1
|
Chan TCL, Yagound B, Brown GP, Eyck HJF, Shine R, Rollins LA. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina. Mol Ecol 2025; 34:e17587. [PMID: 39544005 DOI: 10.1111/mec.17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Parasites may suppress the immune function of infected hosts using microRNAs (miRNAs) to prevent protein production. Nonetheless, little is known about the diversity of miRNAs and their mode(s) of action. In this study, we investigated the effects of infection by a parasitic lungworm (Rhabdias pseudosphaerocephala) on miRNA and mRNA expression of its host, the invasive cane toad (Rhinella marina). To investigate the cane toad's innate and adaptive immune response to this parasite, we compared miRNA and mRNA expression in naïve toads that had never been infected by lungworms to toads that were infected with lungworms for the first time in their lives, and toads that were infected the second time in their lives (i.e., had two consecutive infections). In total, we identified 101 known miRNAs and 86 potential novel miRNAs. Compared to uninfected and single-infection toads, multiple-infection animals drastically downregulated three miRNAs. These miRNAs were associated with gene pathways related to the immune response, potentially reflecting the immunosuppression of cane toads by their parasites. Infected hosts did not respond with substantially differential mRNA transcription; only one gene was differentially expressed between control and single-infection hosts. Our study suggests that miRNA may play an important role in mediating host-parasite interactions in a system in which an ongoing range expansion by the host has generated substantial divergence in host-parasite interactions.
Collapse
Affiliation(s)
- Tsering C L Chan
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Boris Yagound
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Gregory P Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harrison J F Eyck
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Prosberg MV, Halkjær SI, Lo B, Bremerskov-Köser C, Ilvemark JFKF, Seidelin JB, Kristiansen MF, Kort A, Kallemose T, Bager P, Bendtsen F, Nordgaard-Lassen I, Kapel HS, Kringel H, Kapel CMO, Petersen AM. Probiotic Treatment of Ulcerative Colitis with Trichuris Suis Ova: A Randomised, Double-blinded, Placebo-controlled Clinical Trial [the PROCTO Trial]. J Crohns Colitis 2024; 18:1879-1893. [PMID: 38899778 DOI: 10.1093/ecco-jcc/jjae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS To demonstrate that administration of 7500 Trichuris suis ova [TSO] every second week over 24 weeks would reduce the intestinal inflammation in moderate ulcerative colitis. METHODS A single-centre, randomised, double-blinded, placebo-controlled, phase 2b clinical trial of 7500 Trichuris suis ova every 2 weeks for 24 weeks compared with placebo in moderate activity of ulcerative colitis [Mayo score 6-10] were performed. Primary outcome: clinical remission; secondary outcomes: clinical response at 24 weeks, complete corticosteroid-free clinical remission, endoscopic remission, symptomatic remission at 12 and 24 weeks, and partial Mayo score over time. RESULTS In all, 119 patients were randomised to Trichuris suis ova [n = 60] or placebo [n = 59]. At Week 24, clinical remission was achieved in 30% of Trichuris suis ova-treated vs 34% of placebo-treated (risk ratio [RR] = 0.89; 95% confidence interval [CI]: 0.52-1.50; p = 0.80, intention to treat). No difference was found in clinical response in any of the clinical response subgroups. However, in patients who did not need treatment with corticosteroids during the trial, a temporary effect of TSO was seen in the analysis of symptomatic remission at Week 12 [p = 0.01] and the partial Mayo score at Week 14 and Week 18 [p < 0.05 and p = 0.02]. CONCLUSIONS Compared with placebo, Trichuris suis ova administration was not superior in achieving clinical remission at Week 24 in ulcerative colitis or in achieving clinical Mayo score reduction, complete corticosteroid-free clinical remission, or endoscopic remission. However, Trichuris suis ova treatment induced symptomatic temporary remission at Week 12.
Collapse
Affiliation(s)
- Michelle V Prosberg
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Sofie I Halkjær
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Bobby Lo
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Christina Bremerskov-Köser
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Johan F K F Ilvemark
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital - Gentofte and Herlev, Herlev, Denmark
| | - Jakob B Seidelin
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital - Gentofte and Herlev, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Malene F Kristiansen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anja Kort
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Peter Bager
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Inge Nordgaard-Lassen
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | | | - Christian M O Kapel
- ParaTech A/S, Hoersholm, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andreas M Petersen
- Gastrounit, Medical Division and Copenhagen IBD Center, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
3
|
Mules TC, Lavender B, Maclean K, Vacca F, Noble SL, Yumnam B, Te Kawa T, Cait A, Tang J, O’Sullivan D, Gasser O, Stanley J, Le Gros G, Camberis M, Inns S. Controlled Hookworm Infection for Medication-free Maintenance in Patients with Ulcerative Colitis: A Pilot, Double-blind, Randomized Control Trial. Inflamm Bowel Dis 2024; 30:735-745. [PMID: 37318363 PMCID: PMC11063543 DOI: 10.1093/ibd/izad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Human hookworm has been proposed as a treatment for ulcerative colitis (UC). This pilot study assessed the feasibility of a full-scale randomized control trial examining hookworm to maintain clinical remission in patients with UC. METHODS Twenty patients with UC in disease remission (Simple Clinical Colitis Activity Index [SCCAI] ≤4 and fecal calprotectin (fCal) <100 ug/g) and only on 5-aminosalicylate received 30 hookworm larvae or placebo. Participants stopped 5-aminosalicylate after 12 weeks. Participants were monitored for up to 52 weeks and exited the study if they had a UC flare (SCCAI ≥5 and fCal ≥200 µg/g). The primary outcome was difference in rates of clinical remission at week 52. Differences were assessed for quality of life (QoL) and feasibility aspects including recruitment, safety, effectiveness of blinding, and viability of the hookworm infection. RESULTS At 52 weeks, 4 of 10 (40%) participants in the hookworm group and 5 of 10 (50%) participants in the placebo group had maintained clinical remission (odds ratio, 0.67; 95% CI, 0.11-3.92). Median time to flare in the hookworm group was 231 days (interquartile range [IQR], 98-365) and 259 days for placebo (IQR, 132-365). Blinding was quite successful in the placebo group (Bang's blinding index 0.22; 95% CI, -0.21 to 1) but less successful in the hookworm group (0.70; 95% CI, 0.37-1.0). Almost all participants in the hookworm group had detectable eggs in their faeces (90%; 95% CI, 0.60-0.98), and all participants in this group developed eosinophilia (peak eosinophilia 4.35 × 10^9/L; IQR, 2.80-6.68). Adverse events experienced were generally mild, and there was no significant difference in QoL. CONCLUSIONS A full-scale randomized control trial examining hookworm therapy as a maintenance treatment in patients with UC appears feasible.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, Otago University, Wellington, New Zealand
| | | | - Kate Maclean
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, Otago University, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Tama Te Kawa
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jeffry Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - James Stanley
- Biostatistics Group, Otago University, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, Otago University, Wellington, New Zealand
| |
Collapse
|
4
|
Vanhooren M, Stoefs A, Van Den Broucke S, Van Esbroeck M, Demuyser T, Kindt S. Intestinal helminthic infections: a narrative review to guide the hepatogastroenterologist. Acta Gastroenterol Belg 2023; 86:460-473. [PMID: 37814562 DOI: 10.51821/86.3.11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Intestinal helminthic infections are not uncommon in Western Europe, mainly due to modern travel, emigration and globalization. Moreover, some helminthic infections are endemic in Western Europe and are part of the everyday clinical practice. The hepatogastroenterologist should therefore recognize and manage these patients or at least refer them to appropriate reference centers. Signs and symptoms are often unspecific or even absent. Discerning the disease at an early stage avoids expensive diagnostic testing, life-threatening complications and in some cases even further spread of the disease. This review article aims to guide the hepatogastroenterologist when suspecting a helminthic infection by addressing the most prevalent symptoms, summarizing the most probable associated helminthic entities, highlighting practical steps in diagnosis and available treatments.
