1
|
Subramanian D, Chin A, Shi Y, Liu GW, Langer R, Traverso G. Identification and Validation of Cyclic Peptides with Mucin-Selective, Location-Specific Binding in the Gastrointestinal Tract. ACS NANO 2025; 19:14693-14706. [PMID: 40216380 PMCID: PMC12020424 DOI: 10.1021/acsnano.4c13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Oral drug delivery is a widely preferred method of drug administration due to its ease of use and convenience for patients. Localization of drug release in the gastrointestinal (GI) tract is important to treat localized diseases and maximize drug absorption. However, achieving drug localization in the dynamic GI tract is challenging. To address this challenge, we leveraged the geographic diversity of the GI tract by targeting its mucus layers, which coat the epithelial surfaces. These layers, composed of mucin glycoproteins, are synthesized with unique chemical compositions and expressed in different regions, making them ideal targets for drug localization. In this article, we identify cyclic peptides that bind selectively to MUC2 (in the intestines) and MUC5AC (in the stomach), serving as targeting ligands to these regions of the GI tract. We demonstrate the effectiveness of these peptides through in vitro, ex vivo, and in vivo experiments, showing that incorporating these targeting ligands can increase binding and selectivity 2-fold to the desired regions, thus potentially overcoming challenges with localizing drug distribution in oral delivery. These results indicate that cyclic peptides can be used to localize drug cargoes at certain sites in the body compared to free drugs.
Collapse
Affiliation(s)
- Deepak
A. Subramanian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Austin Chin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yunhua Shi
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gary W. Liu
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Traverso
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Shah K, Singh D, Agrawal R, Garg A. Current Developments in the Delivery of Gastro-Retentive Drugs. AAPS PharmSciTech 2025; 26:57. [PMID: 39920556 DOI: 10.1208/s12249-025-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The pharmaceutical industry has expressed a lot of interest in site specific drug delivery & oral controlled release to increase treatment efficiency. The idea of a unique drug delivery system was developed to address several concerns with the physicochemical characteristics of drug molecules and the associated formulations. The use of gastro retentive systems for drug delivery, which focus on site-specific drug release for either systemic or local effects in the stomach, is one of these cutting-edge strategies for lengthening gastric residency time. This approach is especially useful for drugs that have a small window of upper gastro intestinal tract absorption. This review has discussed various gastro-retentive techniques, including floating & non-floating systems. With a focus on the numerous gastro retentive approaches that have lately emerged as the most efficient methods for site specific oral controlled release drug administration, the aim of this study on gastro retentive drug delivery systems was to synthesise the most current findings. We have highlighted the major reasons affecting gastric retention so that you may comprehend the many physiological challenges involved. Next, we discussed the different gastro retentive strategies that have been developed and improved to date, including floating, high density, mucoadhesive, unfoldable, expandable, super porous hydrogel, & magnetic systems. The benefits of gastro retentive medication administration techniques were then thoroughly discussed.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India.
| | - Disha Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
3
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
4
|
Su L, Song G, Zhou T, Tian H, Xin H, Zou X, Xu Y, Jin X, Gui S, Lu X. Colon-targeted oral nanoliposomes loaded with psoralen alleviate DSS-induced ulcerative colitis. Biomater Sci 2024; 12:3212-3228. [PMID: 38757193 DOI: 10.1039/d4bm00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Oral administration, while convenient, but complex often faces challenges due to the complexity of the digestive environment. In this study, we developed a nanoliposome (NLP) encapsulating psoralen (P) and coated it with chitosan (CH) and pectin (PT) to formulate PT/CH-P-NLPs. PT/CH-P-NLPs exhibit good biocompatibility, superior to liposomes loaded with psoralen and free psoralen alone. After oral administration, PT/CH-P-NLPs remain stable in the stomach and small intestine, followed by a burst release of psoralen after reaching the slightly alkaline and gut microbiota-rich colon segment. In the DSS-induced ulcerative colitis of mice, PT/CH-P-NLPs showed significant effects on reducing inflammation, mitigating oxidative stress, protecting the integrity of the colon mucosal barrier, and modulating the gut microbiota. In conclusion, the designed nanoliposomes demonstrated the effective application of psoralen in treating ulcerative colitis.
