1
|
Farid A. Preparation of polyclonal anti-Schistosoma mansoni cysteine protease antibodies for early diagnosis. Appl Microbiol Biotechnol 2023; 107:1609-1619. [PMID: 36773062 PMCID: PMC10006032 DOI: 10.1007/s00253-023-12408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/12/2023]
Abstract
In many parts of the tropics, schistosomiasis is a major parasitic disease second only to malaria as a cause of morbidity and mortality. Diagnostic approaches include microscopic sampling of excreta such as the Kato-Katz method, radiography, and serology. Due to their vital role in many stages of the parasitic life cycle, proteases have been under investigation as targets of immunological or chemotherapeutic anti-Schistosoma agents. Five major classes of protease have been identified on the basis of the peptide hydrolysis mechanism: serine, cysteine, aspartic, threonine, and metalloproteases. Proteases of all five catalytic classes have been identified from S. mansoni through proteomic or genetic analysis. The study aimed to produce polyclonal antibodies (pAbs) against schistosomal cysteine proteases (CP) to be used in the diagnosis of schistosomiasis. This study was conducted on S. mansoni-infected patients from highly endemic areas and from outpatients' clinic and hospitals and other patients infected with other parasites (Fasciola, hookworm, hydatid, and trichostrongyloids). In this study, the produced polyclonal antibodies against S. mansoni cysteine protease antigens were labeled with horseradish peroxidase (HRP) conjugate and used to detect CP antigens in stool and serum samples of S. mansoni-infected patients by sandwich ELISA. The study involved 200 S. mansoni-infected patients (diagnosed by finding characteristic eggs in the collected stool samples), 100 patients infected with other parasites (Fasciola, hookworm, hydatid, and trichostrongyloids), and 100 individuals who served as parasite-free healthy negative control. The prepared pAb succeeded in detecting CP antigens in stool and serum samples of S. mansoni-infected patients by sandwich ELISA with a sensitivity of 98.5% and 98.0% respectively. A positive correlation was observed between S. mansoni egg counts and both stool and serum antigen concentrations. Purified 27.5 kDa CP could be introduced as a suitable candidate antigen for early immunodiagnosis using sandwich ELISA for antigen detection. KEY POINTS: • Detection of cysteine protease antigens can replace parasitological examination. • Sandwich ELISA has a higher sensitivity than microscopic examination of eggs. • Identification of antigens is important for the goal of obtaining diagnostic tools.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Li J, Xiang M, Zhang R, Xu B, Hu W. RNA interference in vivo in Schistosoma japonicum: Establishing and optimization of RNAi mediated suppression of gene expression by long dsRNA in the intra-mammalian life stages of worms. Biochem Biophys Res Commun 2018; 503:1004-1010. [PMID: 29935182 DOI: 10.1016/j.bbrc.2018.06.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023]
Abstract
Schistosomes are parasitic platyhelminths that threaten over 600 million people globally. In recent years, RNA interference (RNAi) has been widely used as a molecular tool in research into the genomic function of parasites. We aim to develop effective protocols for application of RNAi technology in the intra-mammalian life stages of Schistosoma japonicum. In this work, the expression of the parasite gene encoding cathepsin B1 (SjCB1) was targeted by exposing the worms to 10 μg of long dsRNA dissolved in 0.1 ml of 0.7% NaCl injected into the tail vein of infected mice. This method was effective and specific for eliciting SjCB1 gene suppression in both male and female adult worms in vivo (>79.4% in male and >91.5% in female knockdown relative to control). In 60 cercaria infected mice, RNAi suppression of gene expression was best achieved by using 10 μg of target dsRNA for at least 4 days. The recommended procedure for interference producing long-term suppression was an injection of dsRNA on the first day of infection with booster injections administered every 4 days for up to 26 days. Long-term suppression of three published functional genes (peroxiredoxin-1, mago nashi, insulin receptor) in S. japonicum provided more information about the role of the expression of these genes in producing particular phenotypes. The protocols described here may be more convenient, economical and applicable, than currently available technology and have contributed to the observation of more phenotypes during worm development from schistosomula to adult. These approaches may promote and facilitate further studies into functional schistosome genomics.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Manyu Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ruixiang Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.
| |
Collapse
|
3
|
Cai P, Gobert GN, You H, McManus DP. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol 2016; 46:453-63. [PMID: 26873753 DOI: 10.1016/j.ijpara.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
4
|
Gasser RB, Tan P, Teh BT, Wongkham S, Young ND. Genomics of worms, with an emphasis on Opisthorchis viverrini - opportunities for fundamental discovery and biomedical outcomes. Parasitol Int 2016; 66:341-345. [PMID: 26792076 DOI: 10.1016/j.parint.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022]
Abstract
Neglected tropical diseases cause substantial morbidity and mortality in animals and people globally. Opisthorchiasis is one such disease, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia, including Thailand, Lao People's Democratic Republic (PDR) and Cambodia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Relatively little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. With the advent of high-throughput nucleic acid sequencing and bioinformatic technologies, it has now become possible to gain global insights into the molecular biology of parasites. The purpose of this minireview is (i) to discuss recent progress on the genomics of parasitic worms, with an emphasis on the draft genome and transcriptome of O. viverrini; (ii) to use results from an integrated, global analysis of the genomic and transcriptomic data, to explain how we believe that this carcinogenic fluke establishes in the biliary system, how it feeds, survives and protects itself in such a hostile, microaerobic environment within the liver, and to propose how this parasite evades or modulates host attack; and (iii) to indicate some of the challenges, and, more importantly, the exciting opportunities that the 'omic resources for O. viverrini now provide for a plethora of fundamental and applied research areas. Looking ahead, we hope that this genomic resource stimulates vibrant and productive collaborations within a consortium context, focused on the effective control of opisthorchiasis.
