1
|
Mostafa NA, Hamdi SAH, Fol MF. Potential anthelmintic effect of chitosan on Syphacia muris infecting Wistar rats: biochemical, immunological, and histopathological studies. Sci Rep 2024; 14:2825. [PMID: 38310115 PMCID: PMC10838320 DOI: 10.1038/s41598-024-52309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Natural products extracted from animal sources have many biological activities, such as chitosan, which is being researched for its medicinal or therapeutic potential. Syphacia muris is the most well-known intestinal nematode, infecting laboratory rats and influencing their immune systems. In this study, we looked at the anthelminthic activity of chitosan particles against S. muris infection using biochemical, immunological, and histopathological methods. Chitosan particles were characterized using Fourier-transform infrared spectroscopy (FTIR). Rats were separated into four groups, each consisting of seven individuals (n = 7). The first group was the control (non-infected), the second group was infected, and both groups received 0.5 ml of 1% glacial acetic acid orally. The third group was the infected group (treated), and the fourth group (normal) received 0.5 ml of 30 mg/kg/day chitosan dissolved in 1% glacial acetic acid for 14 days using gavage. Liver and kidney parameters, oxidative stress markers, serum levels of cytokines (IFN-γ, IL-5, IL-13, IL-33, and IL-10), as well as immunoglobulins (total IgE and IgG), were assessed. Histological examinations of host tissues (intestine, liver, kidney, and spleen) were also performed. Following chitosan treatment, a significant decrease in worm count (P < 0.05) was indicated; this was associated with an enhancement of biochemical and oxidative stress biomarkers, which were altered due to infection. Moreover, immunological analysis revealed a significant drop in INF-γ, IL-5, IL-13, and IL-33 levels and total immunoglobulins (IgE and IgG) as well as an improvement in rat tissues. Conclusively, this study showed the anthelminthic effect of chitosan against S. muris infection.
Collapse
Affiliation(s)
- Nesma A Mostafa
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Salwa A H Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona F Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Abstract
Fenbendazole remains the drug of choice to treat pinworm infection in laboratory rodents. When fenbendazole was last reviewed (15 y ago), the literature supported the drug's lack of toxic effects at therapeutic levels, yet various demonstrated physiologic effects have the potential to alter research outcomes. Although more recent reports continue to reflect an overall discordancy of results, several studies support the premise that fenbendazole affects the bone marrow and the immune system. No effects on reproduction were reported in an extensive study that assessed common treatment protocols in mice, and food intake was unchanged in rats. Behavioral studies are sparse, with only a single report of a subtle change in a rotarod performance in mice. Notably, unexpected results in tumor models during facility treatment with fenbendazole have prompted preclinical and clinical studies of the potential roles of benzimidazoles in cancer.
Collapse
Affiliation(s)
- Carolyn Cray
- Division of Comparative Pathology and,Corresponding author.
| | - Norman H Altman
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
3
|
Interleukin-25 Induces Resistance Against Intestinal Trematodes. Sci Rep 2016; 6:34142. [PMID: 27658962 PMCID: PMC5034261 DOI: 10.1038/srep34142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
Echinostoma caproni is an intestinal trematode that has been extensively used as an experimental model to investigate the factors determining the resistance to intestinal helminths or the development of chronic infections. ICR mice are permissive hosts for E. caproni in which chronic infections are developed, concomitantly with local Th1 responses, elevated levels of local IFN-γ, inflammation and antibody responses. However, mice develop partial resistance to homologous challenge infections after cure of a primary infection, which converts this subject into an adequate model for the study of the mechanisms generating resistance against intestinal helminths. The purpose of the present study was to compare the immune response induced in primary and secondary infections to elucidate the factors determining the different outcome of the infection in each type of infection. The results obtained indicate that susceptibility is determined by the lack of IL-25 expression in response to primary infection. In contrast, infection in an environment with elevated levels of IL-25, as occurs in challenge infection, results in a Th2 phenotype impairing parasite survival. This was confirmed by treatment of naïve mice with exogenous IL-25 and subsequent infection. Changes induced in goblet cell populations and mucin glycosylation could be implicated in resistance to infection.
