of selectively tested UIS transcripts in sporozoites, resulting in a complete early liver stage arrest. Here, we use a global gene expression survey to more comprehensively identify transcripts that are affected by SAP1 deletion. We find an effect upon both the transcript abundance of UIS genes, as well as of select genes previously not grouped as UIS. Importantly, we show that the lack of SAP1 causes the specific degradation of these transcripts. Collectively, our data suggest that SAP1 is involved in a selective post-transcriptional mechanism to regulate the abundance of transcripts critical to the infectivity of sporozoites. Although Pysap1(-) sporozoites are depleted of many of these important transcripts, they confer long-lasting sterile protection against wild-type sporozoite challenge in mice. SAP1 is therefore an appealing candidate locus for attenuation of Plasmodium falciparum.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Hassuna N, Monk PN, Moseley GW, Partridge LJ. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections. BioDrugs 2010; 23:341-59. [PMID: 19894777 PMCID: PMC7100176 DOI: 10.2165/11315650-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining ‘signature’ motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as ‘molecular organizers’ involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a ‘gateway’ to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting possibilities of targeting tetraspanins for the treatment of infectious disease, using specific antibodies, recombinant EC2 domains, small-molecule mimetics, and small interfering RNA. Such therapies, directed at host-cell molecules, may provide alternative options for combating fast-mutating or newly emerging pathogens, where conventional approaches face difficulties.
Collapse
Affiliation(s)
- Noha Hassuna
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
34
|
Leitao R, Rodriguez A. Inhibition of Plasmodium sporozoites infection by targeting the host cell. Exp Parasitol 2010; 126:273-7. [PMID: 20493847 DOI: 10.1016/j.exppara.2010.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/09/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
There is a great need of new drugs against malaria because of the increasing spread of parasite resistance against the most commonly used drugs in the field. We found that monensin, a common veterinary antibiotic, has a strong inhibitory effect in Plasmodium berghei and Plasmodium yoelii sporozoites hepatocyte infection in vitro. Infection of host cells by another apicomplexan parasite with a similar mechanism of host cell invasion, Toxoplasma tachyzoites, was also inhibited. Treatment of mice with monensin abrogates liver infection with P. berghei sporozoites in vivo. We also found that at low concentrations monensin inhibits the infection of Plasmodium sporozoites by rendering host cells resistant to infection, rather than having a direct effect on sporozoites. Monensin effect is targeted to the initial stages of parasite invasion of the host cell with little or no effect on development, suggesting that this antibiotic affects an essential host cell component that is required for Plasmodium sporozoite invasion.
Collapse
Affiliation(s)
- Ricardo Leitao
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | |
Collapse
|
35
|
Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O. The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection. J Biol Chem 2009; 284:31572-8. [PMID: 19762465 DOI: 10.1074/jbc.m109.057927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria natural infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that CD81 is required on hepatocytes for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 belongs to the tetraspanin superfamily of transmembrane proteins. By interacting with each other and with other transmembrane proteins, tetraspanins may play a role in the lateral organization of membrane proteins. In this study, we investigated the role of the two major molecular partners of CD81 in hepatocytic cells, CD9P-1/EWI-F and EWI-2, two transmembrane proteins belonging to a novel subfamily of immunoglobulin proteins. We show that CD9P-1 silencing increases the host cell susceptibility to P. yoelii sporozoite infection, whereas EWI-2 knock-down has no effect. Conversely, overexpression of CD9P-1 but not EWI-2 partially inhibits infection. Using CD81 and CD9P-1 chimeric molecules, we demonstrate the role of transmembrane regions in CD81-CD9P-1 interactions. Importantly, a CD9P-1 chimera that no longer associates with CD81 does not affect infection. Based on these data, we conclude that CD9P-1 acts as a negative regulator of P. yoelii infection by interacting with CD81 and regulating its function.
Collapse
Affiliation(s)
- Stéphanie Charrin
- INSERM, U602, Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Andrade-Neto V, Brandão M, Nogueira F, Rosário V, Krettli A. Ampelozyziphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria in the Amazon Region, hampers the development of Plasmodium berghei sporozoites. Int J Parasitol 2008; 38:1505-11. [DOI: 10.1016/j.ijpara.2008.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/15/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
37
|
Silvie O, Mota MM, Matuschewski K, Prudêncio M. Interactions of the malaria parasite and its mammalian host. Curr Opin Microbiol 2008; 11:352-9. [PMID: 18644249 DOI: 10.1016/j.mib.2008.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/18/2008] [Indexed: 01/03/2023]
Abstract
A hallmark of Plasmodium development inside its mammalian victim is the remarkable restriction to the host species. Adaptation to an intracellular life style in specific target cells is determined by multiple parasite-host interactions. The first line of crosstalk occurs during intradermal sporozoite injection by an Anopheles mosquito. The following expansion in the liver is highly efficient and leads to successful establishment of the parasite population. During the periodic waves of fevers and chills the parasite destroys and re-infects red blood cells. Recent advances in experimental genetics and imaging techniques begin to expose the complex interactions at the changing parasite-host interfaces. Understanding the cellular and molecular mechanisms of target cell recognition, nutrient acquisition, and hijacking of cellular and immune functions may ultimately explain the elaborate biology of a medically important single cell eukaryote.
