1
|
Puszko AK, Batista FA, Ejjoummany A, Bouillon A, Maurel M, Adler P, Legru A, Martinez M, Ortega Varga L, Hadjadj M, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Towards Improved Peptidic α-Ketoamide Inhibitors of the Plasmodial Subtilisin-Like SUB1: Exploration of N-Terminal Extensions and Cyclic Constraints. ChemMedChem 2025; 20:e202400924. [PMID: 39832214 DOI: 10.1002/cmdc.202400924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'. Despite compounds with high inhibitory potencies were identified, their antiparasitic activity remained limited, probably due to insufficient cell permeability. Here, we present our efforts to improve it through the N-terminal introduction of basic or hydrophobic moieties and/or cyclization. Compared to our previous reference compounds 1/2 (Ac-Ile/Cpg-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we identified analogues with improved Pf-/PvSUB1 inhibition (IC50 values in the 10-20 nM range) and parasite growth inhibition (up to 98 % at 100 μM). The increase in potency was mainly observed when increasing the overall hydrophobicity of the compounds. Conjugation to the cell penetrating peptide octa-arginine was also favorable. Finally, the crystal structure of PvSUB1 in complex with compound 15 has been determined at 1.6 Å resolution. Compared to compound 1, this structure extended to the P5 residue and revealed two additional hydrogen bonds.
Collapse
Affiliation(s)
- Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
2
|
Arora G, Černý J. Plasmodium proteases and their role in development of Malaria vaccines. ADVANCES IN PARASITOLOGY 2024; 126:253-273. [PMID: 39448193 DOI: 10.1016/bs.apar.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia
| |
Collapse
|
3
|
Withers-Martinez C, George R, Maslen S, Jean L, Hackett F, Skehel M, Blackman MJ. The malaria parasite egress protease SUB1 is activated through precise, plasmepsin X-mediated cleavage of the SUB1 prodomain. Biochim Biophys Acta Gen Subj 2024; 1868:130665. [PMID: 38969256 DOI: 10.1016/j.bbagen.2024.130665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.
Collapse
Affiliation(s)
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Létitia Jean
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
4
|
Sojka D, Šnebergerová P. Advances in protease inhibition-based chemotherapy: A decade of insights from Malaria research. ADVANCES IN PARASITOLOGY 2024; 126:205-227. [PMID: 39448191 DOI: 10.1016/bs.apar.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
6
|
Legru A, Batista FA, Puszko AK, Bouillon A, Maurel M, Martinez M, Ejjoummany A, Ortega Varga L, Adler P, Méchaly A, Hadjadj M, Sosnowski P, Hopfgartner G, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Insights from structure-activity relationships and the binding mode of peptidic α-ketoamide inhibitors of the malaria drug target subtilisin-like SUB1. Eur J Med Chem 2024; 269:116308. [PMID: 38503166 DOI: 10.1016/j.ejmech.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 μM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 μM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.
Collapse
Affiliation(s)
- Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Ariel Méchaly
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France.
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
7
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
8
|
Putaporntip C, Kuamsab N, Rojrung R, Seethamchai S, Jongwutiwes S. Structural organization and sequence diversity of the complete nucleotide sequence encoding the Plasmodium malariae merozoite surface protein-1. Sci Rep 2022; 12:15591. [PMID: 36114242 PMCID: PMC9481586 DOI: 10.1038/s41598-022-19049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
The merozoite surface protein-1 (MSP1) is a prime candidate for an asexual blood stage vaccine against malaria. However, polymorphism in this antigen could compromise the vaccine’s efficacy. Although the extent of sequence variation in MSP1 has been analyzed from various Plasmodium species, little is known about structural organization and diversity of this locus in Plasmodium malariae (PmMSP1). Herein, we have shown that PmMSP1 contained five conserved and four variable blocks based on analysis of the complete coding sequences. Variable blocks were characterized by short insertion and deletion variants (block II), polymorphic nonrepeat sequences (block IV), complex repeat structure with size variation (block VI) and degenerate octapeptide repeats (block VIII). Like other malarial MSP1s, evidences of intragenic recombination have been found in PmMSP1. The rate of nonsynonymous nucleotide substitutions significantly exceeded that of synonymous nucleotide substitutions in block IV, suggesting positive selection in this region. Codon-based analysis of deviation from neutrality has identified a codon under purifying selection located in close proximity to the homologous region of the 38 kDa/42 kDa cleavage site of P. falciparum MSP1. A number of predicted linear B-cell epitopes were identified across both conserved and variable blocks of the protein. However, polymorphism in repeat-containing blocks resulted in alteration of the predicted linear B-cell epitope scores across variants. Although a number of predicted HLA-class II-binding peptides were identified in PmMSP1, all variants of block IV seemed not to be recognized by common HLA-class II alleles among Thai population, suggesting that diversity in this positive selection region could probably affect host immune recognition. The data on structural diversity in PmMSP1 could be useful for further studies such as vaccine development and strain characterization of this neglected malaria parasite.