Collapse
Affiliation(s)
- Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore; Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Bin Tean Teh
- Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
6
|
Liang S, Knight M, Jolly ER. Polyethyleneimine mediated DNA transfection in schistosome parasites and regulation of the WNT signaling pathway by a dominant-negative SmMef2. PLoS Negl Trop Dis 2013; 7:e2332. [PMID: 23936566 PMCID: PMC3723562 DOI: 10.1371/journal.pntd.0002332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a serious global problem and the second most devastating parasitic disease following malaria. Parasitic worms of the genus Schistosoma are the causative agents of schistosomiasis and infect more than 240 million people worldwide. The paucity of molecular tools to manipulate schistosome gene expression has made an understanding of genetic pathways in these parasites difficult, increasing the challenge of identifying new potential drugs for treatment. Here, we describe the use of a formulation of polyethyleneimine (PEI) as an alternative to electroporation for the efficacious transfection of genetic material into schistosome parasites. We show efficient expression of genes from a heterologous CMV promoter and from the schistosome Sm23 promoter. Using the schistosome myocyte enhancer factor 2 (SmMef2), a transcriptional activator critical for myogenesis and other developmental pathways, we describe the development of a dominant-negative form of the schistosome Mef2. Using this mutant, we provide evidence that SmMef2 may regulate genes in the WNT pathway. We also show that SmMef2 regulates its own expression levels. These data demonstrate the use of PEI to facilitate effective transfection of nucleic acids into schistosomes, aiding in the study of schistosome gene expression and regulation, and development of genetic tools for the characterization of molecular pathways in these parasites.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matty Knight
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
New frontiers in schistosoma genomics and transcriptomics. J Parasitol Res 2012; 2012:849132. [PMID: 23227308 PMCID: PMC3512318 DOI: 10.1155/2012/849132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.
Collapse
|
8
|
Alrefaei YN, Okatcha TI, Skinner DE, Brindley PJ. Progress with schistosome transgenesis. Mem Inst Oswaldo Cruz 2012; 106:785-93. [PMID: 22124549 DOI: 10.1590/s0074-02762011000700002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Collapse
Affiliation(s)
- Yousef Noori Alrefaei
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
10
|
Peak E, Hoffmann KF. Cross-disciplinary approaches for measuring parasitic helminth viability and phenotype. AN ACAD BRAS CIENC 2011; 83:649-62. [PMID: 21670885 DOI: 10.1590/s0001-37652011000200024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023] Open
Abstract
Parasitic worms (helminths) within the Phyla Nematoda and Platyhelminthes are responsible for some of the most debilitating and chronic infectious diseases of human and animal populations across the globe. As no subunit vaccine for any parasitic helminth is close to being developed, the frontline strategy for intervention is administration of therapeutic, anthelmintic drugs. Worryingly, and unsurprising due to co-evolutionary mechanisms, many of these worms are developing resistance to the limited compound classes currently being used. This unfortunate reality has led to a renaissance in next generation anthelmintic discovery within both academic and industrial sectors. However, a major bottleneck in this process is the lack of quantitative methods for screening large numbers of small molecules for their effects on the whole organism. Development of methodologies that can objectively and rapidly distinguish helminth viability or phenotype would be an invaluable tool in the anthelmintic discovery pipeline. Towards this end, we describe how several basic techniques currently used to assess single cell eukaryote viability have been successfully applied to parasitic helminths. We additionally demonstrate how some of these methodologies have been adopted for high-throughput use and further modified for assessing worm phenotype. Continued development in this area is aimed at increasing the rate by which novel anthelmintics are identified and subsequently translated into everyday, practical applications.
Collapse
Affiliation(s)
- Emily Peak
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, UK
| | | |
Collapse
|
11
|
Abstract
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ∼13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.
Collapse
|
12
|
Schistosoma mansoni U6 gene promoter-driven short hairpin RNA induces RNA interference in human fibrosarcoma cells and schistosomules. Int J Parasitol 2011; 41:783-9. [PMID: 21447344 DOI: 10.1016/j.ijpara.2011.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 11/21/2022]
Abstract
RNA interference (RNAi) mediated by short hairpin-RNA (shRNA) expressing plasmids can induce specific and long-term knockdown of specific mRNAs in eukaryotic cells. To develop a vector-based RNAi model for Schistosoma mansoni, the schistosome U6 gene promoter was employed to drive expression of shRNA targeting reporter firefly luciferase. An upstream region of a U6 gene predicted to contain the promoter was amplified from genomic DNA of S. mansoni. A shRNA construct driven by the predicted U6 promoter targeting luciferase was assembled and cloned into plasmid pXL-Bac II, the construct termed pXL-BacII_SmU6-shLuc. Luciferase expression in transgenic fibrosarcoma HT-1080 cells was significantly reduced 96 h following transduction with plasmid pXL-BacII_SmU6-shLuc, which encodes luciferase mRNA-specific shRNA. In a similar fashion, schistosomules of S. mansoni were transformed with the SmU6-shLuc or control constructs. Firefly luciferase mRNA was introduced into transformed schistosomules after which luciferase activity was analyzed. Significantly less activity was present in schistosomules transfected with pXL-BacII_SmU6-shLuc compared with controls. The findings revealed that the putative S. mansoni U6 gene promoter of 270 bp in length was active in human cells and schistosomes. Given that the U6 gene promoter drove expression of shRNA from an episome, the findings also indicate the potential of this putative RNA polymerase III dependent promoter as a component regulatory element in vector-based RNAi for functional genomics of schistosomes.
Collapse
|
13
|
Piao X, Cai P, Liu S, Hou N, Hao L, Yang F, Wang H, Wang J, Jin Q, Chen Q. Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 2011; 6:e18267. [PMID: 21494327 PMCID: PMC3071802 DOI: 10.1371/journal.pone.0018267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/24/2011] [Indexed: 01/17/2023] Open
Abstract
Background Schistosoma japonicum is one of the remarkable
Platyhelminths that are endemic in China and Southeast Asian countries. The
parasite is dioecious and can reside inside the host for many years. Rapid
reproduction by producing large number of eggs and count-react host
anti-parasite responses are the strategies that benefit long term survival
of the parasite. Praziquantel is currently the only drug that is effective
against the worms. Development of novel antiparasite reagents and
immune-prevention measures rely on the deciphering of parasite biology. The
decoding of the genomic sequence of the parasite has made it possible to
dissect the functions of genes that govern the development of the parasite.
In this study, the polyadenylated transcripts from male and female
S. japonicum were isolated for deep sequencing and the
sequences were systematically analysed. Results First, the number of genes actively expressed in the two sexes of S.
japonicum was similar, but around 50% of genes were
biased to either male or female in expression. Secondly, it was, at the
first time, found that more than 50% of the coding region of the
genome was transcribed from both strands. Among them, 65% of the
genes had sense and their cognate antisense transcripts co-expressed,
whereas 35% had inverse relationship between sense and antisense
transcript abundance. Further, based on gene ontological analysis, more than
2,000 genes were functionally categorized and biological pathways that are
differentially functional in male or female parasites were elucidated. Conclusions Male and female schistosomal parasites differ in gene expression patterns,
many metabolic and biological pathways have been identified in this study
and genes differentially expressed in gender specific manner were presented.