Collapse
Affiliation(s)
- Olivier Silvie
- Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany.
| | | | | | | |
Collapse
|
38
|
Vaughan AM, Aly ASI, Kappe SHI. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host Microbe 2008; 4:209-18. [PMID: 18779047 DOI: 10.1016/j.chom.2008.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/20/2008] [Indexed: 12/24/2022]
Abstract
In malaria, the red blood cell-infectious form of the Plasmodium parasite causes illness and the possible death of infected hosts. The initial infection in the liver caused by the mosquito-borne sporozoite parasite stage, however, causes little pathology and no symptoms. Nevertheless, pre-erythrocytic parasite stages are attracting passionate research efforts not least because they are the most promising targets for malaria vaccine development. Here, we review how the infectious sporozoite makes its way to the liver and subsequently develops within hepatocytes. We discuss the factors, both parasite and host, involved in the interactions that occur during this "silent" phase of infection.
Collapse
|
39
|
Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, Epiphanio S, Akinc A, Hadwiger P, Jahn-Hofmann K, Röhl I, van Gemert GJ, Franetich JF, Luty AJF, Sauerwein R, Mazier D, Koteliansky V, Vornlocher HP, Echeverri CJ, Mota MM. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe 2008; 4:271-82. [PMID: 18779053 DOI: 10.1016/j.chom.2008.07.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/27/2008] [Accepted: 07/18/2008] [Indexed: 12/29/2022]
Abstract
An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.
Collapse
Affiliation(s)
- Cristina D Rodrigues
- Unidade de Malária, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yalaoui S, Huby T, Franetich JF, Gego A, Rametti A, Moreau M, Collet X, Siau A, van Gemert GJ, Sauerwein RW, Luty AJ, Vaillant JC, Hannoun L, Chapman J, Mazier D, Froissard P. Scavenger Receptor BI Boosts Hepatocyte Permissiveness to Plasmodium Infection. Cell Host Microbe 2008; 4:283-92. [DOI: 10.1016/j.chom.2008.07.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/18/2008] [Accepted: 07/21/2008] [Indexed: 11/26/2022]
|
41
|
A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development. PLoS Pathog 2008; 4:e1000086. [PMID: 18551171 PMCID: PMC2398788 DOI: 10.1371/journal.ppat.1000086] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/09/2008] [Indexed: 11/19/2022] Open
Abstract
Plasmodium sporozoites invade host hepatocytes and develop as liver stages (LS) before the onset of erythrocytic infection and malaria symptoms. LS are clinically silent, and constitute ideal targets for causal prophylactic drugs and vaccines. The molecular and cellular mechanisms underlying LS development remain poorly characterized. Here we describe a conserved Plasmodium asparagine-rich protein that is specifically expressed in sporozoites and liver stages. Gene disruption in Plasmodium berghei results in complete loss of sporozoite infectivity to rodents, due to early developmental arrest after invasion of hepatocytes. Mutant sporozoites productively invade host cells by forming a parasitophorous vacuole (PV), but subsequent remodelling of the membrane of the PV (PVM) is impaired as a consequence of dramatic down-regulation of genes encoding PVM-resident proteins. These early arrested mutants confer only limited protective immunity in immunized animals. Our results demonstrate the role of an asparagine-rich protein as a key regulator of Plasmodium sporozoite gene expression and LS development, and suggest a requirement of partial LS maturation to induce optimal protective immune responses against malaria pre-erythrocytic stages. These findings have important implications for the development of genetically attenuated parasites as a vaccine approach.
Collapse
|
42
|
Ono T, Cabrita-Santos L, Leitao R, Bettiol E, Purcell LA, Diaz-Pulido O, Andrews LB, Tadakuma T, Bhanot P, Mota MM, Rodriguez A. Adenylyl cyclase alpha and cAMP signaling mediate Plasmodium sporozoite apical regulated exocytosis and hepatocyte infection. PLoS Pathog 2008; 4:e1000008. [PMID: 18389080 PMCID: PMC2279260 DOI: 10.1371/journal.ppat.1000008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022] Open
Abstract
Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase alpha (ACalpha), a gene containing regions with high homology to adenylyl cyclases. PbACalpha-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACalpha, as re-introduction of ACalpha in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACalpha and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes.
