1
|
Maruszewska-Cheruiyot M, Stear MJ, Machcińska M, Donskow-Łysoniewska K. Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion. Biomolecules 2022; 12:1572. [PMID: 36358922 PMCID: PMC9687433 DOI: 10.3390/biom12111572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Historically, there has been little interaction between parasitologists and oncologists, although some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. Recent research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGFβ) signalling pathway to modulate the immune response to their benefit. In particular, there is concern that suppression of the immune response by nematodes and their products could enhance susceptibility to tumours in both natural and artificial infections.
Collapse
Affiliation(s)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora 3086, Australia
| | - Maja Machcińska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | | |
Collapse
|
2
|
Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review. World J Hepatol 2017; 9:1176-1189. [PMID: 29109850 PMCID: PMC5666304 DOI: 10.4254/wjh.v9.i30.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cystic echinococcosis (CE) is an infectious disease caused by the larvae of parasite Echinococcus granulosus (E. granulosus). To successfully establish an infection, parasite release some substances and molecules that can modulate host immune functions, stimulating a strong anti-inflammatory reaction to carry favor to host and to reserve self-survival in the host. The literature was reviewed using MEDLINE, and an open access search for immunology of hydatidosis was performed. Accumulating data from animal experiments and human studies provided us with exciting insights into the mechanisms involved that affect all parts of immunity. In this review we used the existing scientific data and discuss how these findings assisted with a better understanding of the immunology of E. granulosus infection in man. The aim of this study is to point the several facts that challenge immune and autoimmune responses to protect E. granulosus from elimination and to minimize host severe pathology. Understanding the immune mechanisms of E. granulosus infection in an intermediate human host will provide, we believe, a more useful treatment with immunomodulating molecules and possibly better protection from parasitic infections. Besides that, the diagnosis of CE has improved due to the application of a new molecular tool for parasite identification by using of new recombinant antigens and immunogenic peptides. More studies for the better understanding of the mechanisms of parasite immune evasion is necessary. It will enable a novel approach in protection, detection and improving of the host inflammatory responses. In contrast, according to the "hygiene hypothesis", clinical applications that decrease the incidence of infection in developed countries and recently in developing countries are at the origin of the increasing incidence of both allergic and autoimmune diseases. Thus, an understanding of the immune mechanisms of E. granulosus infection is extremely important.
Collapse
Affiliation(s)
- Nikica M Grubor
- Department of Hepatobiliary and Pancreatic Surgery, First Surgical University Hospital, Clinical Center of Serbia, School of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katica D Jovanova-Nesic
- Immunology Research Center, Institute of Virology, Vaccine and Sera-Torlak, 11221 Belgrade, Serbia
- European Center for Peace and Development, University for Peace in the United Nation established in Belgrade, 11000 Belgrade, Serbia.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, 5265601 Tel-Hashomer, Tel Aviv, Israel
| |
Collapse
|
3
|
Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol 2015; 299:14-22. [PMID: 26617281 PMCID: PMC4711336 DOI: 10.1016/j.cellimm.2015.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
The broader superfamily of TGF-β-like proteins is reviewed, and signaling pathways summarised. The role of TGF-β in the immune tolerance and control of infectious disease is discussed. The superfamily member AMH is involved in embryonic sexual differentiation. Helminth parasites appear to exploit the TGF-β pathway to suppress host immunity. TGF-β homologues and mimics from parasites offer a new route for therapeutic tolerance induction.
The TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance.
Collapse
Affiliation(s)
- Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - David W Dresser
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| |
Collapse
|
4
|
Oliveira KC, Carvalho MLP, Bonatto JMC, Schechtman D, Verjovski-Almeida S. Human TNF-α induces differential protein phosphorylation in Schistosoma mansoni adult male worms. Parasitol Res 2015; 115:817-28. [PMID: 26547565 DOI: 10.1007/s00436-015-4812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 01/12/2023]
Abstract
Schistosoma mansoni and its vertebrate host have a complex and intimate connection in which several molecular stimuli are exchanged and affect both organisms. Human tumor necrosis factor alpha (hTNF-α), a pro-inflammatory cytokine, is known to induce large-scale gene expression changes in the parasite and to affect several parasite biological processes such as metabolism, egg laying, and worm development. Until now, the molecular mechanisms for TNF-α activity in worms are not completely understood. Here, we aimed at exploring the effect of hTNF-α on S. mansoni protein phosphorylation by 2D gel electrophoresis followed by a quantitative analysis of phosphoprotein staining and protein identification by mass spectrometry. We analyzed three biological replicates of adult male worms exposed to hTNF-α and successfully identified 32 protein spots with a statistically significant increase in phosphorylation upon in vitro exposure to hTNF-α. Among the differentially phosphorylated proteins, we found proteins involved in metabolism, such as glycolysis, galactose metabolism, urea cycle, and aldehyde metabolism, as well as proteins related to muscle contraction and to cytoskeleton remodeling. The most differentially phosphorylated protein (30-fold increase in phosphorylation) was 14-3-3, whose function is known to be modulated by phosphorylation, belonging to a signal transduction protein family that regulates a variety of processes in all eukaryotic cells. Further, 75% of the identified proteins are known in mammals to be related to TNF-α signaling, thus suggesting that TNF-α response may be conserved in the parasite. We propose that this work opens new perspectives to be explored in the study of the molecular crosstalk between host and pathogen.