Collapse
|
9
|
Gomes PS, Carneiro MPD, Machado PDA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-Vidal V, Sodero ACR, De-Simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022; 44:2089-2106. [PMID: 35678670 PMCID: PMC9164065 DOI: 10.3390/cimb44050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Monique Pacheco Duarte Carneiro
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Patrícia de Almeida Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Valter Viana de Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Alessandra Marcia da Fonseca-Martins
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | | | | | - Ana Paula Cabral de Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.V.M.P.d.S.); (A.C.R.S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Diseases Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
10
|
Bahl V, Chaddha K, Mian SY, Holder AA, Knuepfer E, Gaur D. Genetic disruption of Plasmodium falciparum Merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes. Sci Rep 2021; 11:19183. [PMID: 34584166 PMCID: PMC8479079 DOI: 10.1038/s41598-021-98707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.
Collapse
Affiliation(s)
- Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
12
|
Tan MSY, Koussis K, Withers‐Martinez C, Howell SA, Thomas JA, Hackett F, Knuepfer E, Shen M, Hall MD, Snijders AP, Blackman MJ. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 2021; 40:e107226. [PMID: 33932049 PMCID: PMC8167364 DOI: 10.15252/embj.2020107226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein β-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in β-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent β-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | | | | | - Steven A Howell
- Protein Analysis and Proteomics PlatformThe Francis Crick InstituteLondonUK
| | - James A Thomas
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| | - Fiona Hackett
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | - Ellen Knuepfer
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | | | - Michael J Blackman
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
13
|
Sojka D, Šnebergerová P, Robbertse L. Protease Inhibition-An Established Strategy to Combat Infectious Diseases. Int J Mol Sci 2021; 22:5762. [PMID: 34071206 PMCID: PMC8197795 DOI: 10.3390/ijms22115762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Therapeutic agents with novel mechanisms of action are urgently needed to counter the emergence of drug-resistant infections. Several decades of research into proteases of disease agents have revealed enzymes well suited for target-based drug development. Among them are the three recently validated proteolytic targets: proteasomes of the malarial parasite Plasmodium falciparum, aspartyl proteases of P. falciparum (plasmepsins) and the Sars-CoV-2 viral proteases. Despite some unfulfilled expectations over previous decades, the three reviewed targets clearly demonstrate that selective protease inhibitors provide effective therapeutic solutions for the two most impacting infectious diseases nowadays-malaria and COVID-19.
Collapse
Affiliation(s)
- Daniel Sojka
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; (P.Š.); (L.R.)
| | - Pavla Šnebergerová
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; (P.Š.); (L.R.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, CZ-37005 České Budějovice, Czech Republic
| | - Luïse Robbertse
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; (P.Š.); (L.R.)
| |
Collapse
|
14
|
Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. Proc Natl Acad Sci U S A 2021; 118:2022696118. [PMID: 33975947 PMCID: PMC8157947 DOI: 10.1073/pnas.2022696118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.