Importantly, more than 50% of the coding regions of the S.
japonicum genome transcribed from both strands, antisense
RNA-mediated gene regulation might play a critical role in the parasite
biology.
Collapse
Affiliation(s)
- Xianyu Piao
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Liu
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Hao
- College of Life Science and Technology,
Southwest University of Nationalities, Chengdu, Sichuan, China
| | - Fan Yang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Ministry of
Education, Institute of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
14
|
Young ND, Jex AR, Cantacessi C, Hall RS, Campbell BE, Spithill TW, Tangkawattana S, Tangkawattana P, Laha T, Gasser RB. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica--biological and biotechnological implications. PLoS Negl Trop Dis 2011; 5:e1004. [PMID: 21408104 PMCID: PMC3051338 DOI: 10.1371/journal.pntd.0001004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022] Open
Abstract
Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite. Fasciola gigantica (Digenea) is a socioeconomically important liver fluke of humans and other mammals. It is the predominant cause of fascioliasis in the tropics and has a serious impact on the lives of tens of millions of people and other animals; yet, very little is known about this parasite and its relationship with its hosts at the molecular level. Here, advanced sequencing and bioinformatic technologies were employed to explore the genes transcribed in the adult stage of F. gigantica. From >20 million raw reads, >30,000 contiguous sequences were assembled. Relative levels of transcription were estimated; and molecules were characterized based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, showed similarities in transcription for molecules predicted to play roles in parasite-host interactions. The findings of the present study provide a foundation for a wide range of fundamental molecular studies of this neglected parasite, as well as research focused on developing new methods for the treatment, diagnosis, and control of fascioliasis.
Collapse
Affiliation(s)
- Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
- * E-mail: (RBG); (NDY)
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
| | - Terence W. Spithill
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Sirikachorn Tangkawattana
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prasarn Tangkawattana
- Department of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
- * E-mail: (RBG); (NDY)
| |
Collapse
|
15
|
Rinaldi G, Suttiprapa S, Brindley PJ. Quantitative retrotransposon anchored PCR confirms transduction efficiency of transgenes in adult Schistosoma mansoni. Mol Biochem Parasitol 2011; 177:70-6. [PMID: 21251928 DOI: 10.1016/j.molbiopara.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
A quantitative retrotransposon anchored PCR (qRAP) that utilizes endogenous retrotransposons as a chromosomal anchor was developed to investigate integration of transgenes in Schistosoma mansoni. The qRAP technique, which builds on earlier techniques, (i) Alu-PCR which has been used to quantify lentiviral (HIV-1) proviral insertions in human chromosomes and (ii) a non-quantitative retrotransposon anchored PCR known to detect the presence of transgenes in the S. mansoni genome, was tested here in a model comparison of retrovirus-transduced adult schistosomes in which one group included intact worms, the other included fragments of adult worms. At the outset, after transducing intact and viable fragments of schistosomes with reporter RNAs, we observed more reporter activity in fragments of worms than in intact worms. We considered this simply reflects the increased surface area in fragments compared to intact worms exposed to the exogenous reporter genes. Subsequently, intact worms and worm fragments were transduced with pseudotyped virions. Transgene integration events in genomic DNA extracted from the virion-exposed worms and worm fragments were quantified by the qRAP, which revealed that fragmenting adult schistosomes resulted in increased density of proviral integrations. The qRAP findings confirmed the likely value of this qRAP technique for quantification of transgenes integrated in schistosome chromosomes. Last, considering the absence of schistosome cell or tissue lines, primary culture of fragmented worms offers an opportunity to optimize transgenesis, and other functional genomic approaches.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
16
|
Stack C, Dalton JP, Robinson MW. The phylogeny, structure and function of trematode cysteine proteases, with particular emphasis on the Fasciola hepatica cathepsin L family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:116-35. [PMID: 21660662 DOI: 10.1007/978-1-4419-8414-2_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.
Collapse
Affiliation(s)
- Colin Stack
- School of Biomedical and Health Sciences, University of Western Sydney (UWS), Narellan Road, Campbelltown, NSW, Australia
| | | | | |
Collapse
|
17
|
Yang S, Brindley PJ, Zeng Q, Li Y, Zhou J, Liu Y, Liu B, Cai L, Zeng T, Wei Q, Lan L, McManus DP. Transduction of Schistosoma japonicum schistosomules with vesicular stomatitis virus glycoprotein pseudotyped murine leukemia retrovirus and expression of reporter human telomerase reverse transcriptase in the transgenic schistosomes. Mol Biochem Parasitol 2010; 174:109-16. [PMID: 20692298 PMCID: PMC3836731 DOI: 10.1016/j.molbiopara.2010.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 01/21/2023]
Abstract
Although draft genome sequences of two of the major human schistosomes, Schistosoma japonicum and Schistosoma mansoni are available, the structures and characteristics of most genes and the influence of exogenous genes on the metabolism of schistosomes remain uncharacterized. Furthermore, which functional genomics approaches will be tractable for schistosomes are not yet apparent. Here, the vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped pantropic retroviral vector pBABE-puro was modified to incorporate the human telomerase reverse transcriptase gene (hTERT) as a reporter, under the control of the retroviral long terminal repeat (LTR). Pseudotyped virions were employed to transduce S. japonicum to investigate the utility of retrovirus-mediated transgenesis of S. japonicum and the activity of human telomerase reverse transcriptase as a reporter transgene in schistosomes. Schistosomules perfused from experimentally infected rabbits were cultured for 6 days after exposure to the virions after which genomic DNAs from virus exposed and control worms were extracted. Analysis of RNA from transduced parasites and immunohistochemistry of thin parasite sections revealed expression of hTERT in the transduced worms. Expression of hTERT was also confirmed by immunoblot analysis. These findings indicated that S. japonicum could be effectively transduced by VSVG-pseudotyped retrovirus carrying the hTERT gene. Given the potential of hTERT to aid in derivation of immortalized cells, these findings suggest that this pantropic retroviral approach can be employed to transduce cells from specific tissues and organs of schistosomes to investigate the influence of transgene hTERT on growth and proliferation of schistosome cells.