Collapse
Affiliation(s)
- M Vanhooren
- Department of Gastroenterology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - A Stoefs
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - S Van Den Broucke
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp (ITMA), Antwerp, Belgium
| | - M Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp (ITMA), Antwerp, Belgium
| | - T Demuyser
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- AIMS lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - S Kindt
- Department of Gastroenterology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
5
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Rad MJ, Navi Z, Heidari AR, Arab FL, Tabasi N, Rastin M, Khadem Rezaiyan M, Moghaddas E, Mahmoudi M. Evaluation of the immunoregulatory effect of
Dicrocoelium dendriticum
eggs on inflammatory and anti‐inflammatory cytokines in
EAE
model. Parasite Immunol 2022; 44:e12942. [DOI: 10.1111/pim.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mozhdeh Jafari Rad
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Navi
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Reza Heidari
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nafiseh Tabasi
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Rastin
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khadem Rezaiyan
- Clinical Research Development Unit Mashhad University of Medical Sciences Mashhad Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mahmoud Mahmoudi
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
7
|
Smyth DJ, Ren B, White MPJ, McManus C, Webster H, Shek V, Evans C, Pandhal J, Fields F, Maizels RM, Mayfield S. Oral delivery of a functional algal-expressed TGF-β mimic halts colitis in a murine DSS model. J Biotechnol 2021; 340:1-12. [PMID: 34390759 PMCID: PMC8516079 DOI: 10.1016/j.jbiotec.2021.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a set of immunological disorders which can generate chronic pain and fatigue associated with the inflammatory symptoms. The treatment of IBD remains a significant hurdle with current therapies being only partially effective or having significant side effects, suggesting that new therapies that elicit different modes of action and delivery strategies are required. TGM1 is a TGF-β mimic that was discovered from the intestinal helminth parasite Heligmosomoides polygyrus and is thought to be produced by the parasite to suppress the intestinal inflammation response to help evade host immunity, making it an ideal candidate to be developed as a novel anti-inflammatory bio-therapeutic. Here we utilized the expression system of the edible green algae Chlamydomonas reinhardtii in order to recombinantly produce active TGM1 in a form that could be ingested. C. reinhardtii robustly expressed TGM1, and the resultant recombinant protein is biologically active as measured by regulatory T cell induction. When delivered orally to mice, the algal expressed TGM1 is able to ameliorate weight loss, lymphadenopathy, and disease symptoms in a mouse model of DSS-induced colitis, demonstrating the potential of this biologic as a novel treatment of IBD.
Collapse
Affiliation(s)
- Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Bijie Ren
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caitlin McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Holly Webster
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Vivien Shek
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caroline Evans
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Jagroop Pandhal
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Francis Fields
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Stephen Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA.
| |
Collapse
|
8
|
Randomized, Placebo Controlled Trial of Experimental Hookworm Infection for Improving Gluten Tolerance in Celiac Disease. Clin Transl Gastroenterol 2021; 11:e00274. [PMID: 33512796 PMCID: PMC7678792 DOI: 10.14309/ctg.0000000000000274] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION: Celiac disease is an autoimmune disorder where intestinal immunopathology arises after gluten consumption. Previous studies suggested that hookworm infection restores gluten tolerance; however, these studies were small (n = 12) and not placebo controlled. METHODS: We undertook a randomized, placebo-controlled trial of hookworm infection in 54 people with celiac disease. The 94-week study involved treatment with either 20 or 40 Necator americanus third-stage larvae (L3-20 or L3-40) or placebo, followed by escalating gluten consumption (50 mg/d for 12 weeks, 1 g intermittent twice weekly for 12 weeks, 2 g/d sustained for 6 weeks, liberal diet for 1 year). RESULTS: Successful study completion rates at week 42 (primary outcome) were similar in each group (placebo: 57%, L3-20: 37%, and L3-40: 44%; P = 0.61), however gluten-related adverse events were significantly reduced in hookworm-treated participants: Median (range) adverse events/participant were as follows: placebo, 4 (1–9); L3-20, 1 (0–9); and L3-40, 0 (0–3) (P = 0.019). Duodenal villous height:crypt depth deteriorated similarly compared with their enrolment values in each group (mean change [95% confidence interval]: placebo, −0.6 [−1.3 to 0.2]; L3-20, −0.5 [−0.8 to 0.2]; and L3-40, −1.1 [−1.8 to 0.4]; P = 0.12). A retrospective analysis revealed that 9 of the 40 L3-treated participants failed to establish hookworm infections. Although week 42 completion rates were similar in hookworm-positive vs hookworm-negative participants (48% vs 44%, P = 0.43), quality of life symptom scores were lower in hookworm-positive participants after intermittent gluten challenge (mean [95% confidence interval]: 38.9 [33.9–44] vs 45.9 [39.2–52.6]). DISCUSSION: Hookworm infection does not restore tolerance to sustained moderate consumption of gluten (2 g/d) but was associated with improved symptom scores after intermittent consumption of lower, intermittent gluten doses.
Collapse
|
9
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
10
|
Qu Z, Jin X, Wang Y, Yang Y, Yang Li, Bai X, Yang Y, Xu N, Wang X, Liu M. Effect of recombinant serine protease from newborn larval stage of Trichinella spiralis on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis in mice. Acta Trop 2020; 211:105553. [PMID: 32562622 DOI: 10.1016/j.actatropica.2020.105553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex immune-mediated disease of gastrointestinal tract that is mainly driven by Th1/Th17 immune response. "Helminth therapy" has emerged, and helminth-derived immunoregulatory molecules are being used as safe and new therapeutic antigens for IBD. Recombinant serine protease (SP) from newborn Trichinella spiralis (T. spiralis) larvae (NBL) was expressed and purified. BALB/c mice were immunized with NBL-SP at 100 µg three times at an interval of 5 days. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration. The disease activity index (DAI) and macroscopic and microscopic scores of the colon were assessed to identify the effect of NBL-SP on experimental colitis. Cytokine production in the serum was analysed by meso scale discovery (MSD). Cytokine production in the colon was detected by ELISA. CD4+T cell differentiation was measured by flow cytometry. NBL-SP alleviated TNBS-induced colitis in mice. The DAI, macroscopic and microscopic scores and colon length all showed a positive intervention effect of NBL-SP on experimental colitis. NBL-SP can weaken the increase in IFN-γ, TNF-α and IL-17 production as well as CD4+ IFN-γ+T cell and CD4+IL-17+T cell populations induced by colitis. Furthermore, the levels of Th2-related cytokines (IL-4, IL-5) and regulatory cytokines (IL-10, TGF-β) were elevated meanwhile the ratio of regulatory T cells (Tregs) and CD4+ IL-4 + T cells were increased by NBL-SP. NBL-SP of T. spiralis had a potential protective effect against IBD. NBL-SP skewed the Th1 and Th17-mediated response towards the Th2 and Treg response.
Collapse
|
11
|
Jakubczyk D, Leszczyńska K, Górska S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)-A Critical Review. Nutrients 2020; 12:nu12071973. [PMID: 32630805 PMCID: PMC7400428 DOI: 10.3390/nu12071973] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), which affects millions of people worldwide, includes two separate diseases: Crohn's disease (CD) and ulcerative colitis (UC). Although the background (chronic inflammatory state) and some of the symptoms of CD and UC are similar, both diseases differ from each other. It is becoming clear that a combination of many factors, in particular genetic background, host immune response and microbial reduced diversity status are associated with IBD. One potential strategy to prevent/treat IBD is gut modulation by probiotics. Over the last twenty years, many publications have focused on the role of probiotics in the course of IBD. The review discusses the utility of different strains of probiotics, especially Bifidobacterium spp., in all factors potentially involved in the etiology of IBD. The probiotic modulatory properties among different study models (cell lines, animal models of colitis, clinical study) are discussed and probiotic usefulness is assessed in relation to the treatment, prevention, and remission of diseases.