Collapse
|
15
|
Ojha PK, Kumar V, Roy J, Roy K. Recent advances in quantitative structure-activity relationship models of antimalarial drugs. Expert Opin Drug Discov 2021; 16:659-695. [PMID: 33356651 DOI: 10.1080/17460441.2021.1866535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Due to emerging resistance to the first-line artemisinin-based antimalarials and lack of efficient vaccines and limited chemotherapeutic alternatives, there is an urgent need to develop new antimalarial compounds. In this regard, quantitative structure-activity relationship (QSAR) modeling can provide essential information about required physicochemical properties and structural parameters of antimalarial drug candidates. AREAS COVERED The authors provide an overview of recent advances of QSAR models covering different classes of antimalarial compounds as well as molecular docking studies of compounds acting on different antimalarial targets reported in the last 5 years (2015-2019) to explore the mode of interactions between the molecules and the receptors. We have tried to cover most of the QSAR models of antimalarials (along with results from some other related computational methods) reported during 2015-2019. EXPERT OPINION Many QSAR reports for antimalarial compounds are based on small number of data points. This review infers that most of the present work deals with analog-based QSAR approach with a limited applicability domain (a very few cases with wide domain) whereas novel target-based computational approach is reported in very few cases, which leads to huge voids of computational work based on novel antimalarial targets.
Collapse
Affiliation(s)
- Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Joyita Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
16
|
A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem J 2020; 477:525-540. [PMID: 31942933 PMCID: PMC6993865 DOI: 10.1042/bcj20190918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Collapse
|
17
|
Tan QW, Mutwil M. Malaria.tools-comparative genomic and transcriptomic database for Plasmodium species. Nucleic Acids Res 2020; 48:D768-D775. [PMID: 31372645 PMCID: PMC6943069 DOI: 10.1093/nar/gkz662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria is a tropical parasitic disease caused by the Plasmodium genus, which resulted in an estimated 219 million cases of malaria and 435 000 malaria-related deaths in 2017. Despite the availability of the Plasmodium falciparum genome since 2002, 74% of the genes remain uncharacterized. To remedy this paucity of functional information, we used transcriptomic data to build gene co-expression networks for two Plasmodium species (P. falciparum and P. berghei), and included genomic data of four other Plasmodium species, P. yoelii, P. knowlesi, P. vivax and P. cynomolgi, as well as two non-Plasmodium species from the Apicomplexa, Toxoplasma gondii and Theileria parva. The genomic and transcriptomic data were incorporated into the resulting database, malaria.tools, which is preloaded with tools that allow the identification and cross-species comparison of co-expressed gene neighbourhoods, clusters and life stage-specific expression, thus providing sophisticated tools to predict gene function. Moreover, we exemplify how the tools can be used to easily identify genes relevant for pathogenicity and various life stages of the malaria parasite. The database is freely available at www.malaria.tools.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
18
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
19
|
Mishra M, Singh V, Singh S. Structural Insights Into Key Plasmodium Proteases as Therapeutic Drug Targets. Front Microbiol 2019; 10:394. [PMID: 30891019 PMCID: PMC6411711 DOI: 10.3389/fmicb.2019.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria, caused by protozoan of genus Plasmodium, remains one of the highest mortality infectious diseases. Malaria parasites have a complex life cycle, easily adapt to their host’s immune system and have evolved with an arsenal of unique proteases which play crucial roles in proliferation and survival within the host cells. Owing to the existing knowledge of enzymatic mechanisms, 3D structures and active sites of proteases, they have been proven to be opportune for target based drug development. Here, we discuss in depth the crucial roles of essential proteases in Plasmodium life cycle and particularly focus on highlighting the atypical “structural signatures” of key parasite proteases which have been exploited for drug development. These features, on one hand aid parasites pathogenicity while on the other hand could be effective in designing targeted and very specific inhibitors for counteracting them. We conclude that Plasmodium proteases are suitable as multistage targets for designing novel drugs with new modes of action to combat malaria.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N, Maco B, Collins CR, Blackman MJ, Kursula I, Heussler V, Brochet M, Soldati-Favre D. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 2018; 358:522-528. [PMID: 29074775 DOI: 10.1126/science.aaf8675] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis by secretory organelles is important for malaria parasite invasion and egress. Many parasite effector proteins, including perforins, adhesins, and proteases, are extensively proteolytically processed both pre- and postexocytosis. Here we report the multistage antiplasmodial activity of the aspartic protease inhibitor hydroxyl-ethyl-amine-based scaffold compound 49c. This scaffold inhibits the preexocytosis processing of several secreted rhoptry and microneme proteins by targeting the corresponding maturases plasmepsins IX (PMIX) and X (PMX), respectively. Conditional excision of PMIX revealed its crucial role in invasion, and recombinantly active PMIX and PMX cleave egress and invasion factors in a 49c-sensitive manner.