1
|
Kaethner M, Zumstein P, Müller J, Preza M, Grossenbacher P, Bartetzko A, Vetter L, Lochner M, Schürch S, Regnault C, Ramírez DV, Lundström-Stadelmann B. Investigation of the threonine metabolism of Echinococcus multilocularis: The threonine dehydrogenase as a potential drug target in alveolar echinococcosis. Int J Parasitol Drugs Drug Resist 2025; 27:100581. [PMID: 39847910 PMCID: PMC11795093 DOI: 10.1016/j.ijpddr.2025.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Alveolar echinococcosis (AE) is a severe zoonotic disease caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. We recently showed that E. multilocularis metacestode vesicles scavenge large amounts of L-threonine from the culture medium. This motivated us to study the effect of L-threonine on the parasite and how it is metabolized. We established a novel metacestode vesicle growth assay with an automated readout, which showed that L-threonine treatment led to significantly increased parasite growth. In addition, L-threonine increased the formation of novel metacestode vesicles from primary parasite cell cultures in contrast to the non-proteinogenic threonine analog 3-hydroxynorvaline. Tracing of [U-13C]-L-threonine and metabolites in metacestode vesicles and culture medium resulted in the detection of [U-13C]-labeling in aminoacetone and glycine, indicating that L-threonine was metabolized by threonine dehydrogenase (TDH). EmTDH-mediated threonine metabolism in the E. multilocularis metacestode stage was further confirmed by quantitative real-time PCR, which demonstrated high expression of emtdh in in vitro cultured metacestode vesicles and also in metacestode samples obtained from infected animals. EmTDH was enzymatically active in metacestode vesicle extracts. The compounds disulfiram, myricetin, quercetin, sanguinarine, and seven quinazoline carboxamides were evaluated for their ability to inhibit recombinantly expressed EmTDH. The most potent inhibitors, albeit not very strong or highly specific, were disulfiram, myricetin and sanguinarine. These compounds were subsequently tested for activity against E. multilocularis metacestode vesicles and primary parasite cells and only sanguinarine demonstrated significant in vitro activity. However, TDH is not its only cellular target, and it is also known to be highly toxic. Our findings suggest that additional targets of sanguinarine should be explored, and that it may serve as a foundation for developing more specific compounds against the parasite. Moreover, the EmTDH assay could be a valuable high-throughput, target-based platform for discovering novel anti-echinococcal compounds.
Collapse
Affiliation(s)
- Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pascal Zumstein
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Philipp Grossenbacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Anissa Bartetzko
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Vetter
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Clement Regnault
- Integrated Protein Analysis - Mass Spectrometry Unit, MVLS Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Han W, Yang K, Tan X, Gao L, Qu S, Zhang G, Fan W, Liu M, Wang E, Li P, Ling F, Wang G, Liu T. Curcumin is an efficacious therapeutic agent against Chilodonella uncinata via interaction with tubulin alpha chain as protein target. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109961. [PMID: 39395598 DOI: 10.1016/j.fsi.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Chilodonella, a parasitic ciliate that infects both cold water and warm water fish, can impede the growth of juvenile fish and cause considerable economic losses globally to freshwater aquaculture. In this study, the parasite was collected from both the gills and zygotes of largemouth bass (Micropterus salmoides). Isolated from diseased fish, the parasites were identified as Chilodonella uncinata based on morphological features and genetical diagnostic characterization using the partial small subunit ribosomal RNA gene. To develop an effective approach to treat chilodonellosis caused by C. uncinata in largemouth bass farming, we first developed an in vivo culture model for propagating C. uncinate and thus could use for morphological characterization, molecular analyses and antiparasitic drug screening. Curcumin was successfully identified as an efficacious anti-C. uncinata agent from 26 phytochemical compounds. When administered at a concentration of 6 mg/L, curcumin not only completely cured infected largemouth bass but also shielded uninfected fish from C. uncinata infections. The 24 h median effective concentration (EC50) of curcumin against C. uncinata was 3.098 mg/L. Remarkably, the 96 h median lethal concentration (LC50) of curcumin against largemouth bass was determined to be 17.143 mg/L, approximately 5.533 times higher than EC50. The mechanism of action of curcumin was investigated by the cellular thermal shift assay, demonstrating that tubulin alpha chain was the binding target for curcumin. Moreover, SEM investigations further provided morphological evidence suggesting that curcumin induces parasite demise by disrupting the parasite's body surface and subsequently infiltrating its interior. These findings collectively emphasize the potential of curcumin as a safe and effective therapeutic agent for controlling C. uncinata in aquaculture.
Collapse
Affiliation(s)
- Wenjia Han
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Kechen Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoping Tan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Longkun Gao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shenye Qu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gengrong Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqi Fan
- College of Chemistry and Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Erlong Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China.
| | - Tianqiang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Nafie EH, Abou-Gamra MM, Mossalem HS, Sarhan RM, Hammam OA, Nasr SM, Anwar MM. Evaluation of the prophylactic and therapeutic efficacies of mucus and tissue nucleoproteins extracted from Biomphalaria alexandrina snails on schistosomiasis mansoni. J Parasit Dis 2024; 48:551-569. [PMID: 39145357 PMCID: PMC11319553 DOI: 10.1007/s12639-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease with considerable morbidity. The lone effective drug, praziquantel (PZQ), is showing emergence of drug resistance hence, searching for new supportive treatment is crucial. This study aimed to evaluate the efficacy of mucus and nucleoproteins (NPs) extracted from Biomphalaria alexandrina (B. alexandrina) snails on miracidia, cercariae and Schistosoma mansoni (S. mansoni) adults in vitro and assess their experimental in vivo effect through parasitological, histopathological, and biochemical parameters. The in vivo study included 90 male Swiss albino mice. Mice were grouped into 9 groups; G1-G5 were infected and treated with; GI: PZQ, GII: mucus, GIII: combined PZQ and mucus, GIV: NPs, GV: combined PZQ and NPs. Control groups; C1: Non infected non treated (negative control), C2: Infected non treated (positive control), C3: Non infected mucus treated and C4: Non infected NPs treated. The in vitro study proved that the mucus had a better lethal effect on cercariae than miracidia, while NPs had better lethal effect on miracidia. The mucus lethal effect on adults surpassed the NPs as 100% and 60%, respectively. The in vivo study proved that the combined NPs or mucus with PZQ added to the effect of individual PZQ resulting in 100% total worm burden (TWB) reduction. As regard oxidative stress markers, the lowest level of nitric oxide (NO) was shown with combined PZQ and NPs. While, the highest glutathione (GSH) level was produced by individual PZQ. The study concluded that mucus and NPs of B. alexandrina had cercaricidal, miracidicidal and anti-schistosomal effect in vitro and that their combination could be considered a contribution to PZQ potentiality in vivo.