Collapse
|
12
|
Pang J, Ding J, Zhang L, Zhang Y, Yang Y, Bai X, Liu X, Jin X, Guo H, Yang Y, Liu M. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice. Int Immunopharmacol 2020; 86:106699. [PMID: 32570037 DOI: 10.1016/j.intimp.2020.106699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic autoimmune disease. At present, worms and their products has been shown to have protective effects on immune-mediated diseases. Therefore, we aimed to investigate the effect of the recombination Trichinella spiralis (T. spiralis, Ts) adult serine protease-like protein rTs-ADSp-7 on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD mouse model. Colitis was induced by intrarectal administration of a TNBS solution. The disease activity index (DAI), which included weight loss, diarrhoea, and bloody stool, was measured. Colon segments were stained with haematoxylin and eosin (H.E.) for histopathological score. Cytokine release in the serum was analysed by meso scale discovery (MSD). Cytokine release in the colon was detected by ELISA. Splenocytes were separated, and the cytokine profiles of Th1 (IFN-γ), Th2 (IL-4), Th17 (IL-17A) and Treg cells were analysed by flow cytometry. Our result showed that rTs-ADSp-7 reduced the clinical disease activity of TNBS-induced colitis in mice. In addition, we found that rTs-ADSp-7 reduced the production of Th1- and Th17-related cytokines while upregulating the expression of Th2- and Treg-related cytokines in TNBS-induced colitis mice. rTs-ADSp-7 also increased the population of Th2 and Treg cells in TNBS-induced colitis mice. rTs-ADSp-7 alleviated the severity of TNBS-induced colitis while balancing the CD4+ T cell immune response. rTs-ADSp-7 has therapeutic potential for colitis treatment and can be used as a helminth-derived protein therapy for CD or other Th1 immunity-mediated diseases.
Collapse
Affiliation(s)
- Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Puer, Yunnan, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Guo
- Beijing Hi-Tech Institute, Beijing 100094, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
13
|
Hollander E, Uzunova G, Taylor BP, Noone R, Racine E, Doernberg E, Freeman K, Ferretti CJ. Randomized crossover feasibility trial of helminthic Trichuris suis ova versus placebo for repetitive behaviors in adult autism spectrum disorder. World J Biol Psychiatry 2020; 21:291-299. [PMID: 30230399 DOI: 10.1080/15622975.2018.1523561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives: Inflammatory mechanisms are implicated in the aetiology of autism spectrum disorder (ASD), and use of the immunomodulator Trichuris suis Ova (TSO) is a novel treatment approach. This pilot study determined the effect sizes for TSO versus placebo on repetitive behaviours, irritability and global functioning in adults with ASD.Methods: A 28-week double-blind, randomised two-period crossover study of TSO versus placebo in ten ASD adults, aged 17-35, was completed, with a 4-week washout between each 12-week period at Montefiore Medical Center, Albert Einstein College of Medicine. Subjects with ASD, history of seasonal, medication or food allergies, Y-BOCS ≥6 and IQ ≥70 received 2,500 TSO ova or matching placebo every 2 weeks of each 12-week period.Results: Large effect sizes for improvement in repetitive behaviours (d = 1.0), restricted interests (d = 0.82), rigidity (d = 0.79) and irritability (d = 0.78) were observed after 12 weeks of treatment. No changes were observed in the social-communication domain. Differences between treatment groups did not reach statistical significance. TSO had only minimal, non-serious side effects.Conclusions: This proof-of-concept study demonstrates the feasibility of TSO for the treatment of ASD, including a favourable safety profile, and moderate to large effect sizes for reducing repetitive behaviours and irritability.Clinicaltrials.gov: NCT01040221.
Collapse
Affiliation(s)
- Eric Hollander
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Genoveva Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Bonnie P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Rachel Noone
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Emma Racine
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ellen Doernberg
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Katherine Freeman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Casara Jean Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
14
|
Maizels RM. Regulation of immunity and allergy by helminth parasites. Allergy 2020; 75:524-534. [PMID: 31187881 DOI: 10.1111/all.13944] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
There is increasing interest in helminth parasite modulation of the immune system, both from the fundamental perspective of the "arms race" between host and parasite, and equally importantly, to understand if parasites offer new pathways to abate and control untoward immune responses in humans. This article reviews the epidemiological and experimental evidence for parasite down-regulation of host immunity and immunopathology, in allergy and other immune disorders, and recent progress towards defining the mechanisms and molecular mediators which parasites exploit in order to modulate their host. Among these are novel products that interfere with epithelial cell alarmins, dendritic cell activation, macrophage function and T-cell responsiveness through the promotion of an immunoregulatory environment. These modulatory effects assist parasites to establish and survive, while dampening immune reactivity to allergens, autoantigens and microbiome determinants.
Collapse
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunology and Inflammation University of Glasgow Glasgow UK
| |
Collapse
|
15
|
Ramani S, Chauhan N, Khatri V, Vitali C, Kalyanasundaram R. Wuchereria bancrofti macrophage migration inhibitory factor-2 (rWbaMIF-2) ameliorates experimental colitis. Parasite Immunol 2020; 42:e12698. [PMID: 31976564 DOI: 10.1111/pim.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Immunomodulatory molecules produced by helminth parasites are receiving much attention recently as novel therapeutic agents for inflammation and autoimmune diseases. In this study, we show that macrophage migration inhibitory factor (MIF) homologue from the filarial parasite, Wuchereria bancrofti (rWbaMIF-2), can suppress inflammation in a dextran sulphate sodium salt (DSS)-induced colitis model. The disease activity index (DAI) in DSS given mice showed loss of body weight and bloody diarrhoea. At autopsy, colon of these mice showed severe inflammation and reduced length. Administration of rWbaMIF-2 significantly reduced the DAI in DSS-induced colitis mice. rWbaMIF-2-treated mice had no blood in the stools, and their colon length was similar to the normal colon with minimal inflammation and histological changes. Pro-inflammatory cytokine genes (TNF-α, IL-6, IFN-γ, IL-1β, IL-17A and NOS2) were downregulated in the colon tissue and peritoneal macrophages of rWbaMIF-2-treated mice. However, there were significant increases in IL-10-producing Treg and B1 cells in the colon and peritoneal cavity of rWbaMIF-2-treated mice. These findings suggested that rWbaMIF-2 treatment significantly ameliorated the clinical symptoms, inflammation and colon pathology in DSS given mice. This immunomodulatory effect of rWbaMIF-2 appeared to be by promoting the infiltration of Treg cells into the colon.
Collapse
Affiliation(s)
- Shriram Ramani
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Connie Vitali
- Department of Health Sciences Education, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
16
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Immunomodulatory effect of Syphacia obvelata in treatment of experimental DSS-induced colitis in mouse model. Sci Rep 2019; 9:19127. [PMID: 31836772 PMCID: PMC6911064 DOI: 10.1038/s41598-019-55552-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
The ability of helminth parasite infections to manipulate the immune system of their host towards T regulatory responses has been proposed to suppress the inflammatory response. The aim of this study was to investigate the protective and therapeutic effect of Syphacia obvelata in the treatment of experimental DSS -induced colitis. 50 male C57BL/6 mice were divided into 5 groups: healthy uninfected controls, DSS colitis, receiving only S. obv, preventive (S. obv + DSS) and therapeutic group (DSS + S.obv). Colitis intensity was investigated by measuring body weight changes, stool consistency/bleeding and colon length. To evaluate the immune responses induced by this nematode, TNF-α, IL-10, IL-17, IFN-γ and expressing of FoxP3+ T cells were measured in mesenteric lymph nodes and Peyer’s patches cells. Mice in preventive and therapeutic groups treated with S. obv egg significantly ameliorated the severity of the DSS colitis, indicated by the reduced disease manifestations, improved histopathological scores correlated with the up regulation of Treg responses and down regulation of proinflammatory cytokines. S. obv can prevention and reverse on-going murine DSS colitis. The data suggest that induction of Tregs and change in cytokine profiles during helminthic therapies were responsible for reversed inflammatory events in IBD.