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut. Infect Immun 2017; 85:IAI.00139-17. [PMID: 28559405 PMCID: PMC5520436 DOI: 10.1128/iai.00139-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium invasion of mosquito midgut screen candidate 2), a Plasmodium berghei protein with structural similarities to subtilisin-like proteins. PIMMS2 orthologs are present in the genomes of all plasmodia and are mapped between the subtilisin-encoding genes SUB1 and SUB3. P. berghei PIMMS2 is specifically expressed in zygotes and ookinetes and is localized on the ookinete surface. Loss of PIMMS2 function through gene disruption by homologous recombination leads to normal development of motile ookinetes that exhibit a severely impaired capacity to traverse the mosquito midgut and transform to oocysts. Genetic complementation of the disrupted locus with a mutated PIMMS2 allele reveals that amino acid residues corresponding to the putative subtilisin-like catalytic triad are important but not essential for protein function. Our data demonstrate that PIMMS2 is a novel ookinete-specific protein that promotes parasite traversal of the mosquito midgut epithelium and establishment of mosquito infection.
Collapse
|
22
|
An insertion in the methyltransferase domain of P. falciparum trimethylguanosine synthase harbors a classical nuclear localization signal. Mol Biochem Parasitol 2016; 210:58-70. [PMID: 27619053 DOI: 10.1016/j.molbiopara.2016.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/12/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
Abstract
Many Plasmodium falciparum proteins do not share homology with, and are generally longer than their respective orthologs. This, to some extent, can be attributed to insertions. Here, we studied a P. falciparum RNA hypermethylase, trimethylguanosine synthase (PfTGS1) that harbors a 76 amino acid insertion in its methyltransferase domain. Bioinformatics analysis revealed that this insertion was present in TGS1 orthologs from other Plasmodium species as well. Interestingly, a classical nuclear localization signal (NLS) was predicted in the insertions of primate parasite TGS1 proteins. To check whether these predicted NLS are functional, we developed an in vivo heterologous system using S. cerevisiae. The predicted NLS when fused to dimeric GFP were able to localize the fusion protein to the nucleus in yeast indicating that it is indeed recognized by the yeast nuclear import machinery. We further showed that the PfTGS1 NLS binds to P. falciparum importin-α in vitro, confirming that the NLS is also recognized by the P. falciparum classical nuclear import machinery. Thus, in this study we report a novel function of the insertion in PfTGS1.
Collapse
|
23
|
Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, Watermeyer JM, Fobes ET, Martin SR, Saibil HR, Wright GJ, Treeck M, Epp C, Blackman MJ. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe 2016; 18:433-44. [PMID: 26468747 PMCID: PMC4608996 DOI: 10.1016/j.chom.2015.09.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. Merozoite surface protein MSP1 processing is important for P. falciparum viability Proteolytic processing activates MSP1’s heparin and spectrin-binding functions The rate of MSP1 processing governs the kinetics of parasite egress Loss of parasite surface MSP1 results in a severe egress defect
Collapse
Affiliation(s)
- Sujaan Das
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Nadine Hertrich
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Abigail J Perrin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | | | - Christine R Collins
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Matthew L Jones
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Jean M Watermeyer
- Department of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Elmar T Fobes
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Stephen R Martin
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Helen R Saibil
- Department of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Gavin J Wright
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Moritz Treeck
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Christian Epp
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Michael J Blackman
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK; Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
24
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Brogi S, Giovani S, Brindisi M, Gemma S, Novellino E, Campiani G, Blackman MJ, Butini S. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. J Mol Graph Model 2016; 64:121-130. [PMID: 26826801 PMCID: PMC5276822 DOI: 10.1016/j.jmgm.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 11/23/2022]
Abstract
Homology models of four SUB1 orthologues from P. falciparum species were produced. We analyzed the binding mode of our previous difluorostatone inhibitors to six SUB1. In vitro activity of our difluorostatone-based inhibitors was correctly predicted. We derived a structure-based pan-SUB1 pharmacophore, and validated it in silico. We confirmed that development of pan-SUB1 inhibitors is a feasible task.