Collapse
Affiliation(s)
- Takeshi Ono
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Laura Cabrita-Santos
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Ricardo Leitao
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Esther Bettiol
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Lisa A. Purcell
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Olga Diaz-Pulido
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | | | - Takushi Tadakuma
- Department of Parasitology and Immunology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Purnima Bhanot
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Maria M. Mota
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Ana Rodriguez
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
43
|
Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 2008; 4:e1000010. [PMID: 18389082 PMCID: PMC2279262 DOI: 10.1371/journal.ppat.1000010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 01/18/2008] [Indexed: 01/02/2023] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria infection, and thus represents an attractive target for anti-malarial interventions. Still, the molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that the tetraspanin CD81, a known receptor for the hepatitis C virus (HCV), is required on hepatocytes for infection by sporozoites of several Plasmodium species. Here we have characterized CD81 molecular determinants required for infection of hepatocytic cells by P. yoelii sporozoites. Using CD9/CD81 chimeras, we have identified in CD81 a 21 amino acid stretch located in a domain structurally conserved in the large extracellular loop of tetraspanins, which is sufficient in an otherwise CD9 background to confer susceptibility to P. yoelii infection. By site-directed mutagenesis, we have demonstrated the key role of a solvent-exposed region around residue D137 within this domain. A mAb that requires this region for optimal binding did not block infection, in contrast to other CD81 mAbs. This study has uncovered a new functionally important region of CD81, independent of HCV E2 envelope protein binding domain, and further suggests that CD81 may not interact directly with a parasite ligand during Plasmodium infection, but instead may regulate the function of a yet unknown partner protein. Minutes after the bite of a female mosquito, the malaria parasite Plasmodium enters the liver where it invades liver-specific cells called hepatocytes and undergoes one round of multiplication. This stage is a prerequisite to the blood stages of the life cycle which cause the malaria symptoms. The invasion of hepatocytes probably requires a series of interaction between the host cell and the parasite, but the exact mechanisms are still elusive. CD81, a protein of the tetraspanin superfamily, is the only hepatocyte surface protein that has been shown to be strictly required for the infection by the malaria parasite. We have here studied the regions of CD81 that are important for infection, by exchanging segments with the corresponding parts of a closely related molecule, or by mutating discrete residues. This study has uncovered a new functionally important region of CD81 and, by comparing the ability of several CD81 antibodies to block infection, has strengthened the hypothesis that CD81 might regulate the function of another molecule present at the hepatocyte surface during Plasmodium infection. The region of CD81 identified here is different from the region involved in the binding of the hepatitis C virus.
Collapse
|
44
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Gonçalves LA, Vigário AM, Penha-Gonçalves C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malar J 2007; 6:169. [PMID: 18096071 PMCID: PMC2244635 DOI: 10.1186/1475-2875-6-169] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022] Open
Abstract
Background Primary hepatocyte cultures are a valuable tool for the understanding of cellular and molecular phenomena occurring during malaria liver stage. This paper describes an improved perfusion/dissociation procedure to isolate hepatocytes from mouse liver that is suitable for malaria studies and allows reproducible preparation of primary hepatocytes with consistent cell yields and controlled purity. Results This protocol is a detailed description of a technique to isolate and culture mouse hepatocytes and represents an improvement over previous descriptions of hepatocyte isolation for malaria studies, regarding three technical aspects: (1) dissociation reagents choice; (2) cell separation gradient and (3) cell purity control. Cell dissociation was optimized for a specific collagenase digestion media. The cell dissociation step was improved by using a three-layer discontinuous gradient. A cell purity check was introduced to monitor the expression of CD95 on hepatocytes using flow cytometry methods. Conclusion The procedure described allows reproducible recovery of one to three million hepatocytes per preparation with cell purity of about 90% as determined by FACS analysis. Completion of the protocol is usually achieved in about four hours per preparation and pooling is suggested for multiple preparations of larger number of cells.
Collapse
Affiliation(s)
- Lígia A Gonçalves
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
46
|
Sinnis P, Coppi A. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007; 56:171-8. [PMID: 17513164 PMCID: PMC1995443 DOI: 10.1016/j.parint.2007.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/17/2007] [Indexed: 11/21/2022]
Abstract
The Plasmodium sporozoite, the infectious stage of the malaria parasite, makes a remarkable journey in its mammalian host. Here we review our current knowledge of the molecular and cellular basis of this journey, which begins in the skin and ends in the hepatocyte.
Collapse
Affiliation(s)
- Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, United States.
| | | |
Collapse
|