Collapse
Affiliation(s)
- Shenghui Yang
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Young ND, Jex AR, Cantacessi C, Campbell BE, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Progress on the transcriptomics of carcinogenic liver flukes of humans—Unique biological and biotechnological prospects. Biotechnol Adv 2010; 28:859-70. [DOI: 10.1016/j.biotechadv.2010.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
|
19
|
RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 2010; 4:e850. [PMID: 20976050 PMCID: PMC2957409 DOI: 10.1371/journal.pntd.0000850] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. METHODOLOGY/PRINCIPAL FINDINGS We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose-dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. CONCLUSIONS Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Collapse
|
20
|
Our wormy world genomics, proteomics and transcriptomics in East and southeast Asia. ADVANCES IN PARASITOLOGY 2010; 73:327-71. [PMID: 20627147 DOI: 10.1016/s0065-308x(10)73011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helminths are the cause of some of the major infectious diseases of humanity in what is still a "wormy" world. There is, in East and Southeast Asia, a high prevalence of several helminthiases which occur primarily in rural, impoverished areas of low-income and developing countries throughout the tropics and subtropics. Subsequent to various parasite genome projects that commenced in the early 1990s, under the aegis of the World Health Organization (WHO), the draft genomes of three major helminth species (Schistosoma japonicum, S. mansoni and Brugia malayi) have been sequenced, and many other helminth parasites have now been targeted for intensive genomics investigation. The continuing release of genome sequences has catalyzed the emergence of transcriptomics, proteomics and related "-omics" analyses of helminth parasites, which provide unprecedented approaches to understanding their biology that will result in new clues for the development of novel control interventions. In this review, we present a summary of current approaches employed in helminth "-omics" studies and review recent advances in helminth genomics and post-genomics in the Southeast Asian setting.
Collapse
|
21
|
Gobert GN. Applications for profiling the schistosome transcriptome. Trends Parasitol 2010; 26:434-9. [DOI: 10.1016/j.pt.2010.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/16/2010] [Accepted: 04/26/2010] [Indexed: 01/30/2023]
|
22
|
Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis 2010; 4:e759. [PMID: 20668553 PMCID: PMC2910722 DOI: 10.1371/journal.pntd.0000759] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/08/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis, caused by infection with the blood fluke Schistosoma, is responsible for greater than 200,000 human deaths per annum. Objective high-throughput screens for detecting novel anti-schistosomal targets will drive 'genome to drug' lead translational science at an unprecedented rate. Current methods for detecting schistosome viability rely on qualitative microscopic criteria, which require an understanding of parasite morphology, and most importantly, must be subjectively interpreted. These limitations, in the current state of the art, have significantly impeded progress into whole schistosome screening for next generation chemotherapies. METHODOLOGY/PRINCIPAL FINDINGS We present here a microtiter plate-based method for reproducibly detecting schistosomula viability that takes advantage of the differential uptake of fluorophores (propidium iodide and fluorescein diacetate) by living organisms. We validate this high-throughput system in detecting schistosomula viability using auranofin (a known inhibitor of thioredoxin glutathione reductase), praziquantel and a range of small compounds with previously-described (gambogic acid, sodium salinomycin, ethinyl estradiol, fluoxetidine hydrochloride, miconazole nitrate, chlorpromazine hydrochloride, amphotericin b, niclosamide) or suggested (bepridil, ciclopirox, rescinnamine, flucytosine, vinblastine and carbidopa) anti-schistosomal activities. This developed method is sensitive (200 schistosomula/well can be assayed), relevant to industrial (384-well microtiter plate compatibility) and academic (96-well microtiter plate compatibility) settings, translatable to functional genomics screens and drug assays, does not require a priori knowledge of schistosome biology and is quantitative. CONCLUSIONS/SIGNIFICANCE The wide-scale application of this fluorescence-based bioassay will greatly accelerate the objective identification of novel therapeutic lead targets/compounds to combat schistosomiasis. Adapting this bioassay for use with other parasitic worm species further offers an opportunity for great strides to be made against additional neglected tropical diseases of biomedical and veterinary importance.
Collapse
|
23
|
Schistosomiasis in the People's Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 2010; 23:442-66. [PMID: 20375361 DOI: 10.1128/cmr.00044-09] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential impact of the Three Gorges Dam (TGD) on schistosomiasis transmission in China has invoked considerable global concern. The TGD will result in changes in the water level and silt deposition downstream, favoring the reproduction of Oncomelania snails. Combined with blockages of the Yangtze River's tributaries, these changes will increase the schistosomiasis transmission season within the marshlands along the middle and lower reaches of the Yangtze River. The changing schistosome transmission dynamics necessitate a comprehensive strategy to control schistosomiasis. This review discusses aspects of the epidemiology and transmission of Schistosoma japonicum in China and considers the pathology, clinical outcomes, diagnosis, treatment, immunobiology, and genetics of schistosomiasis japonica together with an overview of current progress in vaccine development, all of which will have an impact on future control efforts. The use of synchronous praziquantel (PZQ) chemotherapy for humans and domestic animals is only temporarily effective, as schistosome reinfection occurs rapidly. Drug delivery requires a substantial infrastructure to regularly cover all parts of an area of endemicity. This makes chemotherapy expensive and, as compliance is often low, a less than satisfactory control option. There is increasing disquiet about the possibility that PZQ-resistant schistosomes will develop. Consequently, as mathematical modeling predicts, vaccine strategies represent an essential component in the future control of schistosomiasis in China. With the inclusion of focal mollusciciding, improvements in sanitation, and health education into the control scenario, China's target of reducing the level of schistosome infection to less than 1% by 2015 may be achievable.
Collapse
|
24
|
Mann VH, Morales ME, Rinaldi G, Brindley PJ. Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 2010; 137:451-62. [PMID: 19765348 PMCID: PMC3042131 DOI: 10.1017/s0031182009991211] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genomes of the major human helminth parasites, and indeed many others of agricultural significance, are now the research focus of intensive genome sequencing and annotation. A draft genome sequence of the filarial parasite Brugia malayi was reported in 2007 and draft genomes of two of the human schistosomes, Schistosoma japonicum and S. mansoni reported in 2009. These genome data provide the basis for a comprehensive understanding of the molecular mechanisms involved in schistosome nutrition and metabolism, host-dependent development and maturation, immune evasion and invertebrate evolution. In addition, new potential vaccine candidates and drug targets will likely be predicted. However, testing these predictions is often not straightforward with schistosomes because of the difficulty and expense in maintenance of the developmental cycle. To facilitate this goal, several developmental stages can be maintained in vitro for shorter or longer intervals of time, and these are amenable to manipulation. Our research interests focus on experimental studies of schistosome gene functions, and more recently have focused on development of transgenesis and RNA interference with the longer term aim of heritable gene manipulation. Here we review methods to isolate and culture developmental stages of Schistosoma mansoni, including eggs, sporocysts, schistosomules and adults, in particular as these procedures relate to approaches for gene manipulation. We also discuss recent advances in genetic manipulation of schistosomes including the deployment of square wave electroporation to introduce reporter genes into cultured schistosomes.