Plasmodium falciparum subtilisin-like protease 1 (SUB1) is a novel target for the development of innovative antimalarials. We recently described the first potent difluorostatone-based inhibitors of the enzyme ((4S)-(N-((N-acetyl-l-lysyl)-l-isoleucyl-l-threonyl-l-alanyl)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (1) and (4S)-(N-((N-acetyl-l-isoleucyl)-l-threonyl-l-alanylamino)-2,2-difluoro-3-oxo-4-aminopentanoyl)glycine (2)). As a continuation of our efforts towards the definition of the molecular determinants of enzyme-inhibitor interaction, we herein propose the first comprehensive computational investigation of the SUB1 catalytic core from six different Plasmodium species, using homology modeling and molecular docking approaches. Investigation of the differences in the binding sites as well as the interactions of our inhibitors 1,2 with all SUB1 orthologues, allowed us to highlight the structurally relevant regions of the enzyme that could be targeted for developing pan-SUB1 inhibitors. According to our in silico predictions, compounds 1,2 have been demonstrated to be potent inhibitors of SUB1 from all three major clinically relevant Plasmodium species (P. falciparum, P. vivax, and P. knowlesi). We next derived multiple structure-based pharmacophore models that were combined in an inclusive pan-SUB1 pharmacophore (SUB1-PHA). This latter was validated by applying in silico methods, showing that it may be useful for the future development of potent antimalarial agents.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Farmacia, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
27
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
28
|
Giovani S, Penzo M, Butini S, Brindisi M, Gemma S, Novellino E, Campiani G, Blackman MJ, Brogi S. Plasmodium falciparum subtilisin-like protease 1: discovery of potent difluorostatone-based inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra01170a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We here describe the development of potent inhibitors of the malaria parasite enzyme subtilisin-like protease 1 (PfSUB1).
Collapse
Affiliation(s)
- Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Maria Penzo
- Division of Parasitology
- MRC National Institute for Medical Research
- London
- UK
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dip. di Farmacia
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | | | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| |
Collapse
|
29
|
|
30
|
Substrate derived peptidic α-ketoamides as inhibitors of the malarial protease PfSUB1. Bioorg Med Chem Lett 2014; 24:4486-4489. [PMID: 25129616 DOI: 10.1016/j.bmcl.2014.07.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/19/2023]
Abstract
Peptidic α-ketoamides have been developed as inhibitors of the malarial protease PfSUB1. The design of inhibitors was based on the best known endogenous PfSUB1 substrate sequence, leading to compounds with low micromolar to submicromolar inhibitory activity. SAR studies were performed indicating the requirement of an aspartate mimicking the P1' substituent and optimal P1-P4 length of the non-prime part. The importance of each of the P1-P4 amino acid side chains was investigated, revealing crucial interactions and size limitations.
Collapse
|
31
|
Abstract
Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.
Collapse
|
32
|
Synthesis and Antimalarial Activities of Some Novel 2-Pyridones. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/s13369-014-1193-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Giovani S, Penzo M, Brogi S, Brindisi M, Gemma S, Novellino E, Savini L, Blackman MJ, Campiani G, Butini S. Rational design of the first difluorostatone-based PfSUB1 inhibitors. Bioorg Med Chem Lett 2014; 24:3582-6. [PMID: 24909083 DOI: 10.1016/j.bmcl.2014.05.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
The etiological agent of the most dangerous form of malaria, Plasmodium falciparum, has developed resistance or reduced sensitivity to the majority of the drugs available to treat this deadly disease. Innovative antimalarial therapies are therefore urgently required. P. falciparum serine protease subtilisin-like protease 1 (PfSUB1) has been identified as a key enzyme for merozoite egress from red blood cells and invasion. We present herein the rational design, synthesis, and biological evaluation of novel and potent difluorostatone-based inhibitors. Our bioinformatic-driven studies resulted in the identification of compounds 1a, b as potent and selective PfSUB1 inhibitors. The enzyme/inhibitor interaction pattern herein proposed will pave the way to the future optimization of this class of promising enzyme inhibitors.