Collapse
Affiliation(s)
- Esraa H. Nafie
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Maha M. Abou-Gamra
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Hanan S. Mossalem
- Departments of Medical Malacology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Rania M. Sarhan
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Olfat A. Hammam
- Departments of Pathology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Sami M. Nasr
- Departments of Biochemistry, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Mona M. Anwar
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
4
|
de Souza Silva MS, Dos Santos MLMF, da Silva AM, França WWM, Araújo SB, da Silva RL, do Nascimento WRC, da Silva Santos NP, da Cruz Filho IJ, de Azevedo Albuquerque MCP, de Araújo HDA, de Lima Aires A. Sanguinarine: an alkaloid with promising in vitro and in vivo antiparasitic activity against different developmental stages of Schistosoma mansoni and in silico pharmacokinetic properties (ADMET). Parasitol Res 2024; 123:143. [PMID: 38407619 DOI: 10.1007/s00436-024-08153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
The objective of the study was to evaluate the in vitro and in vivo schistosomicidal activity of sanguinarine (SA) on Schistosoma mansoni and its in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The activity of SA in vitro, at the concentrations of 1.0-25 µM, was analyzed through the parameters of motility, mortality, and cell viability of the worms at intervals of 3-24 h. Mice were infected with cercariae and treated by gavage with SA (5 mg/kg/day, in a single dose or two doses of 2.5 mg/kg every 12 h for 5 consecutive days) on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms), and 45th (adult worms) days after infection. In vitro and in vivo praziquantel was the control. In vitro, SA showed schistosomicidal activity against schistosomula, young worms, and couples; with total mortality and reduced cell viability at low concentrations and incubation time. In a single dose of 5 mg/kg/day, SA reduces the total worm load by 47.6%, 54%, 55.2%, and 27.1%, and female worms at 52.0%, 39.1%, 52.7%, and 20.2%, respectively, results which are similar to the 2.5 mg/kg/day dose. SA reduced the load of eggs in the liver, and in histopathological and histomorphometric analyses, there was a reduction in the number and volume of hepatic granulomas, which exhibited less inflammatory infiltrate. SA has promising in vitro and in vivo schistosomicidal activity against different developmental stages of S. mansoni, in addition to reducing granulomatous liver lesions. Furthermore, in silico, SA showed good predictive pharmacokinetic ADMET profiles.
Collapse
Affiliation(s)
- Maria Stéphanny de Souza Silva
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Wilza Wanessa Melo França
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Programa de Pós-Graduação Em Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Wheverton Ricardo Correia do Nascimento
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Noemia Pereira da Silva Santos
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia E Fármacos e Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Iranildo José da Cruz Filho
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia E Fármacos e Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Programa de Pós-Graduação Em Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Dai JS, Xu J, Shen HJ, Chen NP, Zhu BQ, Xue ZJ, Chen HH, Ding ZS, Ding R, Qian CD. The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump. Microbiol Spectr 2024; 12:e0323723. [PMID: 38038452 PMCID: PMC10783092 DOI: 10.1128/spectrum.03237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.
Collapse
Affiliation(s)
- Jian-Sheng Dai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Jie Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Jie Xue
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Han Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chao-Dong Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Anwar FS, Abdel-Malek AR, Salem SH, Farouk M, Ali MF, Abdelrady YA, Sayed AM. In vitro and In silico assessment of antischistosomal activities of ethanolic extract of Cornulacamonacantha. Exp Parasitol 2023; 254:108631. [PMID: 37820894 DOI: 10.1016/j.exppara.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Schistosomiasis is the second most prevailing parasitic disease worldwide. Although praziquantel is considered an effective drug in the treatment against schistosomiasis to some extent, there is an emerging drug resistance that widely recorded. Therefore, there is an urgent need to develop effective and safe anti-schistosomal drugs. In this study, Cornulaca monacantha (C. monacantha), a sub-saharan plant, was extracted using aqueous ethanol and characterized by High-Performance Liquid Chromatography (HPLC). Major constituents of the extract are belonging to flavonoids, tannins and phenolic glycosides. Worms' viability and surface morphology of Schistosoma mansoni (S. mansoni) adult worms treated with the extract were assessed using in vitro viability assay, Scanning Electron Microscopy (SEM), and histological examination. The extract (80-350 μg/ml) reduced viability percentage of worms by 40-60% and caused degeneration of both oral and ventral suckers, tegumental, sub-tegumental and muscular damage. Molecular docking approach was utilized to assess the binding affinities of the extracted compounds with S. mansoni alpha-carbonic anhydrase (SmCA), an essential tegument protein. Pharmacokinetic analysis using SwissADME showed that 7 compounds have high drug similarity. This study confirms the in vitro schistomicidal activity of C. monacantha extract against S. mansoni adult worms and suggests potential SmCA inhibition.
Collapse
Affiliation(s)
- FatmaA S Anwar
- Zoology Department, Faculty of Science, Assiut University, 71516, Egypt
| | | | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Mohamed Farouk
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, New Valley University, 72511, Egypt
| | - Marwa F Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Yousef A Abdelrady
- Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; University of Hamburg, Institute of Pharmacy, 20146, Germany
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71516, Egypt.
| |
Collapse
|
7
|
Hassanzadeh E, Khademvatan S, Jafari B, Jafari A, Yousefi E. In vitro and in silico scolicidal effect of sanguinarine on the hydatid cyst protoscoleces. PLoS One 2023; 18:e0290947. [PMID: 37878663 PMCID: PMC10599545 DOI: 10.1371/journal.pone.0290947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/20/2023] [Indexed: 10/27/2023] Open
Abstract
We aimed to investigate the scolicidal effects of sanguinarine on hydatid cyst protoscoleces (PSCs) in vitro and in silico. Different targets were docked into the active sites of sanguinarine. Molecular docking processes and visualization of interactions were performed using AutoDock Vina and Discovery Studio Visualizer. Binding energy was calculated and compared (kcal/mol). PSCs were aspirated from the hydatid cysts and washed. The sediments of PSCs were then exposed to various concentrations (50, 25, 12, 6, 3, and 1 μg/mL) of sanguinarine. The viability test was finally evaluated by the Trypan blue solution 4%. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPX), and catalase were analyzed to assess the level of oxidative stress-treated PSCs. Caspase-3 activity rate was determined to evaluate cell apoptosis in treated PSCs. Among the receptors, acetylcholinesterase was identified as the excellent target, with Vina score of -11.8. Sanguinarine showed high scolicidal effects after 12, 24, and 48 h. Also, in the first hour of exposure to the drug, caspase-3 activity and MDA level significantly increased, but the levels of GSH and GPx had a significant reduction after 12, 24, and 48 h (P < 0.05). The findings of this study revealed that sanguinarine have potent scolicidal effects in vitro and in silico and could be considered an opportunity for the introduction of a novel and safe therapeutic agent for the treatment of cystic echinococcosis. However, supplementary studies will be desired to prove the current findings by examining sanguinarine in a clinical setting.