Collapse
|
18
|
Mogilevski T, Burgell R, Aziz Q, Gibson PR. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther 2019; 50:720-737. [PMID: 31418887 DOI: 10.1111/apt.15433] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a growing body of evidence implicating a role for the brain-gut axis in the pathogenesis of inflammation in patients with IBD. AIMS To perform a narrative review of published literature regarding the association of the autonomic nervous system and intestinal inflammation and to describe the rationale for and emerging use of autonomic manipulation as a therapeutic agent METHODS: Current relevant literature was summarised and critically examined. RESULTS There is substantial pre-clinical and clinical evidence for a multifaceted anti-inflammatory effect of the vagus at both systemic and local intestinal levels. It acts via acetylcholine-mediated activation of α-7-acetylcholine receptors involving multiple cell types in innate and adaptive immunity and the enteric nervous system with subsequent protective influences on the intestinal barrier, inflammatory mechanisms and the microbiome. In patients with IBD, there is evidence for a sympatho-vagal imbalance, functional enteric neuronal depletion and hyporeactivity of the hypothalamic-pituitary-adrenal axis. Direct or transcutaneous vagal neuromodulation up-regulates the cholinergic anti-inflammatory pathway in pre-clinical and clinical models with down-regulation of systemic and local intestinal inflammation. This is supported by two small studies in Crohn's disease although remains to be investigated in ulcerative colitis. CONCLUSIONS Modulating the cholinergic anti-inflammatory pathway influences inflammation both systemically and at a local intestinal level. It represents a potentially underutilised anti-inflammatory therapeutic strategy. Given the likely pathogenic role of the autonomic nervous system in patients with IBD, vagal neuromodulation, an apparently safe and successful means of increasing vagal tone, warrants further clinical exploration.
Collapse
Affiliation(s)
- Tamara Mogilevski
- Centre for Neuroscience, Surgery and Trauma, Barts and the London School of Medicine and Dentistry, Blizard Institute, Wingate Institute of Neurogastroenterology, London, UK.,Barts Health NHS Trust, London, UK.,Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| | - Rebecca Burgell
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Barts and the London School of Medicine and Dentistry, Blizard Institute, Wingate Institute of Neurogastroenterology, London, UK.,Barts Health NHS Trust, London, UK
| | - Peter R Gibson
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| |
Collapse
|
19
|
French T, Düsedau HP, Steffen J, Biswas A, Ahmed N, Hartmann S, Schüler T, Schott BH, Dunay IR. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner. J Neuroinflammation 2019; 16:159. [PMID: 31352901 PMCID: PMC6661741 DOI: 10.1186/s12974-019-1539-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. Methods Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. Results Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1β) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. Conclusion Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
20
|
Cepon‐Robins TJ, Gildner TE, Schrock J, Eick G, Bedbury A, Liebert MA, Urlacher SS, Madimenos FC, Harrington CJ, Amir D, Bribiescas RG, Sugiyama LS, Snodgrass JJ. Soil‐transmitted helminth infection and intestinal inflammation among the Shuar of Amazonian Ecuador. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:65-74. [DOI: 10.1002/ajpa.23897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Joshua Schrock
- Department of Anthropology University of Oregon Eugene Oregon
| | - Geeta Eick
- Department of Anthropology University of Oregon Eugene Oregon
| | - Ali Bedbury
- Department of Anthropology University of Oregon Eugene Oregon
| | - Melissa A. Liebert
- Department of Anthropology Northern Arizona University Flagstaff Arizona
| | - Samuel S. Urlacher
- Department of Evolutionary Anthropology Duke University Durham North Carolina
- Department of Anthropology Baylor University Waco Texas
| | - Felicia C. Madimenos
- Department of Anthropology Queens College ‐ City University of New York Queens New York
| | | | - Dorsa Amir
- Department of Psychology Boston College Chestnut Hill Massachusetts
| | | | | | | |
Collapse
|
21
|
Hookworm-Derived Metabolites Suppress Pathology in a Mouse Model of Colitis and Inhibit Secretion of Key Inflammatory Cytokines in Primary Human Leukocytes. Infect Immun 2019; 87:IAI.00851-18. [PMID: 30670556 DOI: 10.1128/iai.00851-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Iatrogenic hookworm therapy shows promise for treating disorders that result from a dysregulated immune system, including inflammatory bowel disease (IBD). Using a murine model of trinitrobenzenesulfonic acid-induced colitis and human peripheral blood mononuclear cells, we demonstrated that low-molecular-weight metabolites derived from both somatic extracts (LMWM-SE) and excretory-secretory products (LMWM-ESP) of the hookworm, Ancylostoma caninum, display anti-inflammatory properties. Administration to mice of LMWM-ESP as well as sequentially extracted fractions of LMWM-SE using both methanol (SE-MeOH) and hexane-dichloromethane-acetonitrile (SE-HDA) resulted in significant protection against T cell-mediated immunopathology, clinical signs of colitis, and impaired histological colon architecture. To assess bioactivity in human cells, we stimulated primary human leukocytes with lipopolysaccharide in the presence of hookworm extracts and showed that SE-HDA suppressed ex vivo production of inflammatory cytokines. Gas chromatography-mass spectrometry (MS) and liquid chromatography-MS analyses revealed the presence of 46 polar metabolites, 22 fatty acids, and five short-chain fatty acids (SCFAs) in the LMWM-SE fraction and 29 polar metabolites, 13 fatty acids, and six SCFAs in the LMWM-ESP fraction. Several of these small metabolites, notably the SCFAs, have been previously reported to have anti-inflammatory properties in various disease settings, including IBD. This is the first report showing that hookworms secrete small molecules with both ex vivo and in vivo anti-inflammatory bioactivity, and this warrants further exploration as a novel approach to the development of anti-inflammatory drugs inspired by coevolution of gut-dwelling hookworms with their vertebrate hosts.
Collapse
|
22
|
Abdoli A. Therapeutic Potential of Helminths and Helminth-Derived Antigens for Resolution of Inflammation in Inflammatory Bowel Disease. Arch Med Res 2019; 50:58-59. [PMID: 30879759 DOI: 10.1016/j.arcmed.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
Inflammation plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), and treatment of IBD mainly targets on inhibition of pro-inflammatory mediators. Helminth-based therapy is a novel strategy for resolution of inflammation in IBD, because helminths have great immunomodulatory properties. Helminth-based therapy may be efficacious as a vaccine for patients with IBD. This article is a highlight on the therapeutic potential of helminths in IBD.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
23
|
Dendritic cells treated by Trichinella spiralis muscle larval excretory/secretory products alleviate TNBS-induced colitis in mice. Int Immunopharmacol 2019; 70:378-386. [PMID: 30852293 DOI: 10.1016/j.intimp.2019.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Therapeutic potential of helminth have been shown to have a protective effect on immune-mediated diseases such as Crohn's disease (CD), which is associated with increased production of T helper cell type 1. However, helminth therapy is unacceptable to patients due to side-effects and the fear of parasites. As helminths regulate the cellular immune responses through innate cells such as dendritic cells (DCs), cellular immunotherapy has been considered a therapeutic option to treat CD. METHODS Bone marrow-dendritic cells were generated, enriched and treated with Trichinella spiralis muscle larval excretory/secretory products (Ts-MLES). DCs maturation was measured by flow cytometry and cytokine production of DCs were measured by ELISA. Colitis was generated by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. For adoptive transfer, Ts-MLES treated-DCs injected intravenously 24 h prior to TNBS challenge. Disease activity index (DAI) including weight loss, diarrhea, and bloody stool were measured. Colon segments were stained with hematoxylin and eosin (H.E.) and periodic acid schiff (PAS) staining for histological damage scoring. The relative mRNA expression of cytokines in colon was analyzed by RT-PCR. Cytokine production in colon was measured by ELISA. Splenocytes were separated and cytokine profiles including Th1 (IFN-γ), Th2 (IL-4, IL-13), and Treg subsets (IL-10, TGF-β) were analyzed by flow cytometry. RESULTS Ts-MLES regulated the maturation and cytokine production of DCs. Ts-MLES -DC ameliorated the severity of the TNBS-induced colitis. In the colon and the spleen, Ts-MLES-DC decreased IFN-γ (Th1) significantly and increased Th2 (IL-4, IL-13)- and Treg (IL-10, TGF-β)- related cytokines. CONCLUSIONS Ts-MLES-DC ameliorated the severity of the TNBS-induced colitis through decreasing IFN-γ. Ts-MLES-DC skewed the Th1-mediated response toward the Th2 type and regulatory T cell response.