Collapse
Affiliation(s)
- Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Maria Penzo
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Farmacia, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luisa Savini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy.
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Dip. di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche sulla Malaria (CIRM), University of Perugia, Perugia, Italy
| |
Collapse
|
34
|
The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat Commun 2014; 5:3726. [PMID: 24785947 PMCID: PMC4024747 DOI: 10.1038/ncomms4726] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022] Open
Abstract
Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite.
Collapse
|
35
|
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao KV. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014; 9:e90972. [PMID: 24618707 PMCID: PMC3949715 DOI: 10.1371/journal.pone.0090972] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/06/2014] [Indexed: 02/04/2023] Open
Abstract
The study was planned to screen the marine actinobacterial extract for the protease inhibitor activity and its anti- Pf activity under in vitro and in vivo conditions. Out of 100 isolates, only 3 isolates exhibited moderate to high protease inhibitor activities on trypsin, chymotrypsin and proteinase K. Based on protease inhibitor activity 3 isolates were chosen for further studies. The potential isolate was characterized by polyphasic approach and identified as Streptomyces sp LK3 (JF710608). The lead compound was identified as peptide from Streptomyces sp LK3. The double-reciprocal plot displayed inhibition mode is non-competitive and it confirms the irreversible nature of protease inhibitor. The peptide from Streptomyces sp LK3 extract showed significant anti plasmodial activity (IC50: 25.78 µg/ml). In in vivo model, the highest level of parasitemia suppression (≈45%) was observed in 600 mg/kg of the peptide. These analyses revealed no significant changes were observed in the spleen and liver tissue during 8 dpi. The results confirmed up-regulation of TGF-β and down regulation of TNF-α in tissue and serum level in PbA infected peptide treated mice compared to PbA infection. The results obtained infer that the peptide possesses anti- Pf activity activity. It suggests that the extracts have novel metabolites and could be considered as a potential source for drug development.
Collapse
MESH Headings
- Actinobacteria/chemistry
- Actinobacteria/genetics
- Actinobacteria/metabolism
- Animals
- Antimalarials/chemistry
- Antimalarials/isolation & purification
- Antimalarials/pharmacology
- Aquatic Organisms/chemistry
- Aquatic Organisms/metabolism
- Base Composition
- Chymotrypsin/antagonists & inhibitors
- Chymotrypsin/metabolism
- Cluster Analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Inhibitory Concentration 50
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/parasitology
- Male
- Mice
- Models, Biological
- Models, Molecular
- Parasitic Sensitivity Tests
- Plasmodium falciparum/drug effects
- Protease Inhibitors/chemistry
- Protease Inhibitors/isolation & purification
- Protease Inhibitors/pharmacology
- Protein Conformation
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Spleen/drug effects
- Spleen/metabolism
- Spleen/pathology
- Trypsin/metabolism
Collapse
Affiliation(s)
- L. Karthik
- Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil nadu, India
| | - Gaurav Kumar
- Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil nadu, India
| | - Tarun Keswani
- Immunology Lab, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - S. Sarath Chandar
- Genetics Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil nadu, India
| | - K. V. Bhaskara Rao
- Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil nadu, India
- * E-mail:
| |
Collapse
|
36
|
Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets. Interdiscip Perspect Infect Dis 2014; 2014:453186. [PMID: 24799897 PMCID: PMC3988940 DOI: 10.1155/2014/453186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.