Collapse
Affiliation(s)
- Victoria H Mann
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
25
|
Kines KJ, Rinaldi G, Okatcha TI, Morales ME, Mann VH, Tort JF, Brindley PJ. Electroporation facilitates introduction of reporter transgenes and virions into schistosome eggs. PLoS Negl Trop Dis 2010; 4:e593. [PMID: 20126309 PMCID: PMC2814865 DOI: 10.1371/journal.pntd.0000593] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/09/2009] [Indexed: 01/30/2023] Open
Abstract
Background The schistosome egg represents an attractive developmental stage at which to target transgenes because of the high ratio of germ to somatic cells, because the transgene might be propagated and amplified by infecting snails with the miracidia hatched from treated eggs, and because eggs can be readily obtained from experimentally infected rodents. Methods/Findings We investigated the utility of square wave electroporation to deliver transgenes and other macromolecules including fluorescent (Cy3) short interference (si) RNA molecules, messenger RNAs, and virions into eggs of Schistosoma mansoni. First, eggs were incubated in Cy3-labeled siRNA with and without square wave electroporation. Cy3-signals were detected by fluorescence microscopy in eggs and miracidia hatched from treated eggs. Second, electroporation was employed to introduce mRNA encoding firefly luciferase into eggs. Luciferase activity was detected three hours later, whereas luciferase was not evident in eggs soaked in the mRNA. Third, schistosome eggs were exposed to Moloney murine leukemia virus virions (MLV) pseudotyped with vesicular stomatitis virus glycoprotein (VSVG). Proviral transgenes were detected by PCR in genomic DNA from miracidia hatched from virion-exposed eggs, indicating the presence of transgenes in larval schistosomes that had been either soaked or electroporated. However, quantitative PCR (qPCR) analysis determined that electroporation of virions resulted in 2–3 times as many copies of provirus in these schistosomes compared to soaking alone. In addition, relative qPCR indicated a copy number for the proviral luciferase transgene of ∼20 copies for 100 copies of a representative single copy endogenous gene (encoding cathepsin D). Conclusions Square wave electroporation facilitates introduction of transgenes into the schistosome egg. Electroporation was more effective for the transduction of eggs with pseudotyped MLV than simply soaking the eggs in virions. These findings underscore the potential of targeting the schistosome egg for germ line transgenesis. The genome sequences of two of the three major species of schistosomes are now available. Molecular tools are needed to determine the importance of these new genes. With this in mind, we investigated introduction of reporter transgenes into schistosome eggs, with the longer-term aim of manipulation of schistosome genes and gene functions. The egg is a desirable developmental stage for genome manipulation, not least because it contains apparently accessible germ cells. Introduction of transgenes into the germ cells of schistosome eggs might result in transgenic schistosomes. However, the egg is surrounded by a thick shell which might block access to entry of transgenes. We cultured eggs in the presence of three types of reporter transgenes of increasing molecular size, and in addition we tried to produce transient holes in the eggs by electroporation to investigate whether the transgenes would more easily enter the eggs. Electroporation of eggs appeared to allow entry of two larger types of transgenes into cultured schistosome eggs, messenger RNA encoding firefly luciferase, and retroviral virions. We anticipate that this approach, electroporation of transgenes into schistosome eggs, will facilitate genetic manipulation of schistosomes for investigating the importance of schistosome genes and gene products as new intervention targets.
Collapse
Affiliation(s)
- Kristine J. Kines
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, D.C., United States of America
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, D.C., United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Tunika I. Okatcha
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, D.C., United States of America
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Maria E. Morales
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, D.C., United States of America
| | - Jose F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
26
|
Taft AS, Norante FA, Yoshino TP. The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Exp Parasitol 2010; 125:84-94. [PMID: 20060828 DOI: 10.1016/j.exppara.2009.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
In Schistosoma mansoni, the miracidium-to-primary sporocyst transformation process is associated with many physiological, morphological, transcriptional and biochemical changes. In the present study, we use a medium-throughput small-molecule screen to identify chemical compounds inhibiting or delaying the in vitro transformation of miracidia to the sporocyst stage. The Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) contains 1280 well-characterized chemical compounds with various modes of action including enzyme inhibitors, antibiotics, cell-cycle regulators, apoptosis inducers and GPCR ligands. We identified 47 compounds that greatly reduce or delay this transformation process during a primary screen of live miracidia. The majority of compounds inhibiting larval transformation were from dopaminergic, serotonergic, ion channel and phosphorylation classes. Specifically, we found that dopamine D2-type antagonists, serotonin reuptake inhibitors, voltage-gated calcium channel antagonists and a PKC activator significantly reduced in vitro miracidial transformation rates. Many of the targets of these compounds regulate adenylyl cyclase activity, with the inhibition or activation of these targets resulting in increased cAMP levels in miracidia and concomitant blocking/delaying of larval transformation.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
27
|
In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda. Parasitology 2009; 137:463-83. [PMID: 19961646 DOI: 10.1017/s0031182009991302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches.