Collapse
Affiliation(s)
- Elham Hassanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Otarigho B, Falade MO. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase. Life (Basel) 2023; 13:1957. [PMID: 37895339 PMCID: PMC10608284 DOI: 10.3390/life13101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The existing treatment strategy for Schistosomiasis centers on praziquantel, a single drug, but its effectiveness is limited due to resistance and lack of preventive benefits. Thus, there is an urgent need for novel antischistosomal agents. Schistosoma glutathione S-transferase (GST) is an essential parasite enzyme, with a high potential for targeted drug discovery. In this study, we conducted a screening of compounds possessing antihelminth properties, focusing on their interaction with the Schistosoma mansoni glutathione S-transferase (SmGST) protein. We demonstrated the unique nature of SmGST in comparison to human GST. Evolutionary analysis indicated its close relationship with other parasitic worms, setting it apart from free-living worms such as C. elegans. Through an assessment of binding pockets and subsequent protein-ligand docking, we identified Scutiaquinone A and Scutiaquinone B, both naturally derived Perylenequinones, as robust binders to SmGST. These compounds have exhibited effectiveness against similar parasites and offer promising potential as antischistosomal agents.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
9
|
Habib MR, Mohamed AH, Nassar AHA, Sheir SK. Bisphenol A effects on the host Biomphalaria alexandrina and its parasite Schistosoma mansoni. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97824-97841. [PMID: 37597145 DOI: 10.1007/s11356-023-29167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) is one of the most potent endocrine-disrupting chemicals (EDCs) that adversely affect aquatic organisms. The present investigation explored the effects of exposure to BPA at 0.1 and 1 mgL-1 concentrations on the fecundity of Biomphalaria alexandrina, snail's infection with Schistosoma mansoni, and histology of the ovotestis and topographical structure of S. mansoni cercariae emerged from exposed snails. The 24 h LC50 and LC90 values of BPA against B. alexandrina were 8.31 and 10.88 mgL-1 BPA, respectively. The exposure of snails to 0.1 or 1 mgL-1 BPA did not affect the snail's survival. However, these concentrations caused an increase in the reproductive rate (Ro) of infected snails. A slight decrease in egg production was observed in snails exposed to 0.1 mgL-1 BPA after being infected (infected then exposed). However, a significant increase in egg production was noted in snails exposed to 1 mgL-1 BPA after infection with S. mansoni. Histopathological investigations indicated a clear alteration in the ovotestis tissue structure of exposed and infected-exposed groups compared to the control snails. Chronic exposure to BPA caused pathological alterations in the gametogenic cells. SEM preparations of S. mansoni cercariae emerged from infected-exposed snails showed obvious body malformations. From a public health perspective, BPA pollution may negatively impact schistosomiasis transmission, as indicated by the disturbance in cercarial production and morphology. However, it has adverse effects on the reproduction and architecture of reproductive organs of exposed snails, indicating that B. alexandrina snails are sensitive to sublethal BPA exposure.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | | | - Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
10
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
11
|
Hamdan BZK, Soliman MI, Taha HA, Khalil MMH, Nigm AH. Antischistosomal effects of green and chemically synthesized silver nanoparticles: in vitro and in vivo murine model. Acta Trop 2023:106952. [PMID: 37236335 DOI: 10.1016/j.actatropica.2023.106952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Schistosomiasis is one of the most important neglected tropical diseases in Africa, caused by blood fluke, Schistosoma sp. The use of nanotechnology in the treatment of this type of disease is urgently important to avoid the unwanted side effects of chemotherapy. The present study aimed to evaluate the efficacy of green silver nanoparticles (G-AgNPs), fabricated by (Calotropis procera), comparing with both chemically prepared silver ones (C-AgNPs) and Praziquantel (PZQ) treatments. The study included in vitro and in vivo evaluations. In in vitro study, 4 groups of schistosome worms were exposed to treatments as follows: the first one with a dose of PZQ (0.2 µg/ml), the 2nd and 3rd groups with different concentrations of G-AgNPs and C-AgNPs, respectively and the last one act as a negative control group. In in vivo study, six groups of mice were infected and then treated as follows: the first one with a dose of PZQ, the second with G-AgNPs, the third with C-AgNPs, the fourth with G-AgNPs plus a half dose of PZQ, the fifth with C-AgNPs accompanied by a half dose of PZQ, and the last group acted as a positive control group. The parasitological (worm burden, egg count & oogram) and histopathological parameters (hepatic granuloma profile) were used to evaluate antischistosomal activities in experimental groups. Additionally, the subsequent ultrastructural alterations were observed in adult worms using scanning electron microscopy (SEM). Transmission electron microscopy analysis showed that G-AgNPs and C-AgNPs have 8-25 and 8-11 nm in diameter, respectively, besides, fourier transform infrared analysis (FTIR) revealed the presence of organic compounds (aromatic ring groups) which act as capping agents around the surfaces of biogenic silver nanoparticles. In in vitro experiment, adult worms incubated either with G-AgNPs or C-AgNPs at concentrations higher than 100 µg/ml or 80 µg/ml, respectively, showed full mortality of parasites after 24 h. In the infected treated groups (with G-AgNPs plus PZQ & C-AgNPs plus PZQ) showed the most significant reduction in the total worm burdens (92.17% & 90.52%, respectively). Combined treatment with C-AgNPs and PZQ showed the highest value of dead eggs (93,6%), followed by G-AgNPs plus PZQ-treated one (91%). This study showed that mice treated with G-AgNPs plus PZQ significantly has the highest percentage of reduction in granuloma size and count (64.59%, 70.14%, respectively). Both G-AgNPs plus PZQ-treated & C-AgNPs plus PZQ treated groups showed the highest similar values of reduction percentage of total ova count in tissues (98.90% & 98.62%, respectively). Concerning SEM, G-AgNPs-treated worms showed more variability in ultrastructural alterations than G-AgNPs plus PZQ-treated one, besides, worms treated with C-AgNPs plus PZQ exhibited the maximum level of contractions or (shrinkage) as a major impact.
Collapse
Affiliation(s)
- By Zeyad K Hamdan
- Department of Biology, College of Pure Science Education, Tikrit University, Iraq
| | | | - Hoda A Taha
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, Egypt
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt.
| |
Collapse
|
12
|
Sheir SK, Elmongy EI, Mohamad AH, Osman GY, Bendary SE, Ahmed AAS, Binsuwaidan R, El-Sayed IET. Molluscicidal and Larvicidal Potency of N-Heterocylic Analogs against Biomophalaria alexandrina Snails and Schistosoma mansoni Larval Stages. Pharmaceutics 2023; 15:pharmaceutics15041200. [PMID: 37111685 PMCID: PMC10142358 DOI: 10.3390/pharmaceutics15041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine protease protein as an interesting target for antiparasitics. Compound AEAN showed the best docking results followed by APAN in comparison to the co-crystallized ligand D1R reflected by their binding affinities and RMSD values. The egg production, hatchability of B. alexandrina snails and ultrastructural topography of S. mansoni cercariae using SEM were assessed. Biological evaluations (hatchability and egg-laying capacity) revealed that the quinoline hydrochloride salt CAAQ was the most effective compound against adult B. alexandrina snails, whereas the indolo-quinoline derivative APAN had the most efficiency against miracidia, and the acridinyl derivative AEAA was the most effective against cercariae and caused 100% mortality. CAAQ and AEAA were found to modulate the biological responses of B. alexandrina snails with/without S. mansoni infection and larval stages that will affect S. mansoni infection. AEAA caused deleterious morphological effects on cercariae. CAAQ caused inhibition in the number of eggs/snail/week and reduced reproductive rate to 43.8% in all the experimental groups. CAAQ and AEAA can be recommended as an effective molluscicide of plant origin for the control program of schistosomiasis.