Collapse
|
37
|
Suarez C, Volkmann K, Gomes AR, Billker O, Blackman MJ. The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog 2013; 9:e1003811. [PMID: 24348254 PMCID: PMC3861531 DOI: 10.1371/journal.ppat.1003811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
Transmission of the malaria parasite to its vertebrate host involves an obligatory exoerythrocytic stage in which extensive asexual replication of the parasite takes place in infected hepatocytes. The resulting liver schizont undergoes segmentation to produce thousands of daughter merozoites. These are released to initiate the blood stage life cycle, which causes all the pathology associated with the disease. Whilst elements of liver stage merozoite biology are similar to those in the much better-studied blood stage merozoites, little is known of the molecular players involved in liver stage merozoite production. To facilitate the study of liver stage biology we developed a strategy for the rapid production of complex conditional alleles by recombinase mediated engineering in Escherichia coli, which we used in combination with existing Plasmodium berghei deleter lines expressing Flp recombinase to study subtilisin-like protease 1 (SUB1), a conserved Plasmodium serine protease previously implicated in blood stage merozoite maturation and egress. We demonstrate that SUB1 is not required for the early stages of intrahepatic growth, but is essential for complete development of the liver stage schizont and for production of hepatic merozoites. Our results indicate that inhibitors of SUB1 could be used in prophylactic approaches to control or block the clinically silent pre-erythrocytic stage of the malaria parasite life cycle. Malaria is caused by a single-celled parasite and is transmitted by the bite of an infected mosquito. The inoculated sporozoite forms of the parasite invade liver cells where they replicate, eventually releasing thousands of merozoites into the bloodstream to initiate the blood stage parasite life cycle which causes clinical malaria. The liver stage of the parasite life cycle is asymptomatic, so it is widely considered a potential target for prophylactic vaccine- or drug-based approaches designed to prevent infection. In this study, we use a robust, highly efficient gene engineering approach called recombineering, combined with a conditional gene deletion strategy to examine the function in liver stages of a parasite protease called SUB1, previously implicated in release of blood stage parasites. We show that SUB1 is expressed in the liver stage schizont and that the protease is essential for production of liver stage merozoites. Our results enhance our understanding of malarial liver stage biology, provide new tools for studying essential gene function in malaria, and suggest that inhibitors of SUB1 could be used as prophylactic drugs to prevent clinical malaria.
Collapse
Affiliation(s)
- Catherine Suarez
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Katrin Volkmann
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (OB); (MJB)
| | - Michael J. Blackman
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
- * E-mail: (OB); (MJB)
| |
Collapse
|
38
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Blackman MJ, Carruthers VB. Recent insights into apicomplexan parasite egress provide new views to a kill. Curr Opin Microbiol 2013; 16:459-64. [PMID: 23725669 PMCID: PMC3755044 DOI: 10.1016/j.mib.2013.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023]
Abstract
A hallmark of apicomplexan pathogens such as Plasmodium, Toxoplasma and Cryptosporidium is that they invade, replicate within, and then egress from their host cells. Egress usually results in lysis of the host cell, with deleterious consequences for the host. In the case of malaria, for example, much of the disease pathology is associated with cyclical waves of host erythrocyte destruction. This review highlights recent advances in mapping the signaling pathways that lead to egress and the parasite molecules involved in responding to and transmitting those signals. The review also discusses new findings for effector molecules that mediate disruption of the bounding membranes that enclose the intracellular parasite and the manner in which membrane rupture occurs to finally release invasive forms of the parasite.
Collapse
Affiliation(s)
- Michael J. Blackman
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Vern B. Carruthers
- Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| |
Collapse
|
40
|
Bouillon A, Giganti D, Benedet C, Gorgette O, Pêtres S, Crublet E, Girard-Blanc C, Witkowski B, Ménard D, Nilges M, Mercereau-Puijalon O, Stoven V, Barale JC. In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound. J Biol Chem 2013; 288:18561-73. [PMID: 23653352 PMCID: PMC3689996 DOI: 10.1074/jbc.m113.456764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.
Collapse
Affiliation(s)
- Anthony Bouillon
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - David Giganti
- the Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France
- CNRS, UMR3258, F-75015 Paris, France
| | - Christophe Benedet
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Olivier Gorgette
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - Stéphane Pêtres
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Elodie Crublet
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Christine Girard-Blanc
- the Institut Pasteur, Proteopole, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Benoit Witkowski
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Didier Ménard
- the Pasteur Institute of Cambodia, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Michael Nilges
- the Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, F-75015 Paris, France
- CNRS, UMR3258, F-75015 Paris, France
| | - Odile Mercereau-Puijalon
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| | - Véronique Stoven
- the Center for Computational Biology, Mines-ParisTech, Fontainebleau F-77300 France, and
- the Institut Curie, INSERM U900, F-75248 Paris, France
| | - Jean-Christophe Barale
- From the Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France
- CNRS, URA2581, F-75015 Paris, France
| |
Collapse
|
41
|
Armijos Jaramillo VD, Vargas WA, Sukno SA, Thon MR. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum. PLoS One 2013; 8:e59078. [PMID: 23554975 PMCID: PMC3598655 DOI: 10.1371/journal.pone.0059078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150–155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.