Collapse
|
24
|
Hang L, Kumar S, Blum AM, Urban JF, Fantini MC, Weinstock JV. Heligmosomoides polygyrus bakeri Infection Decreases Smad7 Expression in Intestinal CD4 + T Cells, Which Allows TGF-β to Induce IL-10-Producing Regulatory T Cells That Block Colitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2473-2481. [PMID: 30850474 DOI: 10.4049/jimmunol.1801392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Helminthic infections modulate host immunity and may protect their hosts from developing immunological diseases like inflammatory bowel disease. Induction of regulatory T cells (Tregs) may be an important part of this protective process. Heligmosomoides polygyrus bakeri infection also promotes the production of the regulatory cytokines TGF-β and IL-10 in the gut. In the intestines, TGF-β helps induce regulatory T cells. This study used Foxp3/IL-10 double reporter mice to investigate the effect of TGF-β on the differentiation of colon and mesenteric lymph node-derived murine Foxp3- IL-10- CD4+ T cells into their regulatory phenotypes. Foxp3- IL-10- CD4+ T cells from H. polygyrus bakeri-infected mice, as opposed to T cells from uninfected animals, cultured in vitro with TGF-β and anti-CD3/CD28 mAb differentiated into Foxp3+ and/or IL-10+ T cells. The IL-10-producing T cells nearly all displayed CD25. Smad7 is a natural inhibitor of TGF-β signaling. In contrast to gut T cells from uninfected mice, Foxp3- IL10- CD4+ T cells from H. polygyrus bakeri-infected mice displayed reduced Smad7 expression and responded to TGF-β with Smad2/3 phosphorylation. The TGF-β-induced Tregs that express IL-10 blocked colitis when transferred into the Rag/CD25- CD4+ T cell transfer model of inflammatory bowel disease. TGF-β had a greatly diminished capacity to induce Tregs in H. polygyrus bakeri-infected transgenic mice with constitutively high T cell-specific Smad7 expression. Thus, infection with H. polygyrus bakeri causes down-modulation in Smad7 expression in intestinal CD4+ T cells, which allows the TGF-β produced in response to the infection to induce the Tregs that prevent colitis.
Collapse
Affiliation(s)
- Long Hang
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Sangeeta Kumar
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Arthur M Blum
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705; and
| | - Massimo C Fantini
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Joel V Weinstock
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111;
| |
Collapse
|
25
|
Salvucci E. The human-microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 2019; 70:781-795. [DOI: 10.1080/09637486.2019.1580682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- E. Salvucci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales; Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba
| |
Collapse
|
26
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Ditgen D, Anandarajah EM, Reinhardt A, Younis AE, Witt S, Hansmann J, Lorenz E, García-Hernández M, Paclik D, Soblik H, Jolodar A, Seeberger PH, Liebau E, Brattig NW. Comparative characterization of two galectins excreted-secreted from intestine-dwelling parasitic versus free-living females of the soil-transmitted nematode Strongyloides. Mol Biochem Parasitol 2018; 225:73-83. [PMID: 30179636 DOI: 10.1016/j.molbiopara.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Helminths are complex pathogens that ensure their long-term survival by influencing the immune responses of their host. Excretory/secretory products (ESP) can exert immunoregulatory effects which foster parasite survival. Galectins represent a widespread group of β-galactoside-binding proteins which are involved in a multitude of biological processes operative in parasite-host interaction. We had earlier identified seven galectins in Strongyloides ratti, four of them detected in the ESP of distinct developmental stages of the parasite. In the present report, we focused on the characterization of two of them, Sr-galectin-1 (Sr-Gal-1) and Sr-galectin-3 (Sr-Gal-3). While Sr-Gal-3 expression was strongest in parasitic females, Sr-Gal-1 was predominantly expressed in free-living females. Both proteins were cloned and recombinantly expressed in an E. coli expression system. Their glycan-binding activity was verified by haemagglutination and glycan array analysis. Furthermore, primary immunological activities of the Sr-galectins were initially investigated by the application of an in vitro mucosal 3D-culture model, comprising of mucosa-associated epithelial and dendritic cells. The Sr-galectins stimulated preferentially the release of the type 2 cytokines thymic stromal lymphopoietin and IL-22, a first indication for immunoregulatory activity. In addition, the Sr-galectins dose-dependently fostered cell migration. Our results confirm the importance of these carbohydrate-binding proteins in host-parasite-interaction by indicating possible interaction with the host mucosa-associated cells.
Collapse
Affiliation(s)
- D Ditgen
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - E M Anandarajah
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - A Reinhardt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - A E Younis
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Zoology Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - S Witt
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J Hansmann
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - E Lorenz
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - M García-Hernández
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - D Paclik
- Medical Department, Devision of Hepatology and Gastroenterology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - H Soblik
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; GALENpharma GmbH, 24109, Kiel, Germany
| | - A Jolodar
- School of Veterinary Medicine, Shahid Chamran University of Ahvaz, IR, Iran
| | - P H Seeberger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - E Liebau
- Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - N W Brattig
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| |
Collapse
|
28
|
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, Steiner L, Nagy B, Poliska S, Banko C, Bacso Z, Schulman IG, Sauer S, Deleuze JF, Allen JE, Benko S, Nagy L. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity 2018; 48:75-90.e6. [PMID: 29343442 PMCID: PMC5772169 DOI: 10.1016/j.immuni.2017.12.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli. IL-4-activated STAT6 acts as a transcriptional repressor in macrophages IL-4-STAT6-repressed enhancers associate with reduced LDTF and p300 binding Inflammatory responsiveness of the IL-4-repressed enhancers is attenuated IL-4 limits the LPS-induced inflammasome activation, IL-1β production, and pyroptosis
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Daniel
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dominik Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Mate Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Matthew Peloquin
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Marietta M Budai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Simandi
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Laszlo Steiner
- UD-Genomed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Banko
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany; CU Systems Medicine, University of Würzburg, Würzburg, Germany; Max Delbrück Center for Molecular Medicine (BIMSB and BIH), Berlin, Germany
| | | | - Judith E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Szilvia Benko
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
30
|
T-Bet Is Dependent on Stat-4 Inhibiting Acute Colitis but Not Stat-1 Using L4 Somatic Antigen of Heligmosomoides polygyrus. ScientificWorldJournal 2018; 2018:8571920. [PMID: 29977172 PMCID: PMC6011060 DOI: 10.1155/2018/8571920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/25/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Helminths may alter the immunoinflammatory reactions of colitis. Proteins derived from H. polygyrus have prospective therapy for colitis. The goal of this study was to interpret the protective mechanisms of L4 somatic antigen (LSA) from Heligmosomoides polygyrus against an inflammatory response to the pathogenesis of DNBS-induced colitis. Colitis was actuated in mice by rectal instillation of DNBS. The mice were randomly divided into five groups containing control, DNBS alone, and three groups, with different doses of LSA (50, 100, and 200 μg/mL), respectively. Mice initiated colitis by rectal administration of DNBS and after that were immunized with LSA for 14 days. Mice treated with LSA inhibited wasting disease compared with DNBS only group. The percentages of cells producing IFN-γ were reduced by LSA treatment. The level of T lymphocytes CD4+IFN-γ+ cells in the LPL was significantly diminished by LSA at both 100 and 200 μg/mL groups (p<0.05). The mRNA expression of T-bet was significantly declined in LSA immunized mice, but not RORγ-T mRNA, whereas GATA-3 expression tended to increase. The activation of STAT-4 significantly reduced LSA-treated mice but not STAT-1. It can be concluded that T-bet is required for optimal production of IFN-γ in colitis.
Collapse
|
31
|
Su CW, Chen CY, Li Y, Long SR, Massey W, Kumar DV, Walker WA, Shi HN. Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. Sci Rep 2018; 8:4607. [PMID: 29545532 PMCID: PMC5854586 DOI: 10.1038/s41598-018-22920-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate an inverse correlation between the prevalence of the so-called western diseases, such as obesity and metabolic syndrome, and the exposure to helminths. Obesity, a key risk factor for many chronic health problems, is rising globally and is accompanied by low-grade inflammation in adipose tissues. The precise mechanism by which helminths modulate metabolic syndrome and obesity is not fully understood. We infected high fat diet (HFD)-induced obese mice with the intestinal nematode parasite Heligmosomoides polygyrus and observed that helminth infection resulted in significantly attenuated obesity. Attenuated obesity corresponded with marked upregulation of uncoupling protein 1 (UCP1), a key protein involved in energy expenditure, in adipose tissue, suppression of glucose and triglyceride levels, and alteration in the expression of key genes involved in lipid metabolism. Moreover, the attenuated obesity in infected mice was associated with enhanced helminth-induced Th2/Treg responses and M2 macrophage polarization. Adoptive transfer of helminth-stimulated M2 cells to mice that were not infected with H. polygyrus resulted in a significant amelioration of HFD-induced obesity and increased adipose tissue browning. Thus, our results provide evidence that the helminth-dependent protection against obesity involves the induction of M2 macrophages.
Collapse
Affiliation(s)
- Chien Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Yali Li
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - William Massey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Deepak Vijaya Kumar
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA.
| |
Collapse
|
32
|
Htun NSN, Odermatt P, Müller I, Yap P, Steinmann P, Schindler C, Gerber M, Du Randt R, Walter C, Pühse U, Utzinger J, Probst-Hensch N. Association between gastrointestinal tract infections and glycated hemoglobin in school children of poor neighborhoods in Port Elizabeth, South Africa. PLoS Negl Trop Dis 2018; 12:e0006332. [PMID: 29543807 PMCID: PMC5871004 DOI: 10.1371/journal.pntd.0006332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/27/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Low- and middle-income countries are facing a dual disease burden with infectious diseases (e.g., gastrointestinal tract infections) and non-communicable diseases (e.g., diabetes) being common. For instance, chronic parasite infections lead to altered immune regulatory networks, anemia, malnutrition, and diarrhea with an associated shift in the gut microbiome. These can all be pathways of potential relevance for insulin resistance and diabetes. The aim of this study was to investigate the association between common gastrointestinal tract infections and glycemia in children from non-fee paying schools in South Africa. Methodology We conducted a cross-sectional survey among 9- to 14-year-old school children in Port Elizabeth. Stool and urine samples were collected to assess infection status with parasitic worms (e.g., Ascaris lumbricoides, Enterobius vermicularis, and Trichuris trichiura), intestinal protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis), and the bacterium Helicobacter pylori. Glycated hemoglobin (HbA1c) was measured in finger prick derived capillary blood. All children at schools with a high prevalence of helminth infections and only infected children at the schools with low infection rates were treated with albendazole. The association of anthelmintic treatment with changes in HbA1c 6 months after the drug intervention was also investigated. Findings A high prevalence of 71.8% of prediabetes was measured in this group of children, with only 27.8% having HbA1c in the normal range. H. pylori was the predominant infectious agent and showed an independent positive association with HbA1c in a multivariable regression analysis (β = 0.040, 95% confidence interval (CI) 0.006–0.073, p<0.05). No association of HbA1c with either any other infectious agent or albendazole administration was found. Conclusion The role of H. pylori in diabetes needs confirmation in the context of longitudinal treatment interventions. The specific effect of other gastrointestinal tract infections on glycemia remains unclear. Future studies should integrate the measurement of biomarkers, including immunological parameters, to shed light on the potential mediating mechanisms between parasite infections and diabetes. Parasitic worms (e.g., pinworm, roundworm, and whipworm), intestinal protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis), and the bacterium Helicobacter pylori persist at high rates in the gastrointestinal tract of people from low- and middle-income countries. These infectious agents are increasingly paralleled by high rates of non-communicable diseases, such as diabetes. We studied the association of glycemia, measured as HbA1c with common gastrointestinal tract infections among school children aged 9–14 years from disadvantaged neighborhoods in Port Elizabeth, South Africa. Our goal was to deepen the understanding of whether specific gastrointestinal tract infections might be early life determinants of elevated HbA1c levels that might lead to diabetes. We found that the bacterium H. pylori was very common among our group of children with a positive association with hyperglycemia. None of the other infectious agents showed such an association. Additional, longitudinal studies are needed to determine whether there is causality for the observed association between H. pylori and hyperglycemia. The integration of biomarkers will allow studying mediating mechanisms.
Collapse
Affiliation(s)
- Nan Shwe Nwe Htun
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Odermatt
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivan Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Peiling Yap
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Peter Steinmann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Schindler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Rosa Du Randt
- Department of Human Movement Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Cheryl Walter
- Department of Human Movement Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Shepherd C, Wangchuk P, Loukas A. Of dogs and hookworms: man's best friend and his parasites as a model for translational biomedical research. Parasit Vectors 2018; 11:59. [PMID: 29370855 PMCID: PMC5785905 DOI: 10.1186/s13071-018-2621-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
We present evidence that the dog hookworm (Ancylostoma caninum) is underutilised in the study of host-parasite interactions, particularly as a proxy for the human-hookworm relationship. The inability to passage hookworms through all life stages in vitro means that adult stage hookworms have to be harvested from the gut of their definitive hosts for ex vivo research. This makes study of the human-hookworm interface difficult for technical and ethical reasons. The historical association of humans, dogs and hookworms presents a unique triad of positive evolutionary pressure to drive the A. caninum-canine interaction to reflect that of the human-hookworm relationship. Here we discuss A. caninum as a proxy for human hookworm infection and situate this hookworm model within the current research agenda, including the various 'omics' applications and the search for next generation biologics to treat a plethora of human diseases. Historically, the dog hookworm has been well described on a physiological and biochemical level, with an increasing understanding of its role as a human zoonosis. With its similarity to human hookworm, the recent publications of hookworm genomes and other omics databases, as well as the ready availability of these parasites for ex vivo culture, the dog hookworm presents itself as a valuable tool for discovery and translational research.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
34
|
Schwartz C, Hams E, Fallon PG. Helminth Modulation of Lung Inflammation. Trends Parasitol 2018; 34:388-403. [PMID: 29339033 DOI: 10.1016/j.pt.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Parasitic helminths must establish chronic infections to complete their life cycle and therefore are potent modulators of multiple facets of host physiology. Parasitic helminths have coevolved with humans to become arguably master selectors of our immune system, whereby they have impacted on the selection of genes with beneficial mutations for both host and parasite. While helminth infections of humans are a significant health burden, studies have shown that helminths or helminth products can alter susceptibility to unrelated infectious or inflammatory diseases. This has generated interest in the use of helminth infections or molecules as therapeutics. In this review, we focus on the impact of helminth infections on pulmonary immunity, especially with regard to homeostatic lung function, pulmonary viral and bacterial (co)infections, and asthma.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
35
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
36
|
Haarder S, Kania PW, Holm TL, von Gersdorff Jørgensen L, Buchmann K. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish. Parasite Immunol 2017; 39. [PMID: 28779539 DOI: 10.1111/pim.12456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) in developed countries is linked with elevated hygienic standards. One of the several factors involved in this question may be reduced exposure to the immunomodulatory effects of parasitic helminths. Several investigations on treatment of mice and humans with helminth-derived substances have supported this notion, but underlying mechanisms remain unclear. This study therefore dissects to what extent a series of immune-related genes are modulated in zebrafish with experimentally induced colitis following exposure to excretory-secretory (ES) products isolated from larval Anisakis, a widely distributed fish nematode. Adult zebrafish intrarectally exposed to the colitis-inducing agent TNBS developed severe colitis leading to 80% severe morbidity, but if co-injected (ip) with Anisakis ES products, the morbidity rate was 50% at the end of the experiment (48 hours post-exposure). Gene expression studies of TNBS-treated zebrafish showed clear upregulation of a range of genes encoding inflammatory cytokines and effector molecules and some induction of genes related to the adaptive response. A distinct innate-driven immune response was seen in both TNBS and TNBS + ES groups, but expression values were significantly depressed for several important pro-inflammatory genes in the TNBS + ES group, indicating protective mechanisms of Anisakis ES compounds on intestinal immunopathology in zebrafish.
Collapse
Affiliation(s)
- S Haarder
- Novo Nordisk-LIFE In Vivo Pharmacology Centre, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - P W Kania
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - T L Holm
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - L von Gersdorff Jørgensen
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - K Buchmann
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
37
|
Wegener Parfrey L, Jirků M, Šíma R, Jalovecká M, Sak B, Grigore K, Jirků Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One 2017; 12:e0182205. [PMID: 28771620 PMCID: PMC5542714 DOI: 10.1371/journal.pone.0182205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/16/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Canada
| | - Milan Jirků
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Jalovecká
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karina Grigore
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
38
|
Elliott DE, Weinstock JV. Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 2017; 39. [PMID: 27977856 DOI: 10.1111/pim.12407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
Helminth infections likely provide a protective influence against some immune-mediated and metabolic diseases because helminth infection dramatically decreased in developed countries shortly before the explosive rise in the prevalence of these diseases. The capacity of helminths to activate immune-regulatory circuits in their hosts and to modulate the composition of intestinal flora appears to be the mechanisms of protective action. Animal models of disease show that various helminth species prevent and/or block inflammation in various organs in a diverse range of diseases. Clinical trials have demonstrated that medicinal exposure to Trichuris suis or small numbers of Necator americanus is safe with minor, if any, reported adverse effects. This includes exposure of inflamed intestine to T. suis, asthmathic lung to N. americanus and in patients with atopy. Efficacy has been suggested in some small studies, but is absent in others. Factors that may have led to inconclusive results in some trials are discussed. To date, there have been no registered clinical trials using helminths to treat metabolic syndrome or its component conditions. However, the excellent safety profile of T. suis or N. americanus suggests that such studies should be possible.
Collapse
Affiliation(s)
- D E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA, USA
| | - J V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
39
|
Cooper AJR, Dholakia S, Holland CV, Friend PJ. Helminths in organ transplantation. THE LANCET. INFECTIOUS DISEASES 2017; 17:e166-e176. [PMID: 28233632 DOI: 10.1016/s1473-3099(16)30533-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 11/06/2016] [Accepted: 11/15/2016] [Indexed: 12/26/2022]
Abstract
With transplantation becoming an increasingly routine form of treatment for diverse populations, and with international travel becoming ever more accessible and affordable, the danger of transplantation-mediated helminth infections, exacerbated by coincident immunosuppression, must be considered. In this Review, we attempt to catalogue all clinically-relevant helminthiases that have been reported to coincide with transplantation, whether by transplantation-mediated transmission, reactivation of latent infections in an immunosuppressed context, or possible de-novo infection during the immunosuppressed peritransplant period. Helminthiasis has been reported in cases of kidney, liver, bowel, pancreas, heart, lung, and stem-cell transplant, and blood transfusion. For each helminthiasis, known risk factors, symptoms, and suggested options for screening and treatment are given. We conclude that helminths are a small but important and potentially severe source of disease after transplantation, and, with options for diagnosis and treatment, these pathogens warrant greater consideration during organ implantation. The achievement of immunological tolerance using helminth-derived products is also an exciting future prospect.
Collapse
Affiliation(s)
- Andrew J R Cooper
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland.
| | - Shamik Dholakia
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | - Peter J Friend
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
40
|
Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:415-429.e15. [PMID: 27743873 DOI: 10.1053/j.gastro.2016.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Patients and physicians often have many questions regarding the role of complementary and alternative medicines (CAMs), or nonallopathic therapies, for inflammatory bowel diseases (IBDs). CAMs of various forms are used by more than half of patients with IBD during some point in their disease course. We summarize the available evidence for the most commonly used and discussed CAMs. We discuss evidence for the effects of herbs (such as cannabis and curcumin), probiotics, acupuncture, exercise, and mind-body therapy. There have been few controlled studies of these therapies, which have been limited by their small sample sizes; most studies have been uncontrolled. In addition, there has been a lack of quality control for herbal preparations. It has been a challenge to design rigorous, randomized, placebo-controlled trials, in part owing to problems of adequate blinding for psychological interventions, acupuncture, and exercise. These barriers have limited the acceptance of CAMs by physicians. However, such therapies might be used to supplement conventional therapies and help ease patient symptoms. We conclude that physicians should understand the nature of and evidence for CAMs for IBD so that rational advice can be offered to patients who inquire about their use. CAMs have the potential to aid in the treatment of IBD, but further research is needed to validate these approaches.
Collapse
Affiliation(s)
- Adam S Cheifetz
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Robert Gianotti
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Raphael Luber
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia.
| |
Collapse
|
41
|
Marple A, Wu W, Shah S, Zhao Y, Du P, Gause WC, Yap GS. Cutting Edge: Helminth Coinfection Blocks Effector Differentiation of CD8 T Cells through Alternate Host Th2- and IL-10-Mediated Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:634-639. [PMID: 27956529 PMCID: PMC5225035 DOI: 10.4049/jimmunol.1601741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/22/2023]
Abstract
Concurrent helminth infection potently inhibits T cell immunity; however, whether helminthes prevent T cell priming or skew clonal recruitment and effector differentiation is not known. Using coinfection with two natural mouse pathogens, Heligmosomoides polygyrus and Toxoplasma gondii, to investigate the negative impact of helminthes on the CD8 T cell response, we demonstrate helminth-induced suppression of IL-12-dependent differentiation of killer-like receptor G1+ effector CD8 T cells and IFN-γ production. Nevertheless, reversal of helminth suppression of the innate IL-12 response of CD8α+ dendritic cells, which occurred in STAT6-deficient mice, was not sufficient to normalize CD8 T cell differentiation. Instead, a combined deficiency in IL-4 and IL-10 was required to reverse the negative effects of helminth coinfection on the CD8 T cell response. Monoclonal T. gondii-specific CD8 T cells adoptively transferred into coinfected mice recapitulated the spectrum of helminth-induced effects on the polyclonal CD8 T response, indicating the lack of requirement for clonal skewing.
Collapse
Affiliation(s)
- Andrew Marple
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Wenhui Wu
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Suhagi Shah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Yanlin Zhao
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Peicheng Du
- High Performance and Research Computing Group, Office of Information Technology, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - William C Gause
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - George S Yap
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101;
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| |
Collapse
|
42
|
Changes in duodenal tissue-associated microbiota following hookworm infection and consecutive gluten challenges in humans with coeliac disease. Sci Rep 2016; 6:36797. [PMID: 27827438 PMCID: PMC5101533 DOI: 10.1038/srep36797] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
A reduced diversity of the gastrointestinal commensal microbiota is associated with the development of several inflammatory diseases. Recent reports in humans and animal models have demonstrated the beneficial therapeutic effects of infections by parasitic worms (helminths) in some inflammatory disorders, such as inflammatory bowel disease (IBD) and coeliac disease (CeD). Interestingly, these studies have described how helminths may alter the intestinal microbiota, potentially representing a mechanism by which they regulate inflammation. However, for practical reasons, these reports have primarily analysed the faecal microbiota. In the present investigation, we have assessed, for the first time, the changes in the microbiota at the site of infection by a parasitic helminth (hookworm) and gluten-dependent inflammation in humans with CeD using biopsy tissue from the duodenum. Hookworm infection and gluten exposure were associated with an increased abundance of species
within the Bacteroides phylum, as well as increases in the richness and diversity of the tissue-resident microbiota within the intestine, results that are consistent with previous reports using other helminth species in humans and animal models. Hence, this may represent a mechanism by which parasitic helminths may restore intestinal immune homeostasis and exert a therapeutic benefit in CeD, and potentially other inflammatory disorders.
Collapse
|
43
|
Abstract
By reputation, the parasite is a pariah, an unwelcome guest. Infection with helminth parasites evokes stereotypic immune responses in humans and mice that are dominated by T helper (Th)-2 responses; thus, a hypothesis arises that infection with helminths would limit immunopathology in concomitant inflammatory disease. Although infection with some species of helminths can cause devastating disease and affect the course of microbial infections, analyses of rodent models of inflammatory disease reveal that infection with helminth parasites, or treatment with helminth extracts, can limit the severity of autoinflammatory disease, including colitis. Intriguing, but fewer, studies show that adoptive transfer of myeloid immune cells treated with helminth products/extracts in vitro can suppress inflammation. Herein, 3 facets of helminth therapy are reviewed and critiqued: treatment with viable ova or larvae, treatment with crude extracts of the worm or purified molecules, and cellular immunotherapy. The beneficial effect of helminth therapy often converges on the mobilization of IL-10 and regulatory/alternatively activated macrophages, while there are reports on transforming growth factor (TGF)-β, regulatory T cells and dendritic cells, and recent data suggest that helminth-evoked changes in the microbiota should be considered when defining anticolitic mechanisms. We speculate that if the data from animal models translate to humans, noting the heterogeneity therein, then the choice between use of viable helminth ova, helminth extracts/molecules or antigen-pulsed immune cells could be matched to disease management in defined cohorts of patients with inflammatory bowel disease.
Collapse
|
44
|
Hang L, Blum AM, Kumar S, Urban JF, Mitreva M, Geary TG, Jardim A, Stevenson MM, Lowell CA, Weinstock JV. Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2948-57. [PMID: 27559049 DOI: 10.4049/jimmunol.1600063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis, suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors, many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A, CLEC9A, CLEC12A, and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis.
Collapse
Affiliation(s)
- Long Hang
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Arthur M Blum
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Sangeeta Kumar
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Joseph F Urban
- Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Makedonka Mitreva
- Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Mary M Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Joel V Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111;
| |
Collapse
|
45
|
Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 2016; 138:666-675. [PMID: 27476889 PMCID: PMC5010150 DOI: 10.1016/j.jaci.2016.07.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Helminth parasite infections are associated with a battery of immunomodulatory mechanisms that affect all facets of the host immune response to ensure their persistence within the host. This broad-spectrum modulation of host immunity has intended and unintended consequences, both advantageous and disadvantageous. Thus the host can benefit from suppression of collateral damage during parasite infection and from reduced allergic, autoimmune, and inflammatory reactions. However, helminth infection can also be detrimental in reducing vaccine responses, increasing susceptibility to coinfection and potentially reducing tumor immunosurveillance. In this review we will summarize the panoply of immunomodulatory mechanisms used by helminths, their potential utility in human disease, and prospective areas of future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Giacomin P, Agha Z, Loukas A. Helminths and Intestinal Flora Team Up to Improve Gut Health. Trends Parasitol 2016; 32:664-666. [PMID: 27234811 DOI: 10.1016/j.pt.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Abstract
Inflammatory bowel diseases (IBD) are associated with impaired intestinal barrier function, chronic inflammation, and microbial dysbiosis. In a recent publication in Science, Ramanan et al. used murine and human studies to demonstrate that infections with gastrointestinal helminths can protect against IBD by provoking immune responses that alter the balance of commensal and pathogenic bacteria in the intestine.
Collapse
Affiliation(s)
- Paul Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Zainab Agha
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
47
|
Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect 2016; 22:481-6. [PMID: 27172808 DOI: 10.1016/j.cmi.2016.04.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 02/06/2023]
Abstract
The profile of global health today presents a striking reciprocal distribution between parasitic diseases in many of the world's lower-income countries, and ever-increasing levels of inflammatory disorders such as allergy, autoimmunity and inflammatory bowel diseases in the more affluent societies. Attention is particularly focused on helminth worm parasites, which are associated with protection from allergy and inflammation in both epidemiologic and laboratory settings. One mechanistic explanation of this is that helminths drive the regulatory arm of the immune system, abrogating the ability of the host to expel the parasites, while also dampening reactivity to many bystander specificities. Interest has therefore heightened into whether helminth parasites, or their products, hold therapeutic potential for immunologic disorders of the developed world. In this narrative review, progress across a range of trials is discussed, together with prospects for isolating individual molecular mediators from helminths that may offer defined new therapies for inflammatory conditions.
Collapse
|
48
|
Giacomin P, Croese J, Krause L, Loukas A, Cantacessi C. Suppression of inflammation by helminths: a role for the gut microbiota? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0296. [PMID: 26150662 PMCID: PMC4528494 DOI: 10.1098/rstb.2014.0296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host-parasite-microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation.
Collapse
Affiliation(s)
- Paul Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield 4878, Australia
| | - John Croese
- Department of Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane 4007, Australia
| | - Lutz Krause
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield 4878, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
49
|
Matijašić M, Meštrović T, Perić M, Čipčić Paljetak H, Panek M, Vranešić Bender D, Ljubas Kelečić D, Krznarić Ž, Verbanac D. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. Int J Mol Sci 2016; 17:ijms17040578. [PMID: 27104515 PMCID: PMC4849034 DOI: 10.3390/ijms17040578] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.
Collapse
Affiliation(s)
- Mario Matijašić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Polyclinic "Dr. Zora Profozić", Bosutska 19, 10000 Zagreb, Croatia.
| | - Mihaela Perić
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Hana Čipčić Paljetak
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Marina Panek
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Darija Vranešić Bender
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
| | - Dina Ljubas Kelečić
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
| | - Željko Krznarić
- Department of Internal Medicine, Division of Clinical Nutrition, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia.
- Department of Internal Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Donatella Verbanac
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
50
|
The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunol 2016; 9:322-35. [PMID: 26174763 PMCID: PMC4801903 DOI: 10.1038/mi.2015.62] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/30/2015] [Indexed: 02/04/2023]
Abstract
Intestinal helminth parasites are potent inducers of T helper type 2 (Th2) response and have a regulatory role, notably on intestinal inflammation. As infection with schistosomes is unlikely to provide a reliable treatment of inflammatory bowel diseases, we have investigated the beneficial effect of a schistosome enzymatic protein, the 28-kDa glutathione S-transferase (P28GST), on the modulation of disease activity and immune responses in experimental colitis. Our results showed that immunization with recombinant P28GST is at least as efficient as established schistosome infection to reduce colitis lesions and expression of pro-inflammatory cytokines. Considering underlying mechanisms, the decrease of inflammatory parameters was associated with the polarization of the immune system toward a Th2 profile, with local and systemic increases of interleukin (IL)-13 and IL-5. Dense eosinophil infiltration was observed in the colons of P28GST-immunized rats and mice. Depletion of eosinophils by treatment with an anti-Siglec-F monoclonal antibody and use of IL-5-deficient mice led to the loss of therapeutic effect, suggesting the crucial role for eosinophils in colitis prevention by P28GST. These findings reveal that immunization with P28GST, a unique recombinant schistosome enzyme, ameliorates intestinal inflammation through eosinophil-dependent modulation of harmful type 1 responses, representing a new immuno-regulatory strategy against inflammatory bowel diseases.
Collapse
|