Collapse
Affiliation(s)
- Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Azza H Mohamad
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Shimaa E Bendary
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
13
|
Rezanejade Bardajee G, Boraghi SA, Mahmoodian H, Rezanejad Z, Parhizkari K, Elmizadeh H. A salep biopolymer-based superporous hydrogel for ranitidine delivery: synthesis and characterization. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
França WWM, da Silva AM, Diniz EGM, Silva HAMF, Pereira DR, De Melo AMMA, Coelho LCBB, de Azevedo Albuquerque MCP, de Araújo HDA, de Lima Aires A. Toxic, cytotoxic and genotoxic effect of plumbagin in the developmental stages of Biomphalaria glabrata (Say, 1818-intermediate host) and cercaricidal activity against the infectious agent of schistosomiasis mansoni. PEST MANAGEMENT SCIENCE 2022; 78:5172-5183. [PMID: 36053991 DOI: 10.1002/ps.7136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Snails of the genus Biomphalaria are intermediate hosts of Schistosoma mansoni, the main etiological agent of schistosomiasis mansoni, which affects about 236.6 million people in tropical and subtropical regions of the world. The World Health Organization recommends the population control of vector snails as one of the strategies to reduce the prevalence and incidence of schistosomiasis. In this study, molluscicidal and antiparasitic activities of plumbagin, a naturally sourced naphthoquinone with a range of biological effects, were evaluated against B. glabrata and cercariae of S. mansoni. RESULTS After 24 h of exposure, plumbagin demonstrated molluscicidal activity at low concentrations against embryos (LC50 of 0.56, 0.93, 0.68, 0.51 and 0.74 μg mL-1 for the blastula, gastrula, trochophore, veliger and hippo stage, respectively) and adult snails (LC50 of 3.56 μg mL-1 ). There were no changes in exposed snails' fecundity or fertility; however, plumbagin was able to increase the frequency of DNA damage and the number of hemocytes, with apoptosis and binucleation being the main hemocyte alterations. In addition, plumbagin showed death of S. mansoni cercariae in the concentration of 1.5 μg mL-1 in 60 min, while showing moderate toxicity to Artemia salina. CONCLUSION Plumbagin proved to be a promising substance for the control of B. glabrata population, intermediate host of S. mansoni, as well as the cercariae, infective stage for humans (definitive host), while being moderately toxic to A. salina, a crustacean widely used in ecotoxicity tests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wilza Wanessa Melo França
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Maria da Silva
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Bakery HH, Allam GA, Abuelsaad ASA, Abdel‐Latif M, Elkenawy AE, Khalil RG. Anti‐inflammatory, antioxidant, anti‐fibrotic, and schistosomicidal properties of plumbagin in murine schistosomiasis. Parasite Immunol 2022; 44:e12945. [DOI: 10.1111/pim.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Heba H. Bakery
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | - Gamal A. Allam
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | | | - Mahmoud Abdel‐Latif
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | - Ayman E. Elkenawy
- Department of Pathology College of Medicine, Taif University, P.O. Box 11099 Taif Saudi Arabia
- Department of Molecular Biology, GEBRI University of Sadat City Sadat City Egypt
| | - Rehab G. Khalil
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| |
Collapse
|
16
|
El-Morsy SMA, El-Tantawy SAM, El-Shabasy EA. Antischistosomal effects of Ficus carica leaves extract and/or PZQ on Schistosoma mansoni infected mice. J Parasit Dis 2022; 46:87-102. [PMID: 35299912 PMCID: PMC8901854 DOI: 10.1007/s12639-021-01417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022] Open
Abstract
Currently, praziquantel (PZQ) is the only drug of choice used for treatment of human schistosomes because of its safety and broad-spectrum activity. It is reported that the repeated chemotherapy is complicated by the occurrence of drug resistance to schistosomiasis. So there is an urgent need to develop new drug combinations therapy. The current study aimed to evaluate antischistosomal activity of F. carica leaves extract alone or in combination with PZQ on Schistosoma mansoni infected mice. Mice were experimentally infected with Schistosoma mansoni and orally administrated 6 weeks' post-infection with Fig leaves extract and/or PZQ. Schistosoma mansoni (S. mansoni)-infected mice were separated into four groups: untreated (I), treated with PZQ in dose of 200 mg/kg bw (II), treated with Fig leaves extract dose of 400 mg/kg bw (III). Group IV was treated with dose of Fig leaves extract-PZQ as in groups II and III, respectively. The effect was detected parasitologically using ova count technique and oogram pattern in intestine and liver. The greatest antischistosomal effect was achieved using orally administered Fig leaves extract-PZQ as indicated by total worm burden, tissue egg count and oogram pattern. Fig leaves extract + PZQ induced the therapeutic efficacy over the PZQ dose alone in intestine and liver as shown by a complete absence of immature worms, a very high reduction in the total numbers of tissue egg load (59.81% vs. 61.43% & 67.96% vs. 73.46%), mature eggs (37.86 ± 1.4 vs. 34.14 ± 1.9) and increasing in the total number of dead eggs (62.14 ± 1.4vs.67.29 ± 1.76). The results suggested the curcumin in combination with PZQ as a strong schistosomicidal regimen against S. mansoni. In addition, F. carica leaves extract is a promising for PZQ potentiating its antischistosomal action in animal model infected with S. mansoni. Therefore, the present work conclude that combined treatment has a synergetic effect and could be more promising in the management of schistosomiasis.
Collapse
Affiliation(s)
| | | | - Eman A. El-Shabasy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Stochmal A, Moniuszko-Szajwaj B, Zuchowski J, Pecio Ł, Kontek B, Szumacher-Strabel M, Olas B, Cieslak A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112 ® and Their Anticoagulant Properties in Whole Human Blood. Molecules 2022; 27:980. [PMID: 35164250 PMCID: PMC8840654 DOI: 10.3390/molecules27030980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Jerzy Zuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Malgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Adam Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| |
Collapse
|
18
|
Li JY, Huang HB, Wang N, Shi CW, Pan TX, Zhang B, Yang GL, Wang CF. Sanguinarine induces apoptosis in Eimeria tenella sporozoites via the generation of reactive oxygen species. Poult Sci 2022; 101:101771. [PMID: 35272108 PMCID: PMC8913342 DOI: 10.1016/j.psj.2022.101771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 10/25/2022] Open
|
19
|
Singh AP, Sharma A. Structural Insights and Pharmaceutical Relevance of Plumbagin in Parasitic Disorders: A Comprehensive Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:187-198. [PMID: 36065920 DOI: 10.2174/2772434417666220905121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, natural products have been became the center of attraction for the scientific society and exploration of their biologically abilities is proceeding continuously. In search for novel antiparasitic agents with an objective of protecting humans from parasitic infections, the present work was focused on naphthoquinones possessing antiparasitic activity. Among naphthoquinones, plumbagin is one of the secondary metabolites exhibiting diverse biological properties such as antibacterial, antimalarial, antiinflammatory, insecticidal and antiparasitic. Plumbagin is reported to have antischistosomiasis, anti-haemonchosis, anti-fascioliasis, antiotoacariasis, anti-leishmaniasis, antimalaria, antiallergic and anthelmintic activities. Besides, various methods of extraction of plumbagin from different methods, their effectiveness against different parasites, and the structure-activity relationship reported by different researchers. This work highlight on recent advancements in the phytochemistry of plumbagin, studies associated with various biological activities. The structure-activity relationship studies have also been summarized. To conclude, present review could be beneficial for the scientific community to get better insight into medicinal research of plumbagin and may provide a new horizon for the rational design of plumbagin based compounds.