Collapse
Affiliation(s)
- Vinicio Danilo Armijos Jaramillo
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Walter Alberto Vargas
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Serenella Ana Sukno
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Michael R. Thon
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
- * E-mail:
| |
Collapse
|
42
|
Fulle S, Withers-Martinez C, Blackman MJ, Morris GM, Finn PW. Molecular determinants of binding to the Plasmodium subtilisin-like protease 1. J Chem Inf Model 2013; 53:573-83. [PMID: 23414065 PMCID: PMC3608215 DOI: 10.1021/ci300581z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PfSUB1, a subtilisin-like protease of the human malaria parasite Plasmodium falciparum, is known to play important roles during the life cycle of the parasite and has emerged as a promising antimalarial drug target. In order to provide a detailed understanding of the origin of binding determinants of PfSUB1 substrates, we performed molecular dynamics simulations in combination with MM-GBSA free energy calculations using a homology model of PfSUB1 in complex with different substrate peptides. Key interactions, as well as residues that potentially make a major contribution to the binding free energy, are identified at the prime and nonprime side of the scissile bond and comprise peptide residues P4 to P2'. This finding stresses the requirement for peptide substrates to interact with both prime and nonprime side residues of the PfSUB1 binding site. Analyzing the energetic contributions of individual amino acids within the peptide-PfSUB1 complexes indicated that van der Waals interactions and the nonpolar part of solvation energy dictate the binding strength of the peptides and that the most favorable interactions are formed by peptide residues P4 and P1. Hot spot residues identified in PfSUB1 are dispersed over the entire binding site, but clustered areas of hot spots also exist and suggest that either the S4-S2 or the S1-S2' binding site should be exploited in efforts to design small molecule inhibitors. The results are discussed with respect to which binding determinants are specific to PfSUB1 and, therefore, might allow binding selectivity to be obtained.
Collapse
Affiliation(s)
- Simone Fulle
- InhibOx Ltd. , Oxford Centre for Innovation, New Road, Oxford OX1 1BY, U.K
| | | | | | | | | |
Collapse
|
43
|
Ruecker A, Shea M, Hackett F, Suarez C, Hirst EMA, Milutinovic K, Withers-Martinez C, Blackman MJ. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 2012; 287:37949-63. [PMID: 22984267 PMCID: PMC3488066 DOI: 10.1074/jbc.m112.400820] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte.
Collapse
Affiliation(s)
- Andrea Ruecker
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael Shea
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Fiona Hackett
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Catherine Suarez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Elizabeth M. A. Hirst
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Katarina Milutinovic
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Chrislaine Withers-Martinez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael J. Blackman
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
44
|
Quinolylhydrazones as novel inhibitors of Plasmodium falciparum serine protease PfSUB1. Bioorg Med Chem Lett 2012; 22:5317-21. [PMID: 22796182 DOI: 10.1016/j.bmcl.2012.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum subtilisin-like protease 1 (PfSUB1) is a serine protease that plays key roles in the egress of the parasite from red blood cells and in preparing the released merozoites for the subsequent invasion of new erythrocytes. The development of potent and selective PfSUB1 inhibitors could pave the way to the discovery of potential antimalarial drugs endowed with an innovative mode of action and consequently able to overcome the current problems of resistance to established chemotherapies. Through the screening of a proprietary library of compounds against PfSUB1, we identified hydrazone 2 as a hit compound. Here we report a preliminary investigation of the structure-activity relationships for a class of PfSUB1 inhibitors related to our identified hit.
Collapse
|
45
|
Baum J, Saliba KJ, Cooke BM. Editorial--Molecular Approaches to Malaria 2012 (MAM 2012). Int J Parasitol 2012; 42:517. [PMID: 22656266 DOI: 10.1016/j.ijpara.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|