1
|
Nateghi-Rostami M, Lipoldová M, Sohrabi Y. Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis. Front Immunol 2025; 16:1559907. [PMID: 40330482 PMCID: PMC12052738 DOI: 10.3389/fimmu.2025.1559907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Collapse
Affiliation(s)
| | - Marie Lipoldová
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Tisseur L, Cojean S, Gassama K, Logé C, Pagniez F, Cavé C, Bernadat G, Loiseau PM, Bach S, Thiéfaine J, Picot C, Tomasoni C, Leclercq O, Baratte B, Robert T, Le Pape P, Rachidi N, Bazin MA, Marchand P. Investigating the C2 Modulation of the Imidazo[1,2-a]pyrazine-Based Hit Compound CTN1122: Synthesis, in vitro Antileishmanial Activity, Cytotoxicity and Casein Kinase 1 Inhibition. ChemMedChem 2025; 20:e202400862. [PMID: 39688580 DOI: 10.1002/cmdc.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Our research group previously discovered CTN1122, an imidazo[1,2-a]pyrazine compound with promising antileishmanial activity against intramacrophage amastigotes of Leishmania major and L. donovani strains. CTN1122 effectively targets Leishmania casein kinase 1 (L-CK1.2) and exhibits a favorable safety profile. To further explore its chemical space, we developed a convergent strategy to modify the C2 position of the imidazo[1,2-a]pyrazine core using Suzuki-Miyaura coupling of the corresponding triflate intermediate. Among 15 newly synthesized analogs, seven derivatives featuring variously substituted phenyl rings at C2 demonstrated L-CK1.2 inhibition within micromolar to submicromolar ranges and antileishmanial activity in vitro with low cytotoxicity in macrophages. Compounds 7 d and 7 l were particularly potent, with IC50 values of 1.25 μM and 0.92 μM against L. major, and 1.44 μM and 2.34 μM against L. donovani, respectively. They showed IC50 L-CK1.2=0.30 μM and 0.57 μM with enhanced selectivity indices (SI=3.8 and 1.6) over the human CK1ϵ ortholog. Additionally, four C2 analogs and two C5 isomers exhibited notable antiparasitic effects without strongly inhibiting L-CK1.2, indicating a possible alternative mechanism of action. Compound 7 k displayed the highest general activity, with IC50 values of 0.31 μM on L. major and 0.27 μM on L. donovani, coupled with favorable selectivity indexes.
Collapse
Affiliation(s)
- Lhana Tisseur
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Sandrine Cojean
- UMR BIPAR, Laboratory of Animal Health, Anses, INRAe, EnvA, F-94700, Maisons-Alfort, France
- Université Paris-Saclay, Faculté de Pharmacie, F-91400, Orsay, France
| | - Khadidiatou Gassama
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Cédric Logé
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Fabrice Pagniez
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Christian Cavé
- Université Paris-Saclay, Chimiothérapie Antiparasitaire, Biomolécules : Conception, Isolement, Synthèse - BioCIS UMR CNRS 8076, F-91400, Orsay, France
| | - Guillaume Bernadat
- Université Paris-Saclay, Chimiothérapie Antiparasitaire, Biomolécules : Conception, Isolement, Synthèse - BioCIS UMR CNRS 8076, F-91400, Orsay, France
| | - Philippe M Loiseau
- Université Paris-Saclay, Chimiothérapie Antiparasitaire, Biomolécules : Conception, Isolement, Synthèse - BioCIS UMR CNRS 8076, F-91400, Orsay, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2 M), Station Biologique de Roscoff, 29680, Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Jérôme Thiéfaine
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Carine Picot
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Christophe Tomasoni
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Olivier Leclercq
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2 M), Station Biologique de Roscoff, 29680, Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2 M), Station Biologique de Roscoff, 29680, Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Patrice Le Pape
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Najma Rachidi
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Marc-Antoine Bazin
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Pascal Marchand
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France
| |
Collapse
|
3
|
Badenhorst E, Aucamp J, Kannigadu C, Janse van Rensburg HD, Suganuma K, N’Da DD. Synthesis and in vitro antitrypanosomatid activity of novel 5-nitroindole-rhodanine conjugates. Future Med Chem 2025; 17:557-573. [PMID: 39995114 PMCID: PMC11901381 DOI: 10.1080/17568919.2025.2470110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
AIM Trypanosomatid diseases, leishmaniasis and trypanosomiasis are vector-borne parasitic diseases that can cause death and catastrophic economic losses for millions of people. The growing resistance of trypanosomatid parasites to current treatments highlights the urgent need for new therapeutic agents. This study explored 5-nitroindole-rhodanine conjugates to identify promising new compounds with the potential for future development as antitrypanosomatid treatments. MATERIALS AND METHODS The conjugates were synthesized in a multi-step process and evaluated in vitro for antileishmanial activity against Leishmania (L.) donovani and L. major strains. Cytotoxicity was assessed on Vero and THP-1 cells. Due to the taxonomic relation to Trypanosoma spp. the compounds were also screened for in vitro activity against species that cause zoonotic trypanosomiasis. RESULTS AND CONCLUSION Several hits were found with leishmanicidal activity against both L. donovani and L. major strains. Of these, 3d was identified as a potential early lead that exhibited nanomolar cidal activity against L. major, and greater selectivity than the reference drug amphotericin B. However, the compounds did not have similar activity levels against Trypanosoma spp. Hence, these compounds should be further investigated for their mechanism of action and in vivo antileishmanial activity to determine their potential as a leishmaniasis treatment.