Collapse
|
28
|
Fitzpatrick JM, Peak E, Perally S, Chalmers IW, Barrett J, Yoshino TP, Ivens AC, Hoffmann KF. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl Trop Dis 2009; 3:e543. [PMID: 19885392 PMCID: PMC2764848 DOI: 10.1371/journal.pntd.0000543] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/07/2009] [Indexed: 11/19/2022] Open
Abstract
Background Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis. Methodology/Principal Findings Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes), which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products) displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no known sequence similarity outside the Platyhelminthes), which were undetectable by the statistical comparisons. Conclusions/Significance Collectively, statistical and network-based exploratory analyses of transcriptomic datasets have led to a thorough characterisation of schistosome development. Information obtained from these experiments highlighted key transcriptional programs associated with lifecycle progression and identified numerous anti-schistosomal candidate molecules including G-protein coupled receptors, tetraspanins, Dyp-type peroxidases, fucosyltransferases, leishmanolysins and the netrin/netrin receptor complex. Despite the implementation of focused and well-funded chemotherapeutic control initiatives over the last decade, schistosomiasis remains a significant cause of morbidity and mortality within countries of the developing world. There is, therefore, an urgent need for the rapid translation of genomic information into viable vaccines or new drug classes capable of eradicating the parasitic schistosome worms responsible for this neglected tropical disease. In our effort to identify potential targets for novel chemotherapeutic and immunoprophylactic interventions, we detail a combined bioinformatics approach, comprising exploratory statistical and network analyses, to thoroughly describe the transcriptional progression of Schistosoma mansoni across three environmental niches. Our results indicate that, although schistosomes are masters at host deception and survival, there are numerous exploitable candidate molecules displaying either differential or constitutive expression throughout the parasite's lifecycle. Importantly, some of these transcripts represent gene families not commonly found outside—or expanded within—the phylum Platyhelminthes, and thus represent priority targets. Many of the candidates identified herein will be subjected to ongoing and future hypothesis-led functional investigations. The completion of such specific examinations ultimately will contribute to the successful development of novel control strategies useful in the alleviation of schistosome-induced immunopathologies, morbidities and mortalities.
Collapse
Affiliation(s)
| | - Emily Peak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Samirah Perally
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John Barrett
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Karl F. Hoffmann
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|
30
|
McManus DP, Li Y, Gray DJ, Ross AG. Conquering 'snail fever': schistosomiasis and its control in China. Expert Rev Anti Infect Ther 2009; 7:473-85. [PMID: 19400766 DOI: 10.1586/eri.09.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Schistosomiasis japonica is a serious parasitic disease and a major health risk for more than 60 million people living in the tropical and subtropical zones of south China. The disease is a zoonosis and its cause, the parasitic trematode Schistosoma japonicum, has a range of mammalian reservoirs, making control efforts difficult. Current control programs are heavily based on community chemotherapy with a single dose of the highly effective drug praziquantel. However, vaccines (for use in bovines and in humans) in combination with other control strategies are needed to eliminate the disease. In this review, we provide an overview of the transmission, clinical features, pathogenesis, diagnosis, treatment, genetics and susceptibility, epidemiology, and prospects for control of schistosomiasis japonica in China. The threat posed by the Three Gorges Dam may undermine control efforts because it will change the local ecology and associated schistosomiasis transmission risks over the next decade and beyond.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| | | | | | | |
Collapse
|
31
|
Krautz-Peterson G, Ndegwa D, Vasquez K, Korideck H, Zhang J, Peterson JD, Skelly PJ. Imaging schistosomes in vivo. FASEB J 2009; 23:2673-80. [PMID: 19346298 DOI: 10.1096/fj.08-127738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Schistosomes are intravascular, parasitic helminths that cause a chronic, often debilitating disease afflicting over 200 million people in over 70 countries. Here we describe novel imaging methods that, for the first time, permit visualization of live schistosomes within their living hosts. The technology centers on fluorescent agent uptake and activation in the parasite's gut, and subsequent detection and signal quantitation using fluorescence molecular tomography (FMT). There is a strong positive correlation between the signal detected and parasite number. Schistosoma mansoni parasites of both sexes recovered from infected experimental animals exhibit vivid fluorescence throughout their intestines. Likewise, the remaining important human schistosome parasites, S. japonicum and S. hematobium, also exhibit gut fluorescence when recovered from infected animals. Imaging has been used to efficiently document the decline in parasite numbers in infected mice treated with the antischistosome drug praziquantel. This technology will provide a unique opportunity both to help rapidly identify much-needed, novel antischistosome therapies and to gain direct visual insight into the intravascular lives of the major schistosome parasites of humans.
Collapse
Affiliation(s)
- Greice Krautz-Peterson
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, Horák P. Chapter 4 Peptidases of Trematodes. ADVANCES IN PARASITOLOGY 2009; 69:205-97. [DOI: 10.1016/s0065-308x(09)69004-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Use of genomic DNA as an indirect reference for identifying gender-associated transcripts in morphologically identical, but chromosomally distinct, Schistosoma mansoni cercariae. PLoS Negl Trop Dis 2008; 2:e323. [PMID: 18941520 PMCID: PMC2565838 DOI: 10.1371/journal.pntd.0000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of DNA microarray technology to study global Schistosoma gene expression has led to the rapid identification of novel biological processes, pathways or associations. Implementation of standardized DNA microarray protocols across laboratories would assist maximal interpretation of generated datasets and extend productive application of this technology. METHODOLOGY/PRINCIPAL FINDINGS Utilizing a new Schistosoma mansoni oligonucleotide DNA microarray composed of 37,632 elements, we show that schistosome genomic DNA (gDNA) hybridizes with less variation compared to complex mixed pools of S. mansoni cDNA material (R = 0.993 for gDNA compared to R = 0.956 for cDNA during 'self versus self' hybridizations). Furthermore, these effects are species-specific, with S. japonicum or Mus musculus gDNA failing to bind significantly to S. mansoni oligonucleotide DNA microarrays (e.g R = 0.350 when S. mansoni gDNA is co-hybridized with S. japonicum gDNA). Increased median fluorescent intensities (209.9) were also observed for DNA microarray elements hybridized with S. mansoni gDNA compared to complex mixed pools of S. mansoni cDNA (112.2). Exploiting these valuable characteristics, S. mansoni gDNA was used in two-channel DNA microarray hybridization experiments as a common reference for indirect identification of gender-associated transcripts in cercariae, a schistosome life-stage in which there is no overt sexual dimorphism. This led to the identification of 2,648 gender-associated transcripts. When compared to the 780 gender-associated transcripts identified by hybridization experiments utilizing a two-channel direct method (co-hybridization of male and female cercariae cDNA), indirect methods using gDNA were far superior in identifying greater quantities of differentially expressed transcripts. Interestingly, both methods identified a concordant subset of 188 male-associated and 156 female-associated cercarial transcripts, respectively. Gene ontology classification of these differentially expressed transcripts revealed a greater diversity of categories in male cercariae. Quantitative real-time PCR analysis confirmed the DNA microarray results and supported the reliability of this platform for identifying gender-associated transcripts. CONCLUSIONS/SIGNIFICANCE Schistosome gDNA displays characteristics highly suitable for the comparison of two-channel DNA microarray results obtained from experiments conducted independently across laboratories. The schistosome transcripts identified here demonstrate, for the first time, that gender-associated patterns of expression are already well established in the morphologically identical, but chromosomally distinct, cercariae stage.