Collapse
Affiliation(s)
- Katia C Oliveira
- Núcleo de Enteroparasitas, Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, 01614-000, São Paulo, SP, Brazil.,Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana L P Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - José Matheus C Bonatto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Debora Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil. .,Instituto Butantan, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Japa O, Hodgkinson JE, Emes RD, Flynn RJ. TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development. Vet Res 2015; 46:29. [PMID: 25879787 PMCID: PMC4354977 DOI: 10.1186/s13567-015-0167-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.
Collapse
Affiliation(s)
- Ornampai Japa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Jane E Hodgkinson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, UK.
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Robin J Flynn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| |
Collapse
|
6
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
7
|
Nematode asparaginyl-tRNA synthetase resolves intestinal inflammation in mice with T-cell transfer colitis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:276-81. [PMID: 23254300 DOI: 10.1128/cvi.00594-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The therapeutic effects of a controlled parasitic nematode infection on the course of inflammatory bowel disease (IBD) have been demonstrated in both animal and human models. However, the inability of individual well-characterized nematode proteins to recreate these beneficial effects has limited the application of component immunotherapy to human disease. The nematodes that cause chronic human lymphatic filariasis, Brugia malayi and Wuchereria bancrofti, are among the parasites that induce immune suppression. Filarial lymphatic pathology has been shown to involve NF-κB pathway-dependent production of vascular endothelial growth factor (VEGF), and stimulation of VEGF expression has also been reported by interleukin 8 (IL-8) via NF-κB pathways. Previously, we have shown that the filarial asparaginyl-tRNA synthetase (rBmAsnRS) interacts with IL-8 receptors using a combination of extracellular loops that differ from those bound by IL-8. To test the hypothesis that rBmAsnRS might induce an anti-inflammatory effect in vivo, we studied the effects of rBmAsnRS in an established murine colitis model using T-cell transfer mice. T-cell transfer colitis mice treated intraperitoneally with 100 μg of rBmAsnRS four times over 2 weeks showed resolution of cellular infiltration in the colonic mucosa, along with induction of a CD8(+) cellular response. In addition, rBmAsnRS induced a rise in IL-10 production from CD3(+) and lipopolysaccharide (LPS)- and cytosine phosphate guanosine (CPG)-stimulated splenic cells. In summary, this work demonstrates a novel anti-inflammatory nematode protein, supports the hygiene hypothesis, and supports continued refinement of alternative immunotherapies for treatment of IBD.
Collapse
|
8
|
Kron MA, Wang C, Vodanovic-Jankovic S, Howard OMZ, Kuhn LA. Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase. Mol Biochem Parasitol 2012; 185:66-9. [PMID: 22710390 DOI: 10.1016/j.molbiopara.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/30/2022]
Abstract
A wide range of secondary biological functions have been documented for eukaryotic aminoacyl-tRNA synthetases including roles in transcriptional regulation, mitochondrial RNA splicing, cell growth, and chemokine-like activities. The asparaginyl-tRNA synthetase (AsnRS) of the filarial nematode, Brugia malayi, is a highly expressed excretory-secretory molecule which activates interleukin 8 (IL-8) receptors via extracellular domains that are different from those used by IL-8. Recent success in determining the complete atomic structure of the B. malayi AsnRS provided the opportunity to map its chemokine-like activity. Chemotaxis assays demonstrated that IL-8-like activity is localized in a novel 80 amino acid amino terminal substructure. Structural homology searches revealed similarities between that domain in B. malayi AsnRS and substructures involved in receptor binding by human IL-8. These observations provide important new insights into how parasite-derived molecules may play a role in the modulation of immune cell function.
Collapse
Affiliation(s)
- Michael A Kron
- Department of Medicine, Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53092, USA.
| | | | | | | | | |
Collapse
|
9
|
Oliveira KC, Carvalho MLP, Verjovski-Almeida S, LoVerde PT. Effect of human TGF-β on the gene expression profile of Schistosoma mansoni adult worms. Mol Biochem Parasitol 2012; 183:132-9. [PMID: 22387759 DOI: 10.1016/j.molbiopara.2012.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/09/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-β signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-β has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-β. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTGF-β treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-β effects on parasite biology.
Collapse
Affiliation(s)
- Katia C Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
10
|
Nono JK, Pletinckx K, Lutz MB, Brehm K. Excretory/secretory-products of Echinococcus multilocularis larvae induce apoptosis and tolerogenic properties in dendritic cells in vitro. PLoS Negl Trop Dis 2012; 6:e1516. [PMID: 22363826 PMCID: PMC3283565 DOI: 10.1371/journal.pntd.0001516] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/19/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E.multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. METHODOLOGY/PRINCIPAL FINDINGS We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naïve T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. CONCLUSIONS This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.