Collapse
Affiliation(s)
- Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Gaoqing Song
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hongmei Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hui Xin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| |
Collapse
|
5
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
6
|
Słota D, Jampilek J, Sobczak-Kupiec A. Targeted Clindamycin Delivery Systems: Promising Options for Preventing and Treating Bacterial Infections Using Biomaterials. Int J Mol Sci 2024; 25:4386. [PMID: 38673971 PMCID: PMC11050486 DOI: 10.3390/ijms25084386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Targeted therapy represents a real opportunity to improve the health and lives of patients. Developments in this field are confirmed by the fact that the global market for drug carriers was worth nearly $40 million in 2022. For this reason, materials engineering and the development of new drug carrier compositions for targeted therapy has become a key area of research in pharmaceutical drug delivery in recent years. Ceramics, polymers, and metals, as well as composites, are of great interest, as when they are appropriately processed or combined with each other, it is possible to obtain biomaterials for hard tissues, soft tissues, and skin applications. After appropriate modification, these materials can release the drug directly at the site requiring a therapeutic effect. This brief literature review characterizes routes of drug delivery into the body and discusses biomaterials from different groups, options for their modification with clindamycin, an antibiotic used for infections caused by aerobic and anaerobic Gram-positive bacteria, and different methods for the final processing of carriers. Examples of coating materials for skin wound healing, acne therapy, and bone tissue fillers are given. Furthermore, the reasons why the use of antibiotic therapy is crucial for a smooth and successful recovery and the risks of bacterial infections are explained. It was demonstrated that there is no single proven delivery scheme, and that the drug can be successfully released from different carriers depending on the destination.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| |
Collapse
|
7
|
Wilkins CA, Hamman H, Hamman JH, Steenekamp JH. Fixed-Dose Combination Formulations in Solid Oral Drug Therapy: Advantages, Limitations, and Design Features. Pharmaceutics 2024; 16:178. [PMID: 38399239 PMCID: PMC10892518 DOI: 10.3390/pharmaceutics16020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Whilst monotherapy is traditionally the preferred treatment starting point for chronic conditions such as hypertension and diabetes, other diseases require the use of multiple drugs (polytherapy) from the onset of treatment (e.g., human immunodeficiency virus acquired immunodeficiency syndrome, tuberculosis, and malaria). Successful treatment of these chronic conditions is sometimes hampered by patient non-adherence to polytherapy. The options available for polytherapy are either the sequential addition of individual drug products to deliver an effective multi-drug regimen or the use of a single fixed-dose combination (FDC) therapy product. This article intends to critically review the use of FDC drug therapy and provide an insight into FDC products which are already commercially available. Shortcomings of FDC formulations are discussed from multiple perspectives and research gaps are identified. Moreover, an overview of fundamental formulation considerations is provided to aid formulation scientists in the design and development of new FDC products.
Collapse
Affiliation(s)
| | | | | | - Jan H. Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.A.W.); (H.H.); (J.H.H.)