Collapse
|
34
|
Rinaldi G, Morales ME, Cancela M, Castillo E, Brindley PJ, Tort JF. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica. PLoS Negl Trop Dis 2008; 2:e260. [PMID: 18612418 PMCID: PMC2440534 DOI: 10.1371/journal.pntd.0000260] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 06/11/2008] [Indexed: 02/03/2023] Open
Abstract
The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite–host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi) reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC). We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA) specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP), and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth parasites. These could facilitate the study of gene function and the identification of relevant targets for intervention in organisms that are by other means intractable. More specifically, these results open new perspectives for functional genomics of F. hepatica, which hopefully can lead to the development of new interventions for fascioliasis. Reverse genetics tools allow assessing the function of unknown genes. Their application for the study of neglected infectious diseases could lead eventually to the identification of relevant gene products to be used in diagnosis, or as drug targets or immunization candidates. Being technically more simple and less demanding than other reverse genetics tools such as transgenesis or knockouts, the suppression of gene activity mediated by double-stranded RNA has emerged as a powerful tool for the analysis of gene function. RNAi appeared as an obvious alternative to apply in complex biological systems where information is still scarce, a situation common to several infectious and parasitic diseases. However, several technical or practical difficulties have hampered the development of this technique in parasites to the expectations originally generated. We developed a simple method to test the presence of a viable RNAi pathway by silencing an exogenous reporter gene. The method was tested in F. hepatica, describing the conditions for transfection and confirming the existence of a viable RNAi pathway in this parasite. The experimental design created can be useful as a first approach in organisms where genetic analysis is still unavailable, providing a tool to unravel gene function and probably advancing new candidates relevant in pathobiology, prevention or treatment.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Maria E. Morales
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Martín Cancela
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Paul J. Brindley
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
35
|
Kines KJ, Morales ME, Mann VH, Gobert GN, Brindley PJ. Integration of reporter transgenes into Schistosoma mansoni chromosomes mediated by pseudotyped murine leukemia virus. FASEB J 2008; 22:2936-48. [PMID: 18403630 DOI: 10.1096/fj.08-108308] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The recent release of draft genome sequences of two of the major human schistosomes has underscored the pressing need to develop functional genomics approaches for these significant pathogens. The sequence information also makes feasible genome-scale investigation of transgene integration into schistosome chromosomes. Retrovirus-mediated transduction offers a means to establish transgenic lines of schistosomes, to elucidate schistosome gene function and expression, and to advance functional genomics approaches for these parasites. We investigated the utility of the Moloney murine leukemia retrovirus (MLV) pseudotyped with vesicular stomatitis virus glycoprotein (VSVG) for the transduction of Schistosoma mansoni and delivery of reporter transgenes into schistosome chromosomes. Schistosomula were exposed to virions of VSVG-pseudotyped MLV, after which genomic DNA was extracted from the transduced schistosomes. Southern hybridization analysis indicated the presence of proviral MLV retrovirus in the transduced schistosomes. Fragments of the MLV transgene and flanking schistosome sequences recovered using an anchored PCR-based approach demonstrated definitively that somatic transgenesis of schistosome chromosomes had taken place and, moreover, revealed widespread retrovirus integration into schistosome chromosomes. More specifically, MLV transgenes had inserted in the vicinity of genes encoding immunophilin, zinc finger protein Sma-Zic, and others, as well as near the endogenous schistosome retrotransposons, the fugitive and SR1. Proviral integration of the MLV transgene appeared to exhibit primary sequence site specificity, targeting a gGATcc-like motif. Reporter luciferase transgene activity driven by the schistosome actin gene promoter was expressed in the tissues of transduced schistosomula and adult schistosomes. Luciferase activity appeared to be developmentally expressed in schistosomula with increased activity observed after 1 to 2 wk in culture. These findings indicate the utility of VSVG-pseudotyped MLV for transgenesis of S. mansoni, herald a tractable pathway forward toward germline transgenesis and functional genomics of parasitic helminths, and provide the basis for comparative molecular pathogenesis studies of chromosomal lesions arising from retroviral integration into human compared with schistosome chromosomes.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Tropical Medicine, and Biomedical Sciences Program, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
36
|
BRITTON C. Genetically modified parasites and the immune response. Parasite Immunol 2008; 30:191-3. [DOI: 10.1111/j.1365-3024.2008.01018.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Abstract
Schistosomiasis, caused by trematode blood flukes of the genus Schistosoma, is recognized as the most important human helminth infection in terms of morbidity and mortality. Infection follows direct contact with freshwater harboring free-swimming larval (cercaria) forms of the parasite. Despite the existence of the highly effective antischistosome drug praziquantel (PZQ), schistosomiasis is spreading into new areas, and although it is the cornerstone of current control programs, PZQ chemotherapy does have limitations. In particular, mass treatment does not prevent reinfection. Furthermore, there is increasing concern about the development of parasite resistance to PZQ. Consequently, vaccine strategies represent an essential component for the future control of schistosomiasis as an adjunct to chemotherapy. An improved understanding of the immune response to schistosome infection, both in animal models and in humans, suggests that development of a vaccine may be possible. This review considers aspects of antischistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against the African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes is then discussed, as are new approaches that may improve the efficacy of available vaccines and aid in the identification of new targets for immune attack.