Collapse
Affiliation(s)
| | - Alok Sharma
- ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
20
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
21
|
Abd El Wahab WM, El-Badry AA, Mahmoud SS, El-Badry YA, El-Badry MA, Hamdy DA. Ginger (Zingiber Officinale)-derived nanoparticles in Schistosoma mansoni infected mice: Hepatoprotective and enhancer of etiological treatment. PLoS Negl Trop Dis 2021; 15:e0009423. [PMID: 34014936 PMCID: PMC8171924 DOI: 10.1371/journal.pntd.0009423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nanotechnology has been manufactured from medicinal plants to develop safe, and effective antischistosmal alternatives to replace today's therapies. The aim of the study is to evaluate the prophylactic effect of ginger-derived nanoparticles (GNPs), and the therapeutic effect of ginger aqueous extract, and GNPs on Schistosoma mansoni (S. mansoni) infected mice compared to praziquantel (PZQ), and mefloquine (MFQ). METHODOLOGY/PRINCIPAL FINDINGS Eighty four mice, divided into nine different groups, were sacrificed at 6th, 8th, and 10th week post-infection (PI), with assessment of parasitological, histopathological, and oxidative stress parameters, and scanning the worms by electron microscope. As a prophylactic drug, GNPs showed slight reduction in worm burden, egg density, and granuloma size and number. As a therapeutic drug, GNPs significantly reduced worm burden (59.9%), tissue egg load (64.9%), granuloma size, and number at 10th week PI, and altered adult worm tegumental architecture, added to antioxidant effect. Interestingly, combination of GNPs with PZQ or MFQ gave almost similar or sometimes better curative effects as obtained with each drug separately. The highest therapeutic effect was obtained when ½ dose GNPs combined with ½ dose MFQ which achieved 100% reduction in both the total worm burden, and ova tissue density as early as the 6th week PI, with absence of detected eggs or tissue granuloma, and preservation of liver architecture. CONCLUSIONS/SIGNIFICANCE GNPs have a schistosomicidal, antioxidant, and hepatoprotective role. GNPs have a strong synergistic effect when combined with etiological treatments (PZQ or MFQ), and significantly reduced therapeutic doses by 50%, which may mitigate side effects and resistance to etiological drugs, a hypothesis requiring further research. We recommend extending this study to humans.
Collapse
Affiliation(s)
- Wegdan M. Abd El Wahab
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman A. El-Badry
- Department of Microbiology-Medical Parasitology Section, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Soheir S. Mahmoud
- Department of Parasitology, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Yaser A. El-Badry
- Department of Chemistry, Faculty of Science, Taif University, Khurma, Taif, Saudi Arabia
- Organic Chemistry Lab., Faculty of Specific Education, Ain Shams University, Abbasseya, Cairo, Egypt
| | - Mohamed A. El-Badry
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes (GOTHI), Giza, Egypt
| | - Doaa A. Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
22
|
Huang P, Xia L, Zhou L, Liu W, Wang P, Qing Z, Zeng J. Influence of different elicitors on BIA production in Macleaya cordata. Sci Rep 2021; 11:619. [PMID: 33436669 PMCID: PMC7804250 DOI: 10.1038/s41598-020-79802-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Sanguinarine (SAN) and chelerythrine (CHE) have been widely used as substitutes for antibiotics for decades. For a long time, SAN and CHE have been extracted from mainly Macleaya cordata, a plant species that is a traditional herb in China and belongs to the Papaveraceae family. However, with the sharp increase in demand for SAN and CHE, it is necessary to develop a new method to enhance the supply of raw materials. Here, we used methyl jasmonate (MJ), salicylic acid (SA) and wounding alone and in combination to stimulate aseptic seedlings of M. cordata at 0 h, 24 h, 72 h and 120 h and then compared the differences in metabolic profiles and gene expression. Ultimately, we found that the effect of using MJ alone was the best treatment, with the contents of SAN and CHE increasing by 10- and 14-fold, respectively. However, the increased SAN and CHE contents in response to combined wounding and MJ were less than those for induced by the treatment with MJ alone. Additionally, after MJ treatment, SAN and CHE biosynthetic pathway genes, such as those encoding the protopine 6-hydroxylase and dihydrobenzophenanthridine oxidase enzymes, were highly expressed, which is consistent with the accumulation of SAN and CHE. At the same time, we have also studied the changes in the content of synthetic intermediates of SAN and CHE after elicitor induction. This study is the first systematic research report about using elicitors to increase the SAN and CHE in Macleaya cordata.
Collapse
Affiliation(s)
- Peng Huang
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Liqiong Xia
- Clinical Pharmacy, Yueyang Hospital of TCM, Yueyang, 414000 Hunan China
| | - Li Zhou
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Wei Liu
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Peng Wang
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Zhixing Qing
- grid.257160.70000 0004 1761 0331College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, 410128 Hunan China
| |
Collapse
|
23
|
In vivo assessment of the antischistosomal activity of curcumin loaded nanoparticles versus praziquantel in the treatment of Schistosoma mansoni. Sci Rep 2020; 10:15742. [PMID: 32978497 PMCID: PMC7519097 DOI: 10.1038/s41598-020-72901-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a serious parasitic infection affecting millions worldwide. This study aimed to explore the anti-schistosomal activity of curcumin and curcumin loaded gold-nanoparticles (Cur-GNPs) with or without praziquantel (PZQ). We used six groups of the C57BL/6 mice in which five groups were infected with Schistosoma Mansoni (S. mansoni) cercariae and exhibited, separately, to different treatment regimens of curcumin, curcumin loaded nanoparticle, and PZQ, in addition to one untreated group which acts as a control. Mice were sacrificed at the 8th week where both worms and eggs were counted in the hepatic and porto-mesenteric vessels in the liver and intestine, respectively, in addition to a histopathological examination of the liver granuloma. Curcumin caused a significant reduction in the worms and egg count (45.45%) at the 3rd week. A significant schistosomicidal effect of PZQ was found in all groups. Cur-GNPs combined with PZQ 97.4% reduction of worm burden in the 3rd week and the highest reduction in the intestinal and hepatic egg content, as well, besides 70.1% reduction of the granuloma size. The results suggested the curcumin in combination with PZQ as a strong schistosomicidal regimen against S. mansoni as it alters the hematological, biochemical, and immunological changes induced.
Collapse
|
24
|
Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020; 26:4112-4150. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.
Collapse
Affiliation(s)
- Sonaly L Albino
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Jamire M da Silva
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Michelangela S de C Nobre
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Yvnni M S de M E Silva
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Mirelly B Santos
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Rodrigo S A de Araújo
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Maria do C A de Lima
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Martine Schmitt
- Universite de Strasbourg, CNRS, LIT UMR 7200, Laboratoire d'innovation therapeutique, Illkirch, France
| | - Ricardo O de Moura
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
25
|
Huang H, Yao J, Liu K, Yang W, Wang G, Shi C, Jiang Y, Wang J, Kang Y, Wang D, Wang C, Yang G. Sanguinarine has anthelmintic activity against the enteral and parenteral phases of trichinella infection in experimentally infected mice. Acta Trop 2020; 201:105226. [PMID: 31634454 DOI: 10.1016/j.actatropica.2019.105226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
Abstract
Trichinellosis is a zoonotic parasitic disease caused by Trichinella spiralis, and it is also a widely prevalent foodborne parasitic disease. At present, albendazole and benzimidazole are the most commonly used therapeutic drugs for the clinical treatment of trichinellosis, but they have many side effects. Sanguinarine is a benzophenanthridine alkaloid that has biological activity, such as antibacterial, antitumour and antiparasitic activities. Therefore, the present study aimed to evaluate the anti-Trichinella effect of sanguinarine in vivo and in vitro. The results showed that sanguinarine had a lethal effect on muscle larvae, adults and new-borne larvae in vitro. The damage to adults treated with sanguinarine was observed by scanning electron microscopy. Sanguinarine could significantly reduce the burden of worms in mice during the pre-adult, migrating larva and encysted larva stages. The ratio of intestinal villus to crypt (V/C) in mice treated with sanguinarine was significantly higher than that in non-treated control mice. Compared with the non-treated control group, the sanguinarine-treated group exhibited a significantly increased number of small intestine goblet cells. The level of reactive oxygen species (ROS) in the serum of mice treated with sanguinarine was significantly higher than that of the control group mice in the pre-adult and encysted larva stages. This study suggests that sanguinarine is a potential drug against trichinellosis.
Collapse
|
26
|
Chen J, Kang B, Yao K, Fu C, Zhao Y. Effects of dietary Macleaya cordata extract on growth performance, immune responses, antioxidant capacity, and intestinal development in weaned piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1636800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, People’s Republic of China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, People’s Republic of China
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, People’s Republic of China
| | - Kang Yao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, People’s Republic of China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, People’s Republic of China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, People’s Republic of China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, People’s Republic of China
| |
Collapse
|
27
|
Calil FA, David JS, Chiappetta ER, Fumagalli F, Mello RB, Leite FH, Castilho MS, Emery FS, Nonato M. Ligand-based design, synthesis and biochemical evaluation of potent and selective inhibitors of Schistosoma mansoni dihydroorotate dehydrogenase. Eur J Med Chem 2019; 167:357-366. [DOI: 10.1016/j.ejmech.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
28
|
Modulation of benzylisoquinoline alkaloid biosynthesis by overexpression berberine bridge enzyme in Macleaya cordata. Sci Rep 2018; 8:17988. [PMID: 30573738 PMCID: PMC6301961 DOI: 10.1038/s41598-018-36211-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/11/2018] [Indexed: 11/08/2022] Open
Abstract
Macleaya cordata produces a variety of benzylisoquinoline alkaloids (BIAs), such as sanguinarine, protopine, and berberine, which are potential anticancer drugs and natural growth promoters. The genes encoding the berberine bridge enzyme (BBE) were isolated from M. cordata and Papaver somniferum, and then the two genes were overexpressed in M. cordata. Through liquid chromatography with triple-quadrupole mass spectrometry analysis, it was determined that McBBE-OX caused higher levels of (S)-norcoclaurine, (S)-coclaurine, (S)-N-cis-methylcoclaurine, (S)-reticuline, (S)-tetrahydrocolumbamine, (S)-tetrahydroberberine, (S)-cheilanthifoline, and (S)-scoulerine than PsBBE-OX, empty vector or control treatments. qRT-PCR analysis demonstrated that the introduced genes in the transgenic lines were all highly expressed. However, the levels of sanguinarine (SAN) and chelerythrine (CHE) in all the transgenic lines were slightly lower than those in the wild-type lines, possibly because the overexpression of McBBE causes feedback-inhibition. This is the first report on the overexpression of potential key genes in M. cordata, and the findings are important for the design of metabolic engineering strategies that target BIAs biosynthesis.
Collapse
|
29
|
Huang P, Xia L, Liu W, Jiang R, Liu X, Tang Q, Xu M, Yu L, Tang Z, Zeng J. Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Sci Rep 2018; 8:11986. [PMID: 30097605 PMCID: PMC6086913 DOI: 10.1038/s41598-018-30560-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/02/2018] [Indexed: 01/29/2023] Open
Abstract
Sanguinarine is currently widely used to replace antibiotic growth promoters in animal feeding and has demonstrated useful anticancer activity. Currently, the main source of sanguinarine is from an important medicinal plant, Macleaya cordata. To obtain a new source of sanguinarine production, we established hairy root cultures of M. cordata by co-cultivating leaf and stem explants with Agrobacterium rhizogenes. Except the co-cultivation medium, all growth media contained 200 mg/L timentin to eliminate A. rhizogenes. Through comparing the metabolic profiles and gene expression of hairy roots and wild-type roots sampled at five time points, we found that the sanguinarine and dihydrosanguinarine contents of hairy roots were far higher than those of wild-type roots, and we revealed the molecular mechanism that causes these metabolites to increase. Consequently, this study demonstrated that the hairy root system has further potential for bioengineering and sustainable production of sanguinarine on a commercial scale. To the best of our knowledge, this is the first efficient protocol reported for the establishment of hairy root cultures in M. cordata using A. rhizogenes.
Collapse
Affiliation(s)
- Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Liqiong Xia
- School of pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China
| | - Ruolan Jiang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiubin Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China
| | - Qi Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Min Xu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Linlan Yu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | | | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
30
|
Huang P, Xia L, Liu W, Jiang R, Liu X, Tang Q, Xu M, Yu L, Tang Z, Zeng J. Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Sci Rep 2018. [PMID: 30097605 DOI: 10.1038/s41598-018-30560-30560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Sanguinarine is currently widely used to replace antibiotic growth promoters in animal feeding and has demonstrated useful anticancer activity. Currently, the main source of sanguinarine is from an important medicinal plant, Macleaya cordata. To obtain a new source of sanguinarine production, we established hairy root cultures of M. cordata by co-cultivating leaf and stem explants with Agrobacterium rhizogenes. Except the co-cultivation medium, all growth media contained 200 mg/L timentin to eliminate A. rhizogenes. Through comparing the metabolic profiles and gene expression of hairy roots and wild-type roots sampled at five time points, we found that the sanguinarine and dihydrosanguinarine contents of hairy roots were far higher than those of wild-type roots, and we revealed the molecular mechanism that causes these metabolites to increase. Consequently, this study demonstrated that the hairy root system has further potential for bioengineering and sustainable production of sanguinarine on a commercial scale. To the best of our knowledge, this is the first efficient protocol reported for the establishment of hairy root cultures in M. cordata using A. rhizogenes.
Collapse
Affiliation(s)
- Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Liqiong Xia
- School of pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China
| | - Ruolan Jiang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiubin Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China
| | - Qi Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Min Xu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Linlan Yu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | | | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
31
|
Licochalcone A induces morphological and biochemical alterations in Schistosoma mansoni adult worms. Biomed Pharmacother 2017; 96:64-71. [DOI: 10.1016/j.biopha.2017.09.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/29/2022] Open
|
32
|
EL-SAYAD M, ABU HELW S, EL-TAWEEL H, AZIZ M. Antiparasitic Activity of Mirazid, Myrrh Total Oil and Nitazoxanide Compared to Praziquantel on Schistosoma mansoni: Scanning Electron Microscopic Study. IRANIAN JOURNAL OF PARASITOLOGY 2017; 12:446-452. [PMID: 28979356 PMCID: PMC5623926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The development of new antischistosomal drug remains a pressing need and a vital challenge in front of many researchers through screening the natural or chemical substances for their potential activity as antischistosomal agents. METHODS Five groups of Schistosoma mansoni-infected mice (n=10) were enrolled in this study, the G1 was infected non-treated control group. G2 was infected treated with praziquantel 500 mg/kg for 2 consecutive days. G3 was given mirazid 500 mg/kg for 5 days. G4 was given Myrrh total oil 18 mg/kg for 3 days and G5 given nitazoxanide 100 mg/kg for 7 days. Mice perfusion was performed for worm ultrastructural morphology by scanning electron microscopy at 2 WPT. RESULTS Praziquantel was superior to any other tested substances as it caused extensive tegumental damages in male worms in the form of rupture of the tubercles and loss of spines followed by mirazid that resulted only in superficial tegumental damage with shrinkage of the outer surface of male tubercles with marked loss of spines. Nitazoxanide resulted in minor tegumental alterations of male worms while Myrrh total oil caused negligible effects on the teguments of perfused worms. CONCLUSION PZQ showed more superior antiparasitic effects than all tested substances on S. mansoni worms. Mirazid was more effective than myrrh total oil and nitazoxanide.
Collapse
|
33
|
The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules 2016; 22:molecules22010058. [PMID: 28042865 PMCID: PMC6155950 DOI: 10.3390/molecules22010058] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness), leishmaniasis, schistosomiasis and lymphatic filariasis.
Collapse
|
34
|
Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms. Sci Rep 2016; 6:32101. [PMID: 27572696 PMCID: PMC5004179 DOI: 10.1038/srep32101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 μg/mL and T. muris IC50 = 10.6 μg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals.
Collapse
|
35
|
Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int J Mol Sci 2016; 17:ijms17091414. [PMID: 27618894 PMCID: PMC5037693 DOI: 10.3390/ijms17091414] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022] Open
Abstract
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S.canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.
Collapse
|
36
|
Chaweeborisuit P, Suriyonplengsaeng C, Suphamungmee W, Sobhon P, Meemon K. Nematicidal effect of plumbagin on Caenorhabditis elegans: a model for testing a nematicidal drug. ACTA ACUST UNITED AC 2016; 71:121-31. [PMID: 27140303 DOI: 10.1515/znc-2015-0222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 04/03/2016] [Indexed: 11/15/2022]
Abstract
Plumbagin, (5-hydroxy-2-methyl-1,4-naphthoquinone), a natural substance found in the roots of plant species in the genus Plumbago, has been used as a traditional medicine against many diseases. In this study, Caenorhabditis elegans was used as a model for testing the anthelmintic effect of plumbagin. The compound exhibited a nematicidal effect against all stages of C. elegans: L4 was least susceptible, while L1 was most susceptible to plumbagin with an LC(50) of 220 and 156 μM, respectively. Plumbagin inhibited C. elegans development from L1 to adult stages with an IC(50) of 235 μM, and body length was also reduced at concentrations of 25 and 50 μg/ml. Brood sizes decreased from 203±6 to 43±6 and 18±3 eggs per hatch in plumbagin-treated worms at 10, 25, 50 μg/ml, respectively. Furthermore, plumbagin was lethal to strains resistant to the nematicides levamisole, albendazole, and ivermectin, indicating that it possesses a strong and unique nematicidal action. Plumbagin decreased the number of mitochondria in hypodermal and intestinal cells and body wall muscles and damaged the ultrastructure of these tissues. Taken together, plumbagin may be a new drug against parasitic nematodes.
Collapse
|
37
|
Wangchuk P, Pearson MS, Giacomin PR, Becker L, Sotillo J, Pickering D, Smout MJ, Loukas A. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris. PLoS Negl Trop Dis 2016; 10:e0004908. [PMID: 27490394 PMCID: PMC4973903 DOI: 10.1371/journal.pntd.0004908] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
Background Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Methodology/Principal Findings Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds—luteolin (3) and (3R,6R)-linalool oxide acetate (1)—showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8–36.9 μg/mL) and T. muris (IC50 range = 9.7–20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Conclusions/Significance Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths—T. muris and S. mansoni—and was effective against juvenile schistosomes, the stage that is refractory to the current gold standard drug, praziquantel. Medicinal chemistry optimisation including cytotoxicity analysis, analogue development and structure-activity relationship studies are warranted and could lead to the identification of more potent chemical entities for the control of parasitic helminths of humans and animals. Schistosomiasis and trichuriasis affects millions of people worldwide and are caused by blood flukes and whipworms, respectively. Only a handful of anthelmintic drugs exist to treat these infections and the pipeline for the next generation of anthelmintic drugs is sparse, precipitating the need for new drug development. In this context, medicinal plants present a viable source of novel anthelmintic compounds. This inspired us to study the selected naturally occurring compounds derived from a Bhutanese daisy medicinal plant, Ajania nubigena for their anthelmintic activities. Here, using the xWORM motility assay, we demonstrate that two compounds, luteolin (3) and (3R,6R)-linalool oxide acetate (1), display significant broad-spectrum anthelmintic activity against two of the most important genera of human helminth parasites, the nematode whipworm and the platyhelminth blood fluke. Luteolin exhibited the best activities with IC50 values of 5.8 μg/mL against schistosomes and 9.7 μg/mL against whipworms. Using scanning electron microscopy we showed that luteolin damages the tegument of blood flukes and induces abnormalities in the bacillary bands/glands and cuticles of whipworms. Intriguingly, our previous study showed that luteolin (3) was effective against multi-drug resistant Plasmodium falciparum malaria. Due to its broad-spectrum anti-parasitic activities, luteolin (3) is a desirable drug lead scaffold, which could be used for developing effective compounds to control and treat numerous tropical diseases.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
- * E-mail:
| | - Mark S. Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Paul R. Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Luke Becker
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Darren Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, Cairns, Australia
| |
Collapse
|
38
|
Sukkasem N, Chatuphonprasert W, Tatiya-Aphiradee N, Jarukamjorn K. Imbalance of the antioxidative system by plumbagin and Plumbago indica L. extract induces hepatotoxicity in mice. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:137-45. [PMID: 27104034 PMCID: PMC4835988 DOI: 10.5455/jice.20160301094913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
Background/Aim: Plumbago indica (PI) L. and its active constituent, plumbagin, has been traditionally claimed for several pharmacological activities; however, there is little information regarding their toxicity. The present study aims to examine the effects of plumbagin and PI extract (PI) on hepatic histomorphology and antioxidative system in mice. Materials and Methods: Adult male intelligent character recognition mice were intragastrically administered plumbagin (1, 5, and 15 mg/kg/day) or PI (20, 200, and 1,000 mg/kg/day) consecutively for 14 days. Hepatic histomorphology was examined. Plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and the ratio of reduced to oxidized glutathione (GSH/GSSG) were determined. Results: Plumbagin and PI concentration-dependently induced hepatic injury based on histopathological changes via imbalance of antioxidative system. Plumbagin and PI significantly increased plasma ALT and AST levels, hepatic lipid peroxidation, and GPx activity but significantly decreased hepatic SOD and CAT activities. The GSH/GSSG ratio was significantly reduced by plumbagin. Conclusion: Plumbagin and PI caused hepatotoxic effects in the mice by unbalancing of the redox defense system. Therefore, plumbagin and PI-containing supplements should be used cautiously, especially when consumed in high quantities or for long periods.
Collapse
Affiliation(s)
- Nadta Sukkasem
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology, Khon Kaen University
| | - Waranya Chatuphonprasert
- Department of Preclinic, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000 Thailand
| | - Nitima Tatiya-Aphiradee
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology, Khon Kaen University
| | - Kanokwan Jarukamjorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| |
Collapse
|
39
|
Abstract
In recent years, natural product groups have been gaining prominence as possible sources of new drugs for schistosomiasis. This review attempts to update the antischistosomal natural compounds, or natural product-derived compounds, from the mid-1980s. Some of the main metabolites obtained from plants (e.g., terpenes, alkaloids, phenolic compounds and peptides) with in vitro and/or in vivo antischistosomal properties are discussed. Less thoroughly, due to scarcity of data in the literature, molecules from animals (e.g., peptides) are also described. Special mention of the anthelmintic activity against different parasitic stages of schistosomes is made; the mechanism of action of most of the metabolites is discussed, and a number of bioassay procedures are listed.
Collapse
|
40
|
Lalli C, Guidi A, Gennari N, Altamura S, Bresciani A, Ruberti G. Development and validation of a luminescence-based, medium-throughput assay for drug screening in Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0003484. [PMID: 25635836 PMCID: PMC4312041 DOI: 10.1371/journal.pntd.0003484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023] Open
Abstract
Background Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. Methodology/Principal Findings The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. Conclusions The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies. Schistosomiasis, one of the world’s greatest human neglected tropical diseases, is caused by a parasitic flatworm trematode of the genus Schistosoma. Among human parasitic diseases, schistosomiasis ranks second behind malaria in terms of socio-economic and public health importance in tropical and subtropical areas. More than 200 million people are currently infected in 77 countries, 85% of whom live in sub-Saharian Africa. To date no vaccine is available against schistosomiasis. As chemotherapy relies on a single drug, praziquantel, many initiatives have been promoted aiming to search for novel anti-schistosomal drugs that can represent a valid alternative to the current treatment or could be used in case of emerging resistance. Quantitative, objective and validated methods for compound collections screening are needed for the discovery of novel anti-schistosomal drugs. Here, we report the development and validation of a medium-throughput, luminescence-based assay for assessing viability at the schistosomulum stage of the human parasite S. mansoni. Our methodology enables a simple, reproducible, highly sensitive and objective quantitation of parasite viability. It is also automation compatible and enables the screening of compound collections thus hopefully contributing to the discovery of novel therapeutic strategies against schistosomiasis.
Collapse
Affiliation(s)
- Cristiana Lalli
- Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, National Research Council, Monterotondo, Rome, Italy
| | - Alessandra Guidi
- Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, National Research Council, Monterotondo, Rome, Italy
| | - Nadia Gennari
- Department of Biology, IRBM Science Park xSpA, Pomezia, Rome, Italy
| | - Sergio Altamura
- Department of Biology, IRBM Science Park xSpA, Pomezia, Rome, Italy
| | - Alberto Bresciani
- Department of Biology, IRBM Science Park xSpA, Pomezia, Rome, Italy
- * E-mail: (AB); (GR)
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, National Research Council, Monterotondo, Rome, Italy
- * E-mail: (AB); (GR)
| |
Collapse
|
41
|
Neves BJ, Andrade CH, Cravo PVL. Natural products as leads in schistosome drug discovery. Molecules 2015; 20:1872-903. [PMID: 25625682 PMCID: PMC6272663 DOI: 10.3390/molecules20021872] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/31/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis is a neglected parasitic tropical disease that claims around 200,000 human lives every year. Praziquantel (PZQ), the only drug recommended by the World Health Organization for the treatment and control of human schistosomiasis, is now facing the threat of drug resistance, indicating the urgent need for new effective compounds to treat this disease. Therefore, globally, there is renewed interest in natural products (NPs) as a starting point for drug discovery and development for schistosomiasis. Recent advances in genomics, proteomics, bioinformatics, and cheminformatics have brought about unprecedented opportunities for the rapid and more cost-effective discovery of new bioactive compounds against neglected tropical diseases. This review highlights the main contributions that NP drug discovery and development have made in the treatment of schistosomiasis and it discusses how integration with virtual screening (VS) strategies may contribute to accelerating the development of new schistosomidal leads, especially through the identification of unexplored, biologically active chemical scaffolds and structural optimization of NPs with previously established activity.
Collapse
Affiliation(s)
- Bruno J Neves
- LabMol-Laboratory for Drug Design and Molecular Modeling, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, Brazil.
| | - Carolina H Andrade
- LabMol-Laboratory for Drug Design and Molecular Modeling, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, Brazil.
| | - Pedro V L Cravo
- GenoBio-Laboratory of Genomics and Biotechnology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Brazil.
| |
Collapse
|
42
|
Spotlight on the in vitro effect of artemisinin-naphthoquine phosphate on Schistosoma mansoni and its snail host Biomphalaria alexandrina. Acta Trop 2015; 141:37-45. [PMID: 25291045 DOI: 10.1016/j.actatropica.2014.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 12/18/2022]
Abstract
Malaria and schistosomiasis are the two most important parasitic diseases in the tropics and sub-tropics with geographic overlap. Efforts have been made for developing new schistosomicidal drugs, or testing existing drugs originally used for non-related diseases. The antimalarial artemisinin-naphthoquine phosphate combination (CO-ArNp) was recently reported to be a promising novel antischistosomal therapy with potent in vivo activity against Schistosoma mansoni. In this work, we report the in vitro dose- and time-response effect of CO-ArNp against the Egyptian strain of S. mansoni, and its snail host, Biomphalaria alexandrina. Incubation of adult S. mansoni with CO-ArNp at 40 or 20 μg/ml for 48 or 72 h killed all worms. Exposure of S. mansoni miracidia and cercariae to the molluscicidal LC50 of CO-ArNp (16.8 μg/ml) resulted in 100% mortality of the free larval stages within 90 and 15 min, respectively. Moreover, incubation of adult B. alexandrina snails with this drug combination killed all snails at 40 μg/ml within 24h. Scanning electron microscope revealed marked morphological and tegumental alterations on the different stages of the parasite and its snail soft tissue. Our study highlights the schistosomicidal and molluscicidal effects of artemisinin-naphthoquine phosphate. No doubt more studies are needed to clarify its potential value to control schistosomiasis.
Collapse
|
43
|
Schneiderová K, Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:799-833. [PMID: 32214918 PMCID: PMC7089068 DOI: 10.1007/s11101-014-9376-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Collapse
Affiliation(s)
- Kristýna Schneiderová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|
44
|
Aires ADL, Ximenes ECPA, Silva RAR, Barbosa VX, Góes AJDS, Peixoto CA, Souza VMO, Albuquerque MCPDA. Ultrastructural analysis of β-lapachone-induced surface membrane damage in male adult Schistosoma mansoni BH strain worms. Exp Parasitol 2014; 142:83-90. [DOI: 10.1016/j.exppara.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
45
|
Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3018-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|