| |
Collapse
|
8
|
Uboldi M, Chiappa A, Rossi M, Briatico-Vangosa F, Melocchi A, Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin Drug Deliv 2024; 21:131-149. [PMID: 38088371 DOI: 10.1080/17425247.2023.2294884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Efficacy and compliance of type II diabetes treatment would greatly benefit from dosage forms providing controlled release of metformin in the upper gastrointestinal tract. In this respect, the feasibility of a new system ensuring stomach-retention and personalized release of this drug at its absorption window for multiple days was investigated. METHODS The system proposed comprised of a drug-containing core and a viscoelastic umbrella-like skeleton, which were manufactured by melt-casting and 3D printing. Prototypes, alone or upon assembly and insertion into commercially-available capsules, were characterized for key parameters: thermo-mechanical properties, accelerated stability, degradation, drug release, deployment performance, and resistance to simulated gastric contractions. RESULTS Each part of the system was successfully manufactured using purposely-selected materials and the performance of final prototypes matched the desired one. This included: i) easy folding of the skeleton against the core in the collapsed administered shape, ii) rapid recovery of the cumbersome configuration at the target site, even upon storage, and iii) prolonged release of metformin. CONCLUSIONS Composition, geometry, and performance of the system developed in this work were deemed acceptable for stomach-retention and prolonged as well as customizable release of metformin in its absorption window, laying promising bases for further development steps.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Margherita Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Liu D, Wang J, You W, Ma F, Sun Q, She J, He W, Yang G. A d-peptide-based oral nanotherapeutic modulates the PD-1/PD-L1 interaction for tumor immunotherapy. Front Immunol 2023; 14:1228581. [PMID: 37529049 PMCID: PMC10388715 DOI: 10.3389/fimmu.2023.1228581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background PD-1/PD-L1 immune checkpoint inhibitors are currently the most commonly utilized agents in clinical practice, which elicit an immunostimulatory response to combat malignancies. However, all these inhibitors are currently administered via injection using antibody-based therapies, while there is a growing need for oral alternatives. Methods This study has developed and synthesized exosome-wrapped gold-peptide nanocomplexes with low immunogenicity, which can target PD-L1 and activate antitumor immunity in vivo through oral absorption. The SuperPDL1exo was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel silver staining. The transmembrane ability of SuperPDL1exo was evaluated by flow cytometry and immunofluorescence. Cell viability was determined using the Cell Counting Kit-8 (CCK-8) assay. ELISA experiments were conducted to detect serum and tissue inflammatory factors, as well as serum biochemical indicators. Tissue sections were stained with H&E for the evaluation of the safety of SuperPDL1exo. An MC38 colon cancer model was established in immunocompetent C56BL/6 mice to evaluate the effects of SuperPDL1exo on tumor growth in vivo. Immunohistochemistry (IHC) staining was performed to detect cytotoxicity factors such as perforin and granzymes. Results First, SuperPDL1 was successfully synthesized, and milk exosome membranes were encapsulated through ultrasound, repeated freeze-thaw cycles, and extrusion, resulting in the synthesis of SuperPDL1exo. Multiple characterization results confirmed the successful synthesis of SuperPDL1exo nanoparticles. Furthermore, our data demonstrated that SuperPDL1exo exhibited excellent colloidal stability and superior cell transmembrane ability. In vitro and in vivo experiments revealed that SuperPDL1exo did not cause damage to multiple systemic organs, demonstrating its good biocompatibility. Finally, in the MC38 colon cancer mouse model, it was discovered that SuperPDL1exo could inhibit the progression of colon cancer, and this tumor-suppressive effect was mediated through the activation of tumor-specific cytotoxic T lymphocyte (CTL)-related immune responses. Conclusion This study has successfully designed and synthesized an oral nanotherapeutic, SuperPDL1exo, which demonstrates small particle size, excellent colloidal stability, transmembrane ability in tumor cells, and biocompatibility. In vivo experiments have shown that it effectively activates T-cell immunity and exerts antitumor effects.