Collapse
Affiliation(s)
- Justin Komguep Nono
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Katrien Pletinckx
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | - Manfred B. Lutz
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| |
Collapse
|
11
|
Galanti SE, Huang SCC, Pearce EJ. Cell death and reproductive regression in female Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6:e1509. [PMID: 22363825 PMCID: PMC3283563 DOI: 10.1371/journal.pntd.0001509] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/19/2011] [Indexed: 12/24/2022] Open
Abstract
The vitellarium is a highly proliferative organ, producing cells which are incorporated along with a fertilized ovum into the schistosome egg. Vitellarial growth fails to occur in virgin female schistosomes in single sex (female-only) infections, and involution of this tissue, which is accompanied by physical shrinkage of the entire worm, occurs when mature females sexually regress upon removal from their male partners. We have found that upon removal from their hosts into tissue culture, female parasites regress whether they are mated or not, but that cessation of egg production and a decline in expression of the vitelline gene p14 is delayed by mating. We used BrdU labeling to investigate whether there was a loss of proliferation in the vittelarium that might account for regression and found that the proliferation rate declined equally in paired and singled females once placed into culture. However, TUNEL staining and Caspase 3 activity measurements indicate that the loss of vitrellarial cellularity associated with regression is associated with profound apoptotic vitelline cell death, which is not apparent in the vitellaria of paired females immediately ex vivo, and which develops in vitro regardless of whether males are present or not. Furthermore, primordial vitellaria in virgin females have a high frequency of apoptotic cells but are characterized by a proliferation rate that is indistinguishable from that in fully developed vitellaria in mature paired females. Taken together, our data suggest that the vitelline proliferation rate is independent of pairing status. In contrast, the survival of vitelline cells, and therefore the development of the vitellarium, is highly male-dependent. Both processes are negatively affected by removal from the host regardless of whether male worms are present or not, and are unsustainable using standard tissue culture approaches. Schistosomes are parasitic trematode worms that infect more that 200 million people in 76 countries of the tropics and subtropics. These parasites are unusual amongst trematodes in having separate sexes. Mating of male and female schistosome involves the female residing within a specialized canal on the ventral surface of the male. Full sexual maturation of the female is dependent upon her residence within this niche. Sexual maturation involves the development of the vitellarium, a tissue that contributes critical cells to the egg. Remarkably, the vitellarium never grows in virgin females and regresses in mated female parasites once they are removed from males. Our study aimed to understand the basis for vitellarial growth and regression. We have found that the vitelline cells within the organ proliferate independently of males but are dependent on male parasites for their survival. Both cellular proliferation and death within this organ are negatively affected by removal from the host regardless of whether male worms are present or not, suggesting the presence within the host of a key factor that is not represented in standard tissue culture medium.
Collapse
Affiliation(s)
- Sarah E. Galanti
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Stanley Ching-Cheng Huang
- Trudeau Institute, Saranac Lake, New York, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward J. Pearce
- Trudeau Institute, Saranac Lake, New York, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Liu Y, Brindley PJ, Zeng Q, Li Y, Zhou J, Chen Y, Yang S, Zhang Z, Liu B, Cai L, McManus DP. Identification of phage display peptides with affinity for the tegument of Schistosoma japonicum schistosomula. Mol Biochem Parasitol 2011; 180:86-98. [PMID: 21930161 DOI: 10.1016/j.molbiopara.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 01/06/2023]
Abstract
Peptides, bound to the tegument of live Schistosoma japonicum schistosomula, were differentially screened by phage display in vitro using three rounds of reverse absorption and bio-panning. Three M13 phage peptides were isolated and identified by determination of their recovery rate, immunohistochemical localization, immunoblot analysis, and their anti-schistosomal effects in vivo and in vitro. Of the three, M13 phage peptide ZL4 (MppZL4, YSGLQDSSLRLR, 1.4kDa, pI 8.8) bound to the tegument of mechanically transformed schistosomula and to other developmental stages of S. japonicum from the mammalian host. By contrast, MppZL4 did not bind to the surface of cercariae. To further examine its binding properties, MppZL4 was conjugated to Rhodamine B (RhB-YSGLQDSSLRLR, RhB-ZL4) and a peptide control (RhB-AIPYFSGILQWR, RhB-12P) was similarly synthesized. The binding capacities of RhB-ZL4 to the surface membrane of S. japonicum schistosomula in vitro and of S. japonicum adult worms in vivo were examined and revealed specificity for binding. When examined for anti-parasite activity, both MppZL4 and RhB-ZL4 exhibited a potent schistosomicidal effect in vitro. Further MppZL4 also affected the growth and development of schistosomula in vivo. These findings extend previous studies showing that phage display techniques can recover polypeptides that bind specifically to living schistosomes and, moreover, that these bound peptides have the potential to inhibit key physiological processes in these parasites. Our findings suggest further that ectogenic polypeptides, which can bind to the tegument of S. japonicum, might be adapted as vectors to deliver experimental probes and/or pharmacologically relevant compounds to the schistosome tegument, including drugs and immunological mediators.
Collapse
Affiliation(s)
- Yan Liu
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University (CSU), 410013 Tongzipo Road 172#, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|