Collapse
Affiliation(s)
- Emce Badenhorst
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - David D. N’Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Winge T, Imberg L, Perry B, Matheeussen A, Caljon G, Kalinin D, Wünsch B. N-Pyrazolyl- and N-Triazolylamines and -Ureas as Antileishmanial and Antitrypanosomal Drugs. ChemMedChem 2024; 19:e202400220. [PMID: 38687962 DOI: 10.1002/cmdc.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand understanding of the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles had only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 μM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50=4.7 μM) and 14a (IC50=2.1 μM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Lukas Imberg
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Ben Perry
- Drugs for Neglected Diseases initiative, 15 chemin Camille-Vidart, 1202, Geneva, Switzerland
- current Address: Medicxi Ventures, 10 Cours de Rive, 1204, Geneva, Switzerland
| | - An Matheeussen
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Guy Caljon
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Dmitrii Kalinin
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| |
Collapse
|
5
|
Hendrickx S, Feijens PB, Escudié F, Chatelain E, Maes L, Caljon G. In Vivo Bioluminescence Imaging Reveals Differences in Leishmania infantum Parasite Killing Kinetics by Antileishmanial Reference Drugs. ACS Infect Dis 2024; 10:2101-2107. [PMID: 38733389 PMCID: PMC11423396 DOI: 10.1021/acsinfecdis.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The bioluminescent Leishmania infantum BALB/c mouse model was used to evaluate the parasiticidal drug action kinetics of the reference drugs miltefosine, paromomycin, sodium stibogluconate, and liposomal amphotericin B. Infected mice were treated for 5 days starting from 7 days post-infection, and parasite burdens were monitored over time via bioluminescence imaging (BLI). Using nonlinear regression analyses of the BLI signal, the parasite elimination half-life (t1/2) in the liver, bone marrow, and whole body was determined and compared for the different treatment regimens. Significant differences in parasiticidal kinetics were recorded. A single intravenous dose of 0.5 mg/kg liposomal amphotericin B was the fastest acting with a t1/2 of less than 1 day. Intraperitoneal injection of paromomycin at 320 mg/kg for 5 days proved to be the slowest with a t1/2 of about 5 days in the liver and 16 days in the bone marrow. To conclude, evaluation of the cidal kinetics of the different antileishmanial reference drugs revealed striking differences in their parasite elimination half-lives. This BLI approach also enables an in-depth pharmacodynamic comparison between novel drug leads and may constitute an essential tool for the design of potential drug combinations.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Pim-Bart Feijens
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Fanny Escudié
- Drugs
for Neglected Diseases initiative, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs
for Neglected Diseases initiative, 1202 Geneva, Switzerland
| | - Louis Maes
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
6
|
Khairnar P, Saathoff JM, Cook DW, Hochstetler SR, Pandya U, Robinson SJ, Satam V, Donsbach KO, Gupton BF, Jin LM, Shanahan CS. Practical Synthesis of 6-Amino-1-hydroxy-2,1-benzoxaborolane: A Key Intermediate of DNDI-6148. Org Process Res Dev 2024; 28:1213-1223. [PMID: 38660377 PMCID: PMC11036395 DOI: 10.1021/acs.oprd.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - John M. Saathoff
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Daniel W. Cook
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Samuel R. Hochstetler
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Urvish Pandya
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Stephen J. Robinson
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Vijay Satam
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Li-Mei Jin
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| |
Collapse
|
7
|
Bernal FA, Schmidt TJ. A QSAR Study for Antileishmanial 2-Phenyl-2,3-dihydrobenzofurans †. Molecules 2023; 28:molecules28083399. [PMID: 37110632 PMCID: PMC10144340 DOI: 10.3390/molecules28083399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Leishmaniasis, a parasitic disease that represents a threat to the life of millions of people around the globe, is currently lacking effective treatments. We have previously reported on the antileishmanial activity of a series of synthetic 2-phenyl-2,3-dihydrobenzofurans and some qualitative structure-activity relationships within this set of neolignan analogues. Therefore, in the present study, various quantitative structure-activity relationship (QSAR) models were created to explain and predict the antileishmanial activity of these compounds. Comparing the performance of QSAR models based on molecular descriptors and multiple linear regression, random forest, and support vector regression with models based on 3D molecular structures and their interaction fields (MIFs) with partial least squares regression, it turned out that the latter (i.e., 3D-QSAR models) were clearly superior to the former. MIF analysis for the best-performing and statistically most robust 3D-QSAR model revealed the most important structural features required for antileishmanial activity. Thus, this model can guide decision-making during further development by predicting the activity of potentially new leishmanicidal dihydrobenzofurans before synthesis.
Collapse
Affiliation(s)
- Freddy A Bernal
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus-Corrensstraße 48, 48149 Münster, Germany
| | - Thomas J Schmidt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus-Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
8
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
9
|
Kavouris JA, McCall LI, Giardini MA, De Muylder G, Thomas D, Garcia-Pérez A, Cantizani J, Cotillo I, Fiandor JM, McKerrow JH, De Oliveira CI, Siqueira-Neto JL, González S, Brown LE, Schaus SE. Discovery of pyrazolopyrrolidinones as potent, broad-spectrum inhibitors of Leishmania infection. FRONTIERS IN TROPICAL DISEASES 2023; 3:1011124. [PMID: 36818551 PMCID: PMC9937549 DOI: 10.3389/fitd.2022.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 μM without harming the host macrophage up to 10.0 μM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 μM) while being cytotoxic to the host cell at 5.0 μM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.
Collapse
Affiliation(s)
- John A. Kavouris
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Miriam A. Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Geraldine De Muylder
- Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Adolfo Garcia-Pérez
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Juan Cantizani
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Ignacio Cotillo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Camila I. De Oliveira
- HUPES, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT) -Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Silvia González
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America.,Correspondence: Scott E. Schaus,
| |
Collapse
|
10
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
11
|
Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. Eur J Med Chem 2022; 237:114367. [DOI: 10.1016/j.ejmech.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
12
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
13
|
Mowbray CE, Braillard S, Glossop PA, Whitlock GA, Jacobs RT, Speake J, Pandi B, Nare B, Maes L, Yardley V, Freund Y, Wall RJ, Carvalho S, Bello D, Van den Kerkhof M, Caljon G, Gilbert IH, Corpas-Lopez V, Lukac I, Patterson S, Zuccotto F, Wyllie S. DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. J Med Chem 2021; 64:16159-16176. [PMID: 34711050 PMCID: PMC8591608 DOI: 10.1021/acs.jmedchem.1c01437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. Current therapies are unsuitable, and there is an urgent need for safe, short-course, and low-cost oral treatments to combat this neglected disease. The benzoxaborole chemotype has previously delivered clinical candidates for the treatment of other parasitic diseases. Here, we describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity. The lead compound (DNDI-6148) combines impressive in vivo efficacy (>98% reduction in parasite burden) with pharmaceutical properties suitable for onward development and an acceptable safety profile. Detailed mode of action studies confirm that DNDI-6148 acts principally through the inhibition of Leishmania cleavage and polyadenylation specificity factor (CPSF3) endonuclease. As a result of these studies and its promising profile, DNDI-6148 has been declared a preclinical candidate for the treatment of VL.
Collapse
Affiliation(s)
- Charles E. Mowbray
- Drugs
for Neglected Diseases initiative (DNDi), 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland,
| | - Stéphanie Braillard
- Drugs
for Neglected Diseases initiative (DNDi), 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - Paul A. Glossop
- Sandexis
Medicinal Chemistry Ltd, Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, U.K.
| | - Gavin A. Whitlock
- Sandexis
Medicinal Chemistry Ltd, Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, U.K.
| | - Robert T. Jacobs
- Scynexis, 3501 C Tricenter Boulevard, Durham, North Carolina 27713, United States
| | - Jason Speake
- Scynexis, 3501 C Tricenter Boulevard, Durham, North Carolina 27713, United States
| | - Bharathi Pandi
- Scynexis, 3501 C Tricenter Boulevard, Durham, North Carolina 27713, United States
| | - Bakela Nare
- Scynexis, 3501 C Tricenter Boulevard, Durham, North Carolina 27713, United States
| | - Louis Maes
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Vanessa Yardley
- Faculty
of Infectious and Tropical Diseases, London
School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Yvonne Freund
- Anacor Pharmaceuticals, 1020 East Meadow Circle, Palo Alto, California 94303, United States
| | - Richard J. Wall
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Sandra Carvalho
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Davide Bello
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Magali Van den Kerkhof
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Caljon
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Ian H. Gilbert
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Victoriano Corpas-Lopez
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Iva Lukac
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Stephen Patterson
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Fabio Zuccotto
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Susan Wyllie
- Division
of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, U.K.,
| |
Collapse
|
14
|
Lee H, Baek KH, Phan TN, Park IS, Lee S, Kim J, No JH. Discovery of Leishmania donovani topoisomerase IB selective inhibitors by targeting protein-protein interactions between the large and small subunits. Biochem Biophys Res Commun 2021; 569:193-198. [PMID: 34256188 DOI: 10.1016/j.bbrc.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
Visceral leishmaniasis (VL) is a fatal infectious disease caused by viscerotropic parasitic species of Leishmania. Current treatment options are often ineffective and toxic, and more importantly, there are no clinically validated drug targets available to develop next generation therapeutics against VL. Topoisomerase IB (TopIB) is an essential enzyme for Leishmania survival. The enzyme is organized as a bi-subunit that is distinct from the monomeric topoisomerase I of human. Based on this unique feature, we synthesized peptides composed of partial amino acid sequences of small subunit of Leishmania donovani (Ld) TopIB to confirm a decrease in catalytic activity by interfering the interaction between the two subunits. One of the synthetic peptides, covering essential amino acids for catalytic activity of LdTopIB, interrupted the enzymatic activity. Next, we examined 151 compounds selected from virtual screening in a functional assay and identified three LRL-TP compounds with a significant decrease in LdTopIB activity (IC50 of LRL-TP-85: 1.3 μM; LRL-TP-94: 2.9 μM; and LRL-TP-101: 35.3 μM) and no effects on Homo sapiens (Hs) TopIB activity. Based on molecular docking, the protonated tertiary amine of inhibitors formed key interactions with S415 of the large subunit. The EC50 values of LRL-TP-85, LRL-TP-94, and LRL-TP-101 were respectively 4.9, 1.4, and 27.8 μM in extracellular promastigote assay and 34.0, 53.7, and 11.4 μM in intracellular amastigote assay. Overall, we validated the protein-protein interaction site of LdTopIB as a potential drug target and identified small molecule inhibitors with anti-leishmanial activity.
Collapse
Affiliation(s)
- Hyeryon Lee
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - I Seul Park
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sangchul Lee
- Cheminformatics, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, 16, Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
15
|
Pomel S, Cojean S, Pons V, Cintrat JC, Nguyen L, Vacus J, Pruvost A, Barbier J, Gillet D, Loiseau PM. An adamantamine derivative as a drug candidate for the treatment of visceral leishmaniasis. J Antimicrob Chemother 2021; 76:2640-2650. [PMID: 34212184 DOI: 10.1093/jac/dkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to investigate compounds acting on the host cell machinery to impair parasite installation with the possible advantage of limiting drug resistance. The strategy therefore consisted of selecting compounds that are poorly active on the axenic parasite, but very active on the intramacrophage form of Leishmania. OBJECTIVES To identify a drug candidate from focused screening of adamantamine derivatives that can inhibit the development of Leishmania infantum in macrophages. METHODS In vitro screening was performed on a library of 142 adamantamine derivatives with axenic and intramacrophage forms of L. infantum, as well as cytotoxicity assays, allowing selection of the most promising compound. Absorption, distribution, metabolism and excretion (ADME) experiments, including pharmacokinetics and microsomal stability, were performed and finally the physicochemical stability of the compound was investigated to assess its suitability for further drug development. RESULTS VP343 was identified first in vitro, with a CC50 value of 63.7 μM and an IC50 value of 0.32 μM for L. infantum intramacrophage amastigotes and then in vivo, with a 59% reduction of the liver parasite burden after oral administration at 10 mg/kg/day for 5 days. In addition, the ADME data were compatible with moving this compound further through the antileishmanial drug candidate pipeline. CONCLUSIONS VP343 has the properties of a good drug candidate and merits further investigations.
Collapse
Affiliation(s)
- Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Valérie Pons
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Laetitia Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Joël Vacus
- Drugabilis, 7, Allée de Londres, 91140, Villejust, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | | |
Collapse
|
16
|
Van den Kerkhof M, Leprohon P, Mabille D, Hendrickx S, Tulloch LB, Wall RJ, Wyllie S, Chatelain E, Mowbray CE, Braillard S, Ouellette M, Maes L, Caljon G. Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms 2021; 9:microorganisms9071408. [PMID: 34210040 PMCID: PMC8305145 DOI: 10.3390/microorganisms9071408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Lindsay B. Tulloch
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Richard J. Wall
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Susan Wyllie
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Charles E. Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
- Correspondence: ; Tel.: +32-32652610
| |
Collapse
|
17
|
Bouton J, Ferreira de Almeida Fiuza L, Cardoso Santos C, Mazzarella MA, Soeiro MDNC, Maes L, Karalic I, Caljon G, Van Calenbergh S. Revisiting Pyrazolo[3,4- d]pyrimidine Nucleosides as Anti- Trypanosoma cruzi and Antileishmanial Agents. J Med Chem 2021; 64:4206-4238. [PMID: 33784107 DOI: 10.1021/acs.jmedchem.1c00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chagas disease and visceral leishmaniasis are two neglected tropical diseases responsible for numerous deaths around the world. For both, current treatments are largely inadequate, resulting in a continued need for new drug discovery. As both kinetoplastid parasites are incapable of de novo purine synthesis, they depend on purine salvage pathways that allow them to acquire and process purines from the host to meet their demands. Purine nucleoside analogues therefore constitute a logical source of potential antiparasitic agents. Earlier optimization efforts of the natural product tubercidin (7-deazaadenosine) involving modifications to the nucleobase 7-position and the ribofuranose 3'-position led to analogues with potent anti-Trypanosoma brucei and anti-Trypanosoma cruzi activities. In this work, we report the design and synthesis of pyrazolo[3,4-d]pyrimidine nucleosides with 3'- and 7-modifications and assess their potential as anti-Trypanosoma cruzi and antileishmanial agents. One compound was selected for in vivo evaluation in an acute Chagas disease mouse model.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Camila Cardoso Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Maria Angela Mazzarella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia 06100, Italy
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
18
|
Alcolea V, Moreno E, Etxebeste-Mitxeltorena M, Navarro-Blasco I, González-Peñas E, Jiménez-Ruiz A, Irache JM, Sanmartín C, Espuelas S. 3,5-Dimethyl-4-isoxazoyl selenocyanate as promising agent for the treatment of Leishmania infantum-infected mice. Acta Trop 2021; 215:105801. [PMID: 33352169 DOI: 10.1016/j.actatropica.2020.105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Compounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro. Microsomal stability assays did not show any metabolite for compound 1 after 120 min, whereas 2 was highly metabolized by the enzyme CYP450. Thus, the in vivo efficacy of compound 1 was assessed in a murine model of L. infantum VL. The daily i.v. administration of 1 mg/kg of compound 1 during 5 consecutive days reduced parasite load in liver, spleen and bone marrow (99.2%, 91.7% and 61.4%, respectively) compared to non-treated mice. To the best of our knowledge, this is the first time that a selenium compound has been tested in vivo against VL. Thus, this work evidences the possible usefulness of selenocyanate derivatives for the treatment of this disease.
Collapse
Affiliation(s)
- Verónica Alcolea
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Esther Moreno
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mikel Etxebeste-Mitxeltorena
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Iñigo Navarro-Blasco
- Department of Chemistry, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Juan Manuel Irache
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Socorro Espuelas
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
19
|
Thompson AM, O’Connor PD, Yardley V, Maes L, Launay D, Braillard S, Chatelain E, Wan B, Franzblau SG, Ma Z, Cooper CB, Denny WA. Novel Linker Variants of Antileishmanial/Antitubercular 7-Substituted 2-Nitroimidazooxazines Offer Enhanced Solubility. ACS Med Chem Lett 2021; 12:275-281. [PMID: 33603975 DOI: 10.1021/acsmedchemlett.0c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Antitubercular 7-substituted 2-nitroimidazo[2,1-b][1,3]oxazines were previously shown to exhibit potent antileishmanial and antitrypanosomal activities, culminating in a new clinical investigational drug for visceral leishmaniasis (DNDI-0690). To offset development risks, we continued to seek further leads with divergent candidate profiles, especially analogues possessing greater aqueous solubility. Starting from an efficacious monoaryl derivative, replacement of the side chain ether linkage by novel amine, amide, and urea functionality was first explored; the former substitution was well-tolerated in vitro and in vivo but elicited marginal alterations to solubility (except through a less stable benzylamine), whereas the latter groups resulted in significant solubility improvements (up to 53-fold) but an antileishmanial potency reduction of at least 10-fold. Ultimately, we discovered that O-carbamate 66 offered a more optimal balance of increased solubility, suitable metabolic stability, excellent oral bioavailability (100%), and strong in vivo efficacy in a visceral leishmaniasis mouse model (97% parasite load reduction at 25 mg/kg).
Collapse
Affiliation(s)
- Andrew M. Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick D. O’Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Delphine Launay
- Drugs for Neglected Diseases Initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases Initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005, United States
| | - Christopher B. Cooper
- Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005, United States
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
20
|
Akao Y, Canan S, Cao Y, Condroski K, Engkvist O, Itono S, Kaki R, Kimura C, Kogej T, Nagaoka K, Naito A, Nakai H, Pairaudeau G, Radu C, Roberts I, Shimada M, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative virtual screening to elaborate an imidazo[1,2- a]pyridine hit series for visceral leishmaniasis. RSC Med Chem 2021; 12:384-393. [PMID: 34041487 PMCID: PMC8130605 DOI: 10.1039/d0md00353k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure–activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series. Ligand-based similarity screening of proprietary pharmaceutical company libraries enables rapid hit to lead investigation of a chemotype with anti-leishmania activity.![]()
Collapse
Affiliation(s)
- Yuichiro Akao
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Stacie Canan
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Yafeng Cao
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Kevin Condroski
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Ola Engkvist
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Sachiko Itono
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Rina Kaki
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Chiaki Kimura
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Thierry Kogej
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Kazuya Nagaoka
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Akira Naito
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Hiromi Nakai
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | | | - Constantin Radu
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Ieuan Roberts
- AstraZeneca, Discovery Sciences, R&D AstraZeneca Cambridge UK
| | - Mitsuyuki Shimada
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - David Shum
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Nao-Aki Watanabe
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Huanxu Xie
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Shuji Yonezawa
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Osamu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Ryu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| |
Collapse
|
21
|
Van Bocxlaer K, Croft SL. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med Chem 2021; 12:472-482. [PMID: 34041488 PMCID: PMC8128043 DOI: 10.1039/d0md00343c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York York YO10 5DD UK +44 (0) 19 0432 8855
| | - Simon L Croft
- Department of Infection Biology, London School of Hygiene & Tropical Medicine London WC1E 7HT UK
| |
Collapse
|
22
|
Computationally designed synthetic peptides for transporter proteins imparts allostericity in Miltefosine resistant L. major. Biochem J 2020; 477:2007-2026. [PMID: 32391551 DOI: 10.1042/bcj20200176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022]
Abstract
The emergence of drug resistance is a major concern for combating against Cutaneous Leishmaniasis, a neglected tropical disease affecting 98 countries including India. Miltefosine is the only oral drug available for the disease and Miltefosine transporter proteins play a pivotal role in the emergence of drug-resistant Leishmania major. The cause of resistance is less accumulation of drug inside the parasite either by less uptake of the drug due to a decrease in the activity of P4ATPase-CDC50 complex or by increased efflux of the drug by P-glycoprotein (P-gp, an ABC transporter). In this paper, we are trying to allosterically modulate the behavior of resistant parasite (L. major) towards its sensitivity for the existing drug (Miltefosine, a phosphatidylcholine analog). We have used computational approaches to deal with the conservedness of the proteins and apparently its three-dimensional structure prediction through ab initio modeling. Long scale membrane-embedded molecular dynamics simulations were carried out to study the structural interaction and stability. Parasite-specific motifs of these proteins were identified based on the machine learning technique, against which a peptide library was designed. The protein-peptide docking shows good binding energy of peptides Pg5F, Pg8F and PC2 with specific binding to the motifs. These peptides were tested both in vitro and in vivo, where Pg5F in combination with PC2 showed 50-60% inhibition in resistant L. major's promastigote and amastigote forms and 80-90% decrease in parasite load in mice. We posit a model system wherein the data provide sufficient impetus for being novel therapeutics in order to counteract the drug resistance phenotype in Leishmania parasites.
Collapse
|
23
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
24
|
Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity. Pharmaceuticals (Basel) 2020; 13:ph13110339. [PMID: 33113777 PMCID: PMC7694037 DOI: 10.3390/ph13110339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Leishmaniases are neglected diseases that are endemic in many tropical and sub-tropical Countries. Therapy is based on different classes of drugs which are burdened by severe side effects, occurrence of resistance and high costs, thereby creating the need for more efficacious, safer and inexpensive drugs. Herein, sixteen 9-thioxanthenone derivatives (lucanthone analogues) and four compounds embodying the diarylethene substructure of amitriptyline (amitriptyline analogues) were tested in vitro for activity against Leishmania tropica and L. infantum promastigotes. All compounds were characterized by the presence of a bulky quinolizidinylalkyl moiety. All compounds displayed activity against both species of Leishmania with IC50 values in the low micromolar range, resulting in several fold more potency than miltefosine, comparable to that of lucanthone, and endowed with substantially lower cytotoxicity to Vero-76 cells, for the best of them. Thus, 4-amino-1-(quinolizidinylethyl)aminothioxanthen-9-one (14) and 9-(quinolizidinylmethylidene)fluorene (17), with selectivity index (SI) in the range 16-24, represent promising leads for the development of improved antileishmanial agents. These two compounds also exhibited comparable activity against intramacrophagic amastigotes of L. infantum. Docking studies have suggested that the inhibition of trypanothione reductase (TryR) may be at the basis (eventually besides other mechanisms) of the observed antileishmanial activity. Therefore, these investigated derivatives may deserve further structural improvements and more in-depth biological studies of their mechanisms of action in order to develop more efficient antiparasitic agents.
Collapse
|
25
|
Bazin MA, Cojean S, Pagniez F, Bernadat G, Cavé C, Ourliac-Garnier I, Nourrisson MR, Morgado C, Picot C, Leclercq O, Baratte B, Robert T, Späth GF, Rachidi N, Bach S, Loiseau PM, Le Pape P, Marchand P. In vitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L. major casein kinase 1 inhibition. Eur J Med Chem 2020; 210:112956. [PMID: 33148491 DOI: 10.1016/j.ejmech.2020.112956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.
Collapse
Affiliation(s)
- Marc-Antoine Bazin
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Sandrine Cojean
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Fabrice Pagniez
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Guillaume Bernadat
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Christian Cavé
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Cathy Morgado
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Carine Picot
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Olivier Leclercq
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Gérald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Philippe M Loiseau
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Patrice Le Pape
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France.
| |
Collapse
|
26
|
Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00152-20. [PMID: 32601168 PMCID: PMC7449183 DOI: 10.1128/aac.00152-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Resistance selection was performed by successive exposure of Leishmania infantum promastigotes (in vitro) and intracellular amastigotes (both in vitro and in golden Syrian hamsters). The stability of the resistant phenotypes was assessed after passage in mice and Lutzomyia longipalpis sandflies. Whole-genome sequencing (WGS) was performed to identify mutated genes, copy number variations (CNVs), and somy changes. The potential role of efflux pumps (the MDR and MRP efflux pumps) in the development of resistance was assessed by coincubation of aminopyrazoles with specific efflux pump inhibitors (verapamil, cyclosporine, and probenecid). Repeated drug exposure of amastigotes did not result in the emergence of drug resistance either in vitro or in vivo. Selection at the promastigote stage, however, was able to select for parasites with reduced susceptibility (resistance index, 5.8 to 24.5). This phenotype proved to be unstable after in vivo passage in mice and sandflies, suggesting that nonfixed alterations are responsible for the elevated resistance. In line with this, single nucleotide polymorphisms and indels identified by whole-genome sequencing could not be directly linked to the decreased drug susceptibility. Copy number variations were absent, whereas somy changes were detected, which may have accounted for the transient acquisition of resistance. Finally, aminopyrazole activity was not influenced by the MDR and MRP efflux pump inhibitors tested. The selection performed does not suggest the rapid development of resistance against aminopyrazoles in the field. Karyotype changes may confer elevated levels of resistance, but these do not seem to be stable in the vertebrate and invertebrate hosts. MDR/MRP efflux pumps are not likely to significantly impact the activity of the aminopyrazole leads.
Collapse
|
27
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
28
|
Baek KH, Piel L, Rosazza T, Prina E, Späth GF, No JH. Infectivity and Drug Susceptibility Profiling of Different Leishmania-Host Cell Combinations. Pathogens 2020; 9:pathogens9050393. [PMID: 32443883 PMCID: PMC7281264 DOI: 10.3390/pathogens9050393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Thibault Rosazza
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Gerald F. Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
- Correspondence: ; Tel.: +82-31-8018-8210
| |
Collapse
|
29
|
Eberhardt E, Hendrickx R, Van den Kerkhof M, Monnerat S, Alves F, Hendrickx S, Maes L, Caljon G. Comparative evaluation of nucleic acid stabilizing reagents for RNA- and DNA-based Leishmania detection in blood as proxy for visceral burdens. J Microbiol Methods 2020; 173:105935. [PMID: 32376283 DOI: 10.1016/j.mimet.2020.105935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular detection techniques using peripheral blood are preferred over invasive tissue aspiration for the diagnosis and post-treatment follow-up of visceral leishmaniasis (VL) patients. This study aims to identify suitable stabilizing reagents to prevent DNA and RNA degradation during storage and transport to specialized laboratories where molecular diagnosis is performed. METHODOLOGY The stabilizing capacities of different commercially available reagents were compared using promastigote-spiked human blood and peripheral blood of Syrian golden hamsters subjected to experimental infection, treatment (miltefosine or aminopyrazole DNDi-1044) and immunosuppression. The impact of various storage temperature conditions was tested in combination with an established kinetoplast DNA (kDNA) qPCR and a recently developed spliced leader RNA (SL-RNA) assay for Leishmania detection. PRINCIPAL FINDINGS Irrespective of the blood type and stabilizer used, threshold (cT) values obtained with the SL-RNA qPCR were systematically lower than those obtained with the kDNA assay, confirming the advantage of the SL-RNA assay over the widely used kDNA assay for low-level Leishmania detection. Peripheral blood parasite levels correlated relatively well with hepatic burdens. RNA protect cell reagent provided the most optimal simultaneous DNA and RNA stabilization in both human and hamster blood. However, this stabilizer requires an erythrocyte lysis step, which can be challenging under field conditions. DNA/RNA shield provides a good alternative for downstream kDNA and SL-RNA assays, especially if sample storage capacity at 4 °C can be guaranteed. CONCLUSIONS/SIGNIFICANCE The recommended stabilizing reagents are compatible with RNA- and DNA-based Leishmania detection in peripheral blood in the VL hamster model and spiked human blood. Since molecular detection techniques using peripheral blood are less invasive than microscopic assessment of tissue aspirates, the findings of this study may be applied to human VL clinical studies.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | | | - Fabiana Alves
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
30
|
Bernal FA, Kaiser M, Wünsch B, Schmidt TJ. Structure-Activity Relationships of Cinnamate Ester Analogues as Potent Antiprotozoal Agents. ChemMedChem 2020; 15:68-78. [PMID: 31697437 PMCID: PMC7003929 DOI: 10.1002/cmdc.201900544] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Protozoal infections are still a global health problem, threatening the lives of millions of people around the world, mainly in impoverished tropical and sub-tropical regions. Thus, in view of the lack of efficient therapies and increasing resistances against existing drugs, this study describes the antiprotozoal potential of synthetic cinnamate ester analogues and their structure-activity relationships. In general, Leishmania donovani and Trypanosoma brucei were quite susceptible to the compounds in a structure-dependent manner. Detailed analysis revealed a key role of the substitution pattern on the aromatic ring and a marked effect of the side chain on the activity against these two parasites. The high antileishmanial potency and remarkable selectivity of the nitro-aromatic derivatives suggested them as promising candidates for further studies. On the other hand, the high in vitro potency of catechol-type compounds against T. brucei could not be extrapolated to an in vivo mouse model.
Collapse
Affiliation(s)
- Freddy A. Bernal
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (Swiss TPH)Socinstr. 57Basel4051Switzerland
- University of BaselPetersplatz 1Basel4003Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 488149MünsterGermany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| |
Collapse
|
31
|
Van Bocxlaer K, Caridha D, Black C, Vesely B, Leed S, Sciotti RJ, Wijnant GJ, Yardley V, Braillard S, Mowbray CE, Ioset JR, Croft SL. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 2019; 11:129-138. [PMID: 30922847 PMCID: PMC6904836 DOI: 10.1016/j.ijpddr.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Drugs for Neglected Diseases initiative (DNDi) has identified three chemical lead series, the nitroimidazoles, benzoxaboroles and aminopyrazoles, as innovative treatments for visceral leishmaniasis. The leads discovered using phenotypic screening, were optimised following disease- and compound-specific criteria. Several leads of each series were progressed and preclinical drug candidates have been nominated. Here we evaluate the efficacy of the lead compounds of each of these three chemical classes in in vitro and in vivo models of cutaneous leishmaniasis. METHODS The in vitro activity of fifty-five compounds was evaluated against the intracellular amastigotes of L. major, L. aethiopica, L. amazonensis, L. panamensis, L. mexicana and L. tropica. The drugs demonstrating potent activity (EC50 < 5 μM) against at least 4 of 6 species were subsequently evaluated in vivo in different L. major - BALB/c mouse models using a 5 or 10-day treatment with either the oral or topical formulations. Efficacy was expressed as lesion size (measured daily using callipers), parasite load (by quantitative PCR - DNA) and bioluminescence signal reduction relative to the untreated controls. RESULTS The selected drug compounds (3 nitroimidazoles, 1 benzoxaborole and 3 aminopyrazoles) showed consistent and potent activity across a range of Leishmania species that are known to cause CL with EC50 values ranging from 0.29 to 18.3 μM. In all cases, this potent in vitro antileishmanial activity translated into high levels of efficacy with a linear dose-response against murine CL. When administered at 50 mg/kg/day, DNDI-0690 (nitroimidazole), DNDI-1047 (aminopyrazole) and DNDI-6148 (benzoxaborole) all resulted in a significant lesion size reduction (no visible nodule) and an approximate 2-log-fold reduction of the parasite load as measured by qPCR compared to the untreated control. CONCLUSIONS The lead compounds DNDI-0690, DNDI-1047 and DNDI-6148 showed excellent activity across a range of Leishmania species in vitro and against L. major in mice. These compounds offer novel potential drugs for the treatment of CL.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Diana Caridha
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Chad Black
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Brian Vesely
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Susan Leed
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Richard J Sciotti
- National Institutes of Health, Office of Biodefense, Research Resources and Translational Research, 5601 Fishers Lane, Bethesda, MD, 20892, USA
| | - Gert-Jan Wijnant
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Vanessa Yardley
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Stéphanie Braillard
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Simon L Croft
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
32
|
Pharmacokinetics and Pharmacodynamics of the Nitroimidazole DNDI-0690 in Mouse Models of Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2019; 63:AAC.00829-19. [PMID: 31262757 PMCID: PMC6709472 DOI: 10.1128/aac.00829-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
The nitroimidazole DNDI-0690 is a clinical drug candidate for visceral leishmaniasis (VL) that also shows potent in vitro and in vivo activity against cutaneous leishmaniasis (CL). To support further development of this compound into a patient-friendly oral or topical formulation for the treatment of CL, we investigated the free drug exposure at the dermal site of infection and subsequent elimination of the causative Leishmania pathogen. This study evaluates the pharmacokinetics (PK) and pharmacodynamics (PD) of DNDI-0690 in mouse models of CL. Skin microdialysis and Franz diffusion cell permeation studies revealed that DNDI-0690 permeated poorly (<1%) into the skin lesion upon topical drug application (0.063% [wt/vol], 30 μl). In contrast, a single oral dose of 50 mg/kg of body weight resulted in the rapid and nearly complete distribution of protein-unbound DNDI-0690 from the plasma into the infected dermis (ratio of the area under the curve [0 to 6 h] of the free DNDI-0690 concentration in skin tissue to blood [fAUC0-6 h, skin tissue/fAUC0-6 h, blood] is greater than 80%). Based on in vivo bioluminescence imaging, two doses of 50 mg/kg DNDI-0690 were sufficient to reduce the Leishmania mexicana parasite load by 100-fold, while 6 such doses were needed to achieve similar killing of L. major; this was confirmed by quantitative PCR. The combination of rapid accumulation and potent activity in the Leishmania-infected dermis indicates the potential of DNDI-0690 as a novel oral treatment for CL.
Collapse
|
33
|
Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:106-117. [PMID: 31320296 PMCID: PMC6904839 DOI: 10.1016/j.ijpddr.2019.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Although there have been significant advances in the treatment of visceral leishmaniasis (VL) and several novel compounds are currently in pre-clinical and clinical development for this manifestation of leishmaniasis, there have been limited advances in drug research and development (R & D) for cutaneous leishmaniasis (CL). Here we review the need for new treatments for CL, describe in vitro and in vivo assays, models and approaches taken over the past decade to establish a pathway for the discovery, and pre-clinical development of new drugs for CL. These recent advances include novel mouse models of infection using bioluminescent Leishmania, the introduction of PK/PD approaches to skin infection, and defined pre-clinical candidate profiles.
Collapse
|
34
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
35
|
Balaña-Fouce R, Pérez Pertejo MY, Domínguez-Asenjo B, Gutiérrez-Corbo C, Reguera RM. Walking a tightrope: drug discovery in visceral leishmaniasis. Drug Discov Today 2019; 24:1209-1216. [PMID: 30876846 DOI: 10.1016/j.drudis.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
The current commitment of the pharma industry, nongovernmental organizations and academia to find better treatments against neglected tropical diseases should end decades of challenge caused by these global scourges. The initial result of these efforts has been the introduction of enhanced combinations of drugs, currently in clinical use, or formulations thereof. Phenotypic screening based on intracellular parasite infections has been revealed as the first key tool of antileishmanial drug discovery, because most first-in-class drugs entering Phase I trials were discovered this way. The professional commitment among stakeholders has enabled the availability of a plethora of new chemical entities that fit the target product profile for these diseases. However, the rate of hit discovery in leishmaniasis is far behind that for other neglected diseases. This review defends the need to develop new screening methods that consider the part played not only by intracellular parasites but also by the host's immune system to generate disease-relevant assays and improve clinical outcomes.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - M Yolanda Pérez Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain.
| |
Collapse
|
36
|
Kwofie KD, Sato K, Sanjoba C, Hino A, Shimogawara R, Amoa-Bosompem M, Ayi I, Boakye DA, Anang AK, Chang KS, Ohashi M, Kim HS, Ohta N, Matsumoto Y, Iwanaga S. Oral activity of the antimalarial endoperoxide 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Leishmania donovani complex. PLoS Negl Trop Dis 2019; 13:e0007235. [PMID: 30908481 PMCID: PMC6433226 DOI: 10.1371/journal.pntd.0007235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/12/2019] [Indexed: 01/16/2023] Open
Abstract
Visceral leishmaniasis (VL) is a major problem worldwide and causes significant morbidity and mortality. Existing drugs against VL have limitations, including their invasive means of administration long duration of treatment regimens. There are also concerns regarding increasing treatment relapses as well as the identification of resistant clinical strains with the use of miltefosine, the sole oral drug for VL. There is, therefore, an urgent need for new alternative oral drugs for VL. In the present study, we show the leishmanicidal effect of a novel, oral antimalarial endoperoxide N-251. In our In vitro studies, N-251 selectively and specifically killed Leishmania donovani D10 amastigotes with no accompanying toxicity toward the host cells. In addition, N-251 exhibited comparable activities against promastigotes of L. donovani D10, as well as other L. donovani complex parasites, suggesting a wide spectrum of activity. Furthermore, even after a progressive infection was established in mice, N-251 significantly eliminated amastigotes when administered orally. Finally, N-251 suppressed granuloma formation in mice liver through parasite death. These findings indicate the therapeutic effect of N-251 as an oral drug, hence suggest N-251 to be a promising lead compound for the development of a new oral chemotherapy against VL.
Collapse
Affiliation(s)
- Kofi Dadzie Kwofie
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kai Sato
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akina Hino
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Rieko Shimogawara
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Irene Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel A. Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Abraham K. Anang
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, Republic of Korea
| | - Mitsuko Ohashi
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobuo Ohta
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shiroh Iwanaga
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrob Agents Chemother 2018; 62:AAC.01928-18. [PMID: 30297370 DOI: 10.1128/aac.01928-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing affords the implementation of new treatments at a moderate cost and under a faster time-scale. Most of the clinical drugs against Leishmania share this origin. The antidepressant sertraline has been successfully assayed in a murine model of visceral leishmaniasis. Nevertheless, sertraline targets in Leishmania were poorly defined. In order to get a detailed insight into the leishmanicidal mechanism of sertraline on Leishmania infantum, unbiased multiplatform metabolomics and transmission electron microscopy were combined with a focused insight into the sertraline effects on the bioenergetics metabolism of the parasite. Sertraline induced respiration uncoupling, a significant decrease of intracellular ATP level, and oxidative stress in L. infantum promastigotes. Metabolomics evidenced an extended metabolic disarray caused by sertraline. This encompasses a remarkable variation of the levels of thiol-redox and polyamine biosynthetic intermediates, as well as a shortage of intracellular amino acids used as metabolic fuel by Leishmania Sertraline killed Leishmania through a multitarget mechanism of action, tackling essential metabolic pathways of the parasite. As such, sertraline is a valuable candidate for visceral leishmaniasis treatment under a drug repurposing strategy.
Collapse
|
38
|
Berry SL, Hameed H, Thomason A, Maciej-Hulme ML, Saif Abou-Akkada S, Horrocks P, Price HP. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl Trop Dis 2018; 12:e0006639. [PMID: 30001317 PMCID: PMC6057649 DOI: 10.1371/journal.pntd.0006639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which there are an estimated 1 million new cases each year. Current treatments are toxic, expensive, difficult to administer, and resistance to them is emerging. New therapeutics are urgently needed, however, screening the infective amastigote form of the parasite is challenging. Only certain species can be differentiated into axenic amastigotes, and compound activity against these does not always correlate with efficacy against the parasite in its intracellular niche. Methods used to assess compound efficacy on intracellular amastigotes often rely on microscopy-based assays. These are laborious, require specialist equipment and can only determine parasite burden, not parasite viability. We have addressed this clear need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatility of this transgenic strain, in comparison with strains expressing NanoLuc and the red-shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current methods in both axenic and intramacrophage amastigotes following treatment with a supralethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability due to its high turnover rate and high signal:background ratio. This, coupled with its sensitivity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amastigotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The data obtained from this highlights the potential of compounds active against M. tuberculosis to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is therefore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic and intramacrophage amastigote models. The protozoan parasite Leishmania causes a spectrum of diseases collectively known as leishmaniasis. The parasite is transmitted to humans by the bite of its vector, the sand fly, following which the parasite invades host white blood cells, particularly macrophages. Leishmaniasis is classified as a neglected tropical disease, and is endemic in 97 countries. Symptoms of the disease depend on the species of Leishmania. These include skin lesions, destruction of the mucosal membranes, and the visceral form which is usually fatal if untreated. Current therapeutic options for leishmaniasis have a number of associated problems that include toxicity, the development of drug resistance and poor patient compliance due to lengthy and painful treatment regimens. New therapeutics are therefore urgently needed. The ability to screen potential drug candidates requires robust screening assays. Currently, screening the intracellular parasite relies on microscopy-based techniques that require expensive equipment, are time consuming and only detect parasite burden, not viability. By using a transgenic cell line that expresses the NanoLuc-PEST luciferase, we show that we have a parasite-specific viability marker that can be used to measure the efficacy of compounds against the intracellular parasite. We validate the potential of this cell line by screening the MMV Pathogen Box.
Collapse
Affiliation(s)
- Sarah L. Berry
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamza Hameed
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Anna Thomason
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Current address: School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Marissa L. Maciej-Hulme
- Radboud University Medical Center, Department of Nephrology, Geert Grooteplein 10, GA Nijmegan, The Netherlands
| | - Somaia Saif Abou-Akkada
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Paul Horrocks
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Helen P. Price
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|