Collapse
Affiliation(s)
- Dan Liu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fang Ma
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guang Yang
- Department of Oncology, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Carvalho SG, Dos Santos AM, Polli Silvestre AL, Tavares AG, Chorilli M, Daflon Gremião MP. Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives. Expert Opin Drug Deliv 2023; 20:1231-1249. [PMID: 37786284 DOI: 10.1080/17425247.2023.2263360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Alberto Gomes Tavares
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
12
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
A Micro-In-Macro Gastroretentive System for the Delivery of Narrow-Absorption Window Drugs. Polymers (Basel) 2023; 15:polym15061385. [PMID: 36987166 PMCID: PMC10055986 DOI: 10.3390/polym15061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
A micro-in-macro gastroretentive and gastrofloatable drug delivery system (MGDDS), loaded with the model-drug ciprofloxacin, was developed in this study to address the limitations commonly experienced in narrow-absorption window (NAW) drug delivery. The MGDDS, which consists of microparticles loaded in a gastrofloatable macroparticle (gastrosphere) was designed to modify the release of ciprofloxacin, allowing for an increased drug absorption via the gastrointestinal tract. The prepared inner microparticles (1–4 µm) were formed by crosslinking chitosan (CHT) and Eudragit® RL 30D (EUD), with the outer gastrospheres prepared from alginate (ALG), pectin (PEC), poly(acrylic acid) (PAA) and poly(lactic-co-glycolic) acid (PLGA). An experimental design was utilized to optimize the prepared microparticles prior to Fourier Transition Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and in vitro drug release studies. Additionally, the in vivo analysis of the MGDDS, employing a Large White Pig model and molecular modeling of the ciprofloxacin-polymer interactions, were performed. The FTIR results determined that the crosslinking of the respective polymers in the microparticle and gastrosphere was achieved, with the SEM analysis detailing the size of the microparticles formed and the porous nature of the MGDDS, which is essential for drug release. The in vivo drug release analysis results further displayed a more controlled ciprofloxacin release profile over 24 h and a greater bioavailability for the MGDDS when compared to the marketed immediate-release ciprofloxacin product. Overall, the developed system successfully delivered ciprofloxacin in a control-release manner and enhanced its absorption, thereby displaying the potential of the system to be used in the delivery of other NAW drugs.
Collapse
|
14
|
Dhanya C, Paul W, Rekha M, Joseph R. Solid Lipid Nanoparticles of Lauric Acid: A Prospective Drug Carrier for Oral Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
15
|
Buyana B, Naki T, Alven S, Aderibigbe BA. Nanoparticles Loaded with Platinum Drugs for Colorectal Cancer Therapy. Int J Mol Sci 2022; 23:11261. [PMID: 36232561 PMCID: PMC9569963 DOI: 10.3390/ijms231911261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.
Collapse
Affiliation(s)
| | | | | | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape Province, South Africa
| |
Collapse
|
16
|
Mucus-Penetrating Silk Fibroin-Based Nanotherapeutics for Efficient Treatment of Ulcerative Colitis. Biomolecules 2022; 12:biom12091263. [PMID: 36139101 PMCID: PMC9496219 DOI: 10.3390/biom12091263] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oral nanoparticles have been considered a prospective drug delivery carrier against ulcerative colitis (UC). To enhance the mucus-penetrating capacity and aqueous solubility, and strengthen the anti-inflammatory effect of resveratrol (RSV), we fabricated RSV-loaded silk fibroin-based nanoparticles with the functionalization of Pluronic F127 (PF-127). The obtained PF-127-functionalized RSV-loaded NPs had an average particle size around 170 nm, a narrow size distribution (polydispersity index < 0.2), and negative zeta potential (−20.5 mV). Our results indicated that the introduction of PF-127 strengthened the mucus-penetrating property of NPs. In vitro studies suggested that NPs with PF-127 enhanced the suppression of the secretion of proinflammatory cytokine TNF-α and reactive oxygen species (ROS) from RAW 264.7 macrophages under lipopolysaccharide stimulation in comparison with other counterparts. According to the evaluation of macro symptoms and main inflammatory cytokines, we further report preferable therapeutic outcomes achieved by PF-127 functionalized-NP-treated dextran sulphate sodium (DSS) groups in the colitis model compared with blank silk fibroin NPs and RSV-loaded NPs without the functionalization of PF-127. Taken together, this work suggests that the fabricated PF-127 NPs via the oral route are promising and useful RSV-loaded nanocarriers for UC treatment.