Collapse
|
38
|
Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 2007; 38:1025-39. [PMID: 18086473 DOI: 10.1016/j.ijpara.2007.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/03/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
A major limitation in studying molecular interactions between parasitic helminths and their hosts is the lack of suitable in vitro cultivation systems for helminth cells and larvae. Here we present a method for long-term in vitro cultivation of larval cells of the tapeworm Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Primary cells isolated from cultivated metacestode vesicles in vitro showed a morphology typical of Echinococcus germinal cells, displayed an Echinococcus-specific gene expression profile and a cestode-like DNA content of approximately 300Mbp. When kept under reducing conditions in the presence of Echinococcus vesicle fluid, the primary cells could be maintained in vitro for several months and proliferated. Most interestingly, upon co-cultivation with host hepatocytes in a trans-well system, mitotically active Echinococcus cells formed cell aggregates that subsequently developed central cavities, surrounded by germinal cells. After 4 weeks, the cell aggregates gave rise to young metacestode vesicles lacking an outer laminated layer. This layer was formed after 6 weeks of cultivation indicating the complete in vitro regeneration of metacestode larvae. As an initial step toward the creation of a fully transgenic strain, we carried out transient transfection of Echinococcus primary cells using plasmids and obtained heterologous expression of a reporter gene. Furthermore, we successfully carried out targeted infection of Echinococcus cells with the facultatively intracellular bacterium Listeria monocytogenes, a DNA delivery system for genetic manipulation of mammalian cells. Taken together, the methods presented herein constitute important new tools for molecular investigations on host-parasite interactions in alveolar echinococcosis and on the roles of totipotent germinal cells in parasite regeneration and metastasis formation. Moreover, they enable the development of fully transgenic techniques in this group of helminth parasites for the first time.
Collapse
Affiliation(s)
- Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.
Collapse
|
40
|
Cheng G, Davis RE. An improved and secreted luciferase reporter for schistosomes. Mol Biochem Parasitol 2007; 155:167-71. [PMID: 17681388 PMCID: PMC3641815 DOI: 10.1016/j.molbiopara.2007.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/22/2023]
Abstract
Schistosomes are multicellular parasites of humans exhibiting interesting biological adaptations to their parasitic lifestyle. Concerted and in depth analyses of these adaptations and their cell and molecular biology requires further development of molecular genetic tools in schistosomes. In the current study, we demonstrate that a Gaussia luciferase reporter leads to significantly higher levels of luciferase activity in schistosomes compared to other tested luciferases. In addition, Gaussia luciferase can be secreted into culture media enabling non-invasive analysis of reporter activity. The secretion of Gaussia luciferase should allow a variety of new experimental paradigms for schistosome studies. Comparison of biolistic and electroporation transfection methods using luciferase RNA reporters and the luciferase acitivty produced indicates that electroporation of sporocysts and schistosomula is the most efficient transfection method for the four stages analyzed. These data should facilitate additional studies in schistosomes and provide a framework for further development of DNA transfection and gene expression analysis.
Collapse
Affiliation(s)
| | - Richard E. Davis
- Address correspondence to: Dr. Richard E. Davis, Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Mail Stop 8101, RC-1 South, P.O. Box 6511, 12801 East 17th Avenue, Aurora, CO 80045; Tel: 303-724-3226; Fax: 303-724-3215;
| |
Collapse
|
41
|
Morales ME, Mann VH, Kines KJ, Gobert GN, Fraser MJ, Kalinna BH, Correnti JM, Pearce EJ, Brindley PJ. piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 2007; 21:3479-89. [PMID: 17586730 DOI: 10.1096/fj.07-8726com] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transposon piggyBac from the genome of the cabbage looper moth Trichoplusia ni has been observed in the laboratory to jump into the genomes of key model and pathogenic eukaryote organisms including mosquitoes, planarians, human and other mammalian cells, and the malaria parasite Plasmodium falciparum. Introduction of exogenous transposons into schistosomes has not been reported but transposon-mediated transgenesis of schistosomes might supersede current methods for functional genomics of this important human pathogen. In the present study we examined whether the piggyBac transposon could deliver reporter transgenes into the genome of Schistosoma mansoni parasites. A piggyBac donor plasmid modified to encode firefly luciferase under control of schistosome gene promoters was introduced along with 7-methylguanosine capped RNAs encoding piggyBac transposase into cultured schistosomula by square wave electroporation. The activity of the helper transposase mRNA was confirmed by Southern hybridization analysis of genomic DNA from the transformed schistosomes, and hybridization signals indicated that the piggyBac transposon had integrated into numerous sites within the parasite chromosomes. piggyBac integrations were recovered by retrotransposon-anchored PCR, revealing characteristic piggyBac TTAA footprints in the vicinity of the endogenous schistosome retrotransposons Boudicca, SR1, and SR2. This is the first report of chromosomal integration of a transgene and somatic transgenesis of this important human pathogen, in this instance accomplished by mobilization of the piggyBac transposon.
Collapse
Affiliation(s)
- Maria E Morales
- Department of Tropical Medicine, Tulane University, Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jones MK, Higgins T, Stenzel DJ, Gobert GN. Towards tissue specific transcriptomics and expression pattern analysis in schistosomes using laser microdissection microscopy. Exp Parasitol 2007; 117:259-66. [PMID: 17662980 DOI: 10.1016/j.exppara.2007.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/08/2007] [Accepted: 06/09/2007] [Indexed: 12/23/2022]
Abstract
One difficulty facing post-genomic analyses of schistosomes is the limited data on sites of expression of many gene products expressed by the parasites in their hosts. The potential for use of laser microdissection microscopy as a preparative technique for transcriptional and proteomic profiling is reviewed. This technique allows tissues to be dissected for subsequent molecular and protein analysis. The method is reviewed in the light of the acoelomate triploblastic nature of tissue organisation in the parasite.
Collapse
Affiliation(s)
- Malcolm K Jones
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Qld 4006, Australia.
| | | | | | | |
Collapse
|
43
|
Williams DL, Sayed AA, Bernier J, Birkeland SR, Cipriano MJ, Papa AR, McArthur AG, Taft A, Vermeire JJ, Yoshino TP. Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Exp Parasitol 2007; 117:246-58. [PMID: 17577588 PMCID: PMC2121609 DOI: 10.1016/j.exppara.2007.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 01/11/2023]
Abstract
Despite the widespread use of chemotherapy and other control strategies over the past 50years, transmission rates for schistosomiasis have changed little. Regardless of the approach used, future control efforts will require a more complete understanding of fundamental parasite biology. Schistosomes undergo complex development involving an alteration of parasite generations within a mammalian and freshwater molluscan host in the completion of its lifecycle. Little is known about factors controlling schistosome development, but understanding these processes may facilitate the discovery of new control methods. Therefore, our goal in this study is to determine global developmentally regulated and stage-specific gene expression in Schistosoma mansoni using serial analysis of gene expression (SAGE). We present a preliminary analysis of genes expressed during development and sexual differentiation in the mammalian host and during early larval development in the snail host. A number of novel, differentially expressed genes have been identified, both within and between the different developmental stages found in the mammalian and snail hosts.
Collapse
Affiliation(s)
- David L Williams
- Department of Biological Sciences, Illinois State University, Normal, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|