Collapse
|
4
|
Trelis M, Galiano A, Bolado A, Toledo R, Marcilla A, Bernal D. Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice. Int J Parasitol 2016; 46:799-808. [PMID: 27590846 DOI: 10.1016/j.ijpara.2016.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
Recent studies have shown the importance of exosomes in the host-parasite relationship. These vesicles are an important part of the excretory/secretory pathway for proteins with the potential to alter immune responses. Therefore, in the present study, we examined the immunomodulatory role of exosomes in BALB/c mice using Echinostoma caproni as an experimental model of intestinal helminth infection. For this purpose, BALB/c mice were injected twice s.c. with purified exosomes of E. caproni, followed by experimental infection. We report a delay in the development of the parasite in mice immunised with exosomes, a concomitant reduced symptom severity and increased survival upon infection. Immunisations with exosomes evoked systemic antibody responses with high levels of IgM and IgG. IgG1, IgG2b and IgG3 are the subtypes responsible for the IgG increase. These antibodies showed specific recognition of exosomal proteins, indicating that these vesicles carry specific antigens that are involved in the humoral response. The administration of exosomes induced an increase of IFN-γ, IL-4 and TGF-β levels in the spleen of mice prior to infection. The subsequent infection with E. caproni resulted in a further increase of IL-4 and TGF-β, together with an abrupt overproduction of IL-10, suggesting the development of a Th2/Treg immune response. Our results show that the administration of exosomes primes the immune response in the host, which in turn can contribute to tolerance of the invader, reducing the severity of clinical signs in E. caproni infection.
Collapse
Affiliation(s)
- Maria Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Av. Fdo. Abril Martorell, 106, 46026 Valencia, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Anabel Bolado
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Rafael Toledo
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Av. Fdo. Abril Martorell, 106, 46026 Valencia, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/ Dr. Moliner, 50, 46100 Burjassot (Valencia), Spain.
| |
Collapse
|
5
|
de Sousa JEN, de Carvalho EFG, Levenhagen MA, de Faria LS, Gonçalves-Pires MDRF, Costa-Cruz JM. Serological cross-reactivity between Strongyloides venezuelensis and Syphacia muris in Wistar rats (Rattus norvegicus). Parasitol Int 2015; 65:137-45. [PMID: 26601618 DOI: 10.1016/j.parint.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
One of the problems frequently faced in laboratory facilities is the possibility of the natural parasitic infection of lab animals, which can interfere with biomedical research results. The present study aimed to evaluate cross-reactivity among serum samples from Wistar rats (Rattus norvegicus) naturally infected with Syphacia muris and experimentally infected with Strongyloides venezuelensis. Forty rats were divided into four groups of ten animals each. Parasite load was evaluated by quantifying the adult worms from both helminthes species recovered from the intestines and the S. venezuelensis eggs eliminated in feces. Serological cross-reactivity by parasite-specific IgG detection was tested via enzyme linked immunosorbent assay (ELISA), immunofluorescence antibody test (IFAT) and immunoblotting. The results demonstrated that the quantity of S. venezuelensis eliminated eggs and parthenogenetic females decreased significantly in cases of co-infection with S. muris. ELISA revealed 100% cross-reactivity of serum samples from both species against the opposing antigen. IgG cross-reactivity was confirmed by IFAT using tissue sections of S. venezuelensis larvae and adult S. muris. Immunoblotting showed that IgG antibodies from the sera of animals infected with S. muris recognized eight antigenic bands from S. venezuelensis saline extract and that IgG antibodies from the sera of animals infected with S. venezuelensis recognized seven bands from S. muris saline extract. These results demonstrate the serological cross-reactivity between S. muris and S. venezuelensis in infected rats.
Collapse
Affiliation(s)
- José Eduardo N de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Edson Fernando G de Carvalho
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Marcelo A Levenhagen
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Lucas S de Faria
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Maria do R F Gonçalves-Pires
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Julia M Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, bloco 4C, Uberlândia, Minas Gerais 38400-902, Brazil.
| |
Collapse
|
6
|
Partial resistance to homologous challenge infections of the digenean Echinostoma caproni in ICR mice. J Helminthol 2015. [PMID: 26202834 DOI: 10.1017/s0022149x1500053x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present paper, we analyse the effect of a primary infection of ICR mice with Echinostoma caproni (Trematoda: Echinostomatidae) on the generation of resistance against homologous challenge infections. In ICR mice, E. caproni induces chronic infections concomitantly with strong responses characterized by the development of T-helper 1 (Th1)-type local immune responses with elevated levels of local interferon-gamma (IFN-γ) and inflammatory and antibody responses. Here, the effect of the response generated against a primary infection with E. caproni in the generation of resistance against subsequent homologous infections was analysed. For this purpose, ICR mice were challenged with metacercariae of E. caproni and the results obtained showed that primary infection induces partial resistance against subsequent homologous infections in ICR mice. This resistance was expressed as a reduced rate of infection, worm recovery and worm size, indicating that primary infection induces changes in the host, making a hostile environment for the development of the parasite.
Collapse
|
7
|
Cortés A, Muñoz-Antoli C, Sotillo J, Fried B, Esteban JG, Toledo R. Echinostoma caproni (Trematoda): differential in vivo mucin expression and glycosylation in high- and low-compatible hosts. Parasite Immunol 2015; 37:32-42. [PMID: 25382212 DOI: 10.1111/pim.12159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
Abstract
Enhanced mucus production and release appears to be a common mechanism for the clearance of intestinal helminths, and this expulsion is normally mediated by Th2-type immune responses. To investigate the factors determining the expulsion of intestinal helminths, we have analysed in vivo expression of mucin genes at the site of infection in two host species displaying different compatibility with Echinostoma caproni (Trematoda). Surprisingly, a general down-regulation on mucin mRNA expression was detected in low-compatible hosts (rats) coinciding with the development of Th2/Th17 responses and the early rejection of the worms from the intestinal lumen. This suggests the existence of a mechanism by which the parasites can modulate the mucus barrier to favour their survival. In highly compatible hosts (mice), some mucin genes were found to be up-regulated throughout the infection, probably, to protect the intestinal epithelium against the infection-induced inflammation developed in this host species. Moreover, infection-induced changes on mucin glycans were also studied by lectin histochemistry. Similar alterations were detected in the ileum of infected mice and rats, except with SNA lectin, indicating that sylated mucins might play an important role in determining the evolution of the infection in each host species.
Collapse
Affiliation(s)
- A Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Chu KB, Kim SS, Lee SH, Lee HS, Joo KH, Lee JH, Lee YS, Zheng S, Quan FS. Enhanced protection against Clonorchis sinensis induced by co-infection with Trichinella spiralis in rats. Parasite Immunol 2014; 36:522-30. [PMID: 24958325 DOI: 10.1111/pim.12125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
Abstract
Although co-infection with multiple parasites is a frequent occurrence, changes in the humoral immune response against a pre-existing parasite induced as a result of a subsequent parasitic infection remain undetermined. Here, we utilized enzyme-linked immunosorbent assay (ELISA) to investigate antibody responses, cytokine production and enhanced resistance in Clonorchis sinensis-infected rats (Sprague-Dawley) upon Trichinella spiralis infection. Higher levels of C. sinensis-specific IgG and IgA were elicited upon T. spiralis infection, and these levels remained higher than in rats infected with C. sinensis alone. Upon subsequent infection with T. spiralis, IgG antibodies against C. sinensis appeared to be rapidly boosted at day 3, and IgA antibodies were boosted at day 7. Challenge infection of C. sinensis-infected rats with T. spiralis induced substantial mucosal IgG and IgA responses in the liver and intestine and increases in antibody-secreting plasma cells in the spleen and bone marrow. Subsequent infection also appeared to confer effective control of liver C. sinensis loads, resulting in enhanced resistance. Memory B cells generated in response to C. sinensis infection were rapidly amplified into antibody-secreting cells upon T. spiralis infection. These results indicate that enhanced C. sinensis clearance induced by co-infection is associated with systemic and mucosal IgG and IgA responses.
Collapse
Affiliation(s)
- K-B Chu
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|