Collapse
|
17
|
A pH/Time/Pectinase-Dependent Oral Colon-Targeted System Containing Isoliquiritigenin: Pharmacokinetics and Colon Targeting Evaluation in Mice. Eur J Drug Metab Pharmacokinet 2022; 47:677-686. [PMID: 35790663 DOI: 10.1007/s13318-022-00783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Oral colon-targeted gel beads containing isoliquiritigenin (ISL) were successfully designed in our study. In order to further explore the targeting of the colon by the gel beads, a systematic study of their in vivo pharmacokinetics and colon targeting was performed in mice. METHODS Eighteen male mice were included in this study. The mice were separated into six groups at random. We collected blood, stomach, duodenum, jejunum, ileum, and colon tissues at 2, 4, 6, 8, 12, and 24 h after oral administration of gel beads containing isoliquiritigenin at a dose of 20 mg/kg. Gel beads in tissues were recorded and taken out to observe their swelling and erosion. The total ISL concentrations in different tissues and gel beads were analyzed by high-performance liquid chromatography. RESULTS All gel beads reached the upper part of the stomach at 2 h with no obvious swelling. Most of the gel beads were still in the lower part of stomach, while a small amount had reached the small intestine at 4 h. A few gel beads reached the colon and swelled at 6 h. Furthermore, the gel beads in the colon were swollen and erosive at 8 h. Meanwhile, the plasma ISL concentration could be detected, which indicated that the ISL in the gel beads was absorbed. At 12 h, the gel beads were almost dissolved and the plasma concentration was 8.33 times that at 8 h. At 24 h, the gel beads had completely disappeared, and the plasma concentration was 2.55 times that at 12 h. CONCLUSION The gel beads containing ISL are a sustained, controlled, and colon-targeting delivery system that can alter the ISL distribution in the gastrointestinal tract.
Collapse
|
18
|
Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release 2022; 348:537-552. [PMID: 35690278 DOI: 10.1016/j.jconrel.2022.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Targeting the release of drugs in specific sites of the upper GI tract would meet local therapeutic goals, improve the bioavailability of specific drugs and help overcoming compliance-related limitations, especially in chronic illnesses of great social/economic impact and involving polytherapies (e.g. Parkinson's and Alzeimer's disease, tubercolosis, malaria, HIV, HCV). It has been traditionally pursued using gastroretentive (GR) systems, i.e. low-density, high-density, magnetic, adhesive and expandable devices. More recently, the interest towards oral administration of biologics has prompted the development of novel drug delivery systems (DDSs) provided with needles and able to inject different formulations in the mucosa of the upper GI tract and particularly of esophagus, stomach or small intestine. Besides comprehensive literature analysis, DDSs identified as smart devices in view of their high degree of complexity in terms of design, working mechanism, materials employed and manufacturing steps were discussed making use of graphic tools.
Collapse
|
19
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 PMCID: PMC12053541 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Li L, Qi Z, Han S, Li X, Liu B, Liu Y. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini Rev Med Chem 2022; 22:2564-2580. [PMID: 35362373 DOI: 10.2174/1389557522666220330152145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Oral administration is a commonly used, safe, and patient-compliant method of drug delivery. However, due to the multiple absorption barriers in the gastrointestinal tract (GIT), the oral bioavailability of many drugs is low, resulting in a limited range of applications for oral drug delivery. Nanodrug delivery systems have unique advantages in overcoming the multiple barriers to oral absorption and improving the oral bioavailability of encapsulated drugs. Metal-organic frameworks (MOFs) are composed of metal ions and organic linkers assembled by coordination chemistry. Unlike other nanomaterials, nanoscale metal-organic frameworks (nano-MOFs, NMOFs) are increasingly popular for drug delivery systems (DDSs) due to their tunable pore size and easily modified surfaces. This paper summarizes the literature on MOFs in pharmaceutics included in SCI for the past ten years. Then, the GIT structure and oral drug delivery systems are reviewed, and the advantages, challenges, and solution strategies possessed by oral drug delivery systems are discussed. Importantly, two major classes of MOFs suitable for oral drug delivery systems are summarized, and various representative MOFs as oral drug carriers are evaluated in the context of oral drug delivery systems. Finally, the challenges faced by DDSs in the development of MOFs, such as biostability, biosafety, and toxicity, are examined.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Zhaorui Qi
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Shasha Han
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Xurui Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Bingmi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
21
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
22
|
Sonatkar J, Kandasubramanian B, Oluwarotimi Ismail S. 4D printing: Pragmatic progression in biofabrication. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
26
|
Huang Y, Wang Z, Zhang G, Ren J, Yu L, Liu X, Yang Y, Ravindran A, Wong C, Chen R. A pH/redox-dual responsive, nanoemulsion-embedded hydrogel for efficient oral delivery and controlled intestinal release of magnesium ions. J Mater Chem B 2021; 9:1888-1895. [PMID: 33533362 DOI: 10.1039/d0tb02442b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It remains a major challenge to achieve efficient oral delivery and controlled intestinal release of ions using hydrogels. Herein, we report a novel, pH/redox-dual responsive, nanoemulsion-embedded composite hydrogel to address this issue. The hydrogel was first synthesized by crosslinking a biocompatible, pH-responsive pseudopeptide, poly(l-lysine isophthalamide) (PLP), and redox-sensitive l-cystine dimethyl ester dihydrochloride (CDE). A suitable amount of magnesium acetate was encapsulated into oil-in-water nanoemulsions, which were then embedded into the lysine-based hydrogel. The resulting composite hydrogel collapsed into a compact structure at acidic gastric pH, but became highly swollen or degraded in the neutral and reducing intestinal environment. The ion release profiles indicated that the nanoemulsion-embedded composite hydrogel could well retain and protect magnesium ions in the simulated gastric fluid (SGF) buffer at pH 1.2, but efficiently release them in the simulated intestinal fluid (SIF) buffer at pH 6.8 in the presence of 1,4-dithiothreitol (DTT) as a reducing agent. Moreover, this composite hydrogel system displayed good biocompatibility. These results suggested that the pH/redox-dual responsive, nanoemulsion-embedded composite hydrogel could be a promising candidate for efficient oral delivery and controlled intestinal release of magnesium and other ions.
Collapse
Affiliation(s)
- Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Zewei Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Guiju Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. and School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Li Yu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Xuhan Liu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Yuanxi Yang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Abirami Ravindran
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Chloe Wong
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Radiation development of gastroretentive amoxicillin trihydrate floating-alginate based beads for the treatment of helicobacter pylori. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Corazza FG, Ernesto JV, Nambu FAN, Calixto LA, Varca GHC, Vieira DP, Leite-Silva VR, Andréo-Filho N, Lopes PS. Enhancing the Furosemide Permeability by Papain Minitablets Through a Triple Co-culture In Vitro Intestinal Cell Model. AAPS PharmSciTech 2020; 21:255. [PMID: 32888072 DOI: 10.1208/s12249-020-01796-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The administration of medicines by the oral route is the most used approach for being very convenient. Although it is the most popular, this route also has absorption, and consequently, bioavailability limitations. In this sense, several pharmacotechnical strategies have been used to improve drug absorption, one of which is the use of permeation promoters. Papain is a very versatile plant enzyme that can be used as a permeation promoter of various active compounds. This study aimed to evaluate the safety of papain and the formulation of native papain minitablets to promote in vitro permeation of furosemide through an innovative biomimetic triple co-culture model of Caco-2, HT29-MTX, and Raji cells. Regarding permeation, furosemide and metaprolol concentrations are determined with HPLC; those are used to calculate Papp. Monolayer integrity was evaluated using TEER and Lucifer Yellow. In the presence of papain, TEER decreased two-fold and the Papp of furosemide increased six-fold. The results suggest that native papain minitablets can be used as therapeutic adjuvants to enhance the permeation of drugs significantly improving bioavailability.
Collapse
|
29
|
Li X, Lu C, Yang Y, Yu C, Rao Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother 2020; 129:110486. [PMID: 32768972 DOI: 10.1016/j.biopha.2020.110486] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease and ulcerative colitis and manifests as a complex and dysregulated immune response. To date, there is no cure for IBD; thus, lifelong administration of maintenance drugs is often necessary. Since conventional IBD treatment strategies do not target the sites of inflammation, only limited efficacy is observed with their use. Moreover, the possibility of severe side effects resulting from systemic drug redistribution is high when conventional drug treatments are used. Therefore, a straightforward disease-targeted drug delivery system is desirable. Based on the pathophysiological changes associated with IBD, novel site-specific targeted drug delivery strategies that deliver drugs directly to the inflammation sites can enhance drug accumulation and decrease side effects. This review summarizes novel inflammation targeted delivery systems in the management of IBD. It also discusses the challenges and new perspectives in this field.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanyan Yang
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yuefeng Rao
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
30
|
Adrover A, di Muzio L, Trilli J, Brandelli C, Paolicelli P, Petralito S, Casadei MA. Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl- β-Cyclodextrin. Pharmaceutics 2020; 12:pharmaceutics12090819. [PMID: 32872207 PMCID: PMC7558953 DOI: 10.3390/pharmaceutics12090819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed. One possible way to overcome all these problems could be the addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) to the GG-Gly formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated. In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-β-CD, fluconazole and complex fluconazole/HP-β-CD in the swelling film. Experimental results, supported by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-β-CD represent a suitable formulation for fluconazole drug delivery. A sustained release was observed when GG-Gly film is loaded with a preformed complex fluconazole/HP-β-CD.
Collapse
Affiliation(s)
- Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Universitá di Roma, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: (A.A.); (P.P.)
| | - Laura di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Jordan Trilli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Chiara Brandelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
- Correspondence: (A.A.); (P.P.)
| | - Stefania Petralito
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| |
Collapse
|
31
|
Mohammed MO, Alkubaisi HMM, Haj NQ. A new prodrug and bioactivity evaluation of methotrexate based on Chitosan. Heliyon 2020; 6:e04223. [PMID: 32596525 PMCID: PMC7306593 DOI: 10.1016/j.heliyon.2020.e04223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Methotrexate (MTX) is the most important drug used in the treatment of several kinds of cancers, such as colon cancer. However, this drug can cause a reduction in the target tissue bioavailability. It is administered orally and absorbed quickly. This study aimed to produce an anti-colon cancer prodrug based on MTX via loading it into a biopolymer compound. Chitosan (CS) was extracted from scales of local fish by utilizing a previously published protocol. The MTX was then transformed to Methotrexate - imidazole and loaded into CS to prepare Chitosan - Methotrexate (CS-MTX) conjugates as colon cancer prodrugs. Fourier-transform infrared (FTIR), UV-visible spectroscopy, and 1H-NMR were used to analyse the structure of the prepared compounds. The prepared compounds were also tested for hemolytic activity. Chemical stability was studied using 0.2 M from the different buffer types with a pH of 1.2 and 7.4 over different periods about 240 min and kept in an incubator at 37 °C. The loading percentage was measured by hydrolysing the amide bond in basic media followed by the measurement of the absorbency at 273 nm. Three types of cancer cells, MCF-7, MDA-MB-231, and MDA-MB-453, were used to test the anticancer effects of CS-MTX by using tetrazolium bromide (MTT) assay. The results indicated that the viability of human breast cancer cell lines decreased because of the use of CS-MTX. This study also showed that CS-MTX was less toxic than the original drug. Therefore, it may be measured for additional biological analyses and medical applications. The results presented here showed that the new compound is remarkably stable in comparison with MTX and has longer half-life (t ½). Therefore, the CS-MTX has promising strategies through minimising the side effects of anti-colon tumour drugs.
Collapse
Affiliation(s)
| | | | - Nadia Qader Haj
- Chemistry Department, College of Science, Kirkuk University, Iraq
| |
Collapse
|
32
|
Ng YM, Mat Yusuf SNA, Chiu HI, Lim V. Redox-Sensitive Linear and Cross-Linked Cystamine-Based Polymers for Colon-Targeted Drug Delivery: Design, Synthesis, and Characterisation. Pharmaceutics 2020; 12:pharmaceutics12050461. [PMID: 32443633 PMCID: PMC7284438 DOI: 10.3390/pharmaceutics12050461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cystamine-based polymers may help to achieve controlled and targeted drug delivery to the colon due to their susceptibility to breakage of the disulfide linkage in the low redox potential environment of the colon. In this study, two linear cystamine-based polymers with similar repeating units (LP1 and LP2) and a cross-linked cystamine-based polymer (BP) were synthesised and their kinetics and the various physical conditions underlying cystamine-based polymerisation were evaluated. In brief, N1,N6-bis(2-(tritylthio)ethyl)adipamide (2) was synthesised from the reaction of triphenylmethanol and cysteamine. Next, the trityl group of 2 was removed with trifluoroacetic acid and triethylsilane before proceeding to oxidative polymerisation of the end product, N1,N6-bis(2-mercaptoethyl)adipamide (3) to LP1. The Schotten-Bauman reaction was applied to synthesise LP2 and BP from the reaction of cystamine with adipoyl chloride or trimesoyl chloride. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and mapping showed that oxygen, nitrogen, sulfur, and carbon were homogenously distributed in the polymers, with LP2 and BP having less porous morphologies compared to LP1. Results of zinc-acetic acid reduction showed that all polymers began to reduce after 15 min. Moreover, all synthesised polymers resisted stomach and small intestine conditions and only degraded in the presence of bacteria in the colon environment. Thus, these polymers have great potential for drug delivery applications. LP2 and BP, which were synthesised using the Schotten-Bauman reaction, were more promising than LP1 for colon-targeted drug delivery.
Collapse
Affiliation(s)
- Yoke Mooi Ng
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia; (Y.M.N.); (S.N.A.M.Y.); (H.I.C.)
| | - Siti Nur Aishah Mat Yusuf
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia; (Y.M.N.); (S.N.A.M.Y.); (H.I.C.)
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, UniCITI Alam Campus, Universiti Malaysia Perlis, Padang Besar 02100, Perlis, Malaysia
| | - Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia; (Y.M.N.); (S.N.A.M.Y.); (H.I.C.)
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia; (Y.M.N.); (S.N.A.M.Y.); (H.I.C.)
- Correspondence: ; Tel.: +604-5622427
| |
Collapse
|
33
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
34
|
Zhang X, Song H, Canup BSB, Xiao B. Orally delivered targeted nanotherapeutics for the treatment of colorectal cancer. Expert Opin Drug Deliv 2020; 17:781-790. [PMID: 32237921 DOI: 10.1080/17425247.2020.1748005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC), the third-most common malignancy, has high morbidity and mortality. Oral nanotherapeutics have emerged as a promising strategy to improve the therapeutic outcomes and alleviate the adverse effects of drugs in CRC treatment. AREAS COVERED In this review, we introduce the beneficial features of oral drug administration for CRC therapy, and further address the three basic elements of nanotherapeutics, namely, therapeutic agents, carrier materials, and targeting ligands. In addition, we also discuss the potentials of the new emerging technologies (e.g., immunotherapy, gene editing and microbiota manipulation) in the treatment of CRC. EXPERT OPINION Orally delivered targeted nanotherapeutics represent a promising strategy toward the efficient treatment of CRC. Although the current oral nanotherapeutics exert better therapeutic outcomes than the traditional drug formulations, their application has been restricted by drug resistance, tumor metastasis, and biosafety. Therefore, it is necessary to exploit new nanotherapeutics in the aspects of their three basic elements, and combine the new emerging technologies to those nanotherapeutics for CRC treatment.
Collapse
Affiliation(s)
- Xueqing Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University , Beibei, P. R. China
| | - Heliang Song
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, GA, USA
| | - Brandon S B Canup
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, GA, USA
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University , Beibei, P. R. China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing, P. R. China
| |
Collapse
|
35
|
Corazza FG, Ernesto JV, Nambu FA, de Carvalho LR, Leite-Silva VR, Varca GH, Calixto LA, Vieira DP, Andréo-Filho N, Lopes PS. Papain-cyclodextrin complexes as an intestinal permeation enhancer: Permeability and in vitro safety evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, Hussain Z, Sohail M, Khan SU, Htar TT. Engineering of Naproxen Loaded Polymer Hybrid Enteric Microspheres for Modified Release Tablets: Development, Characterization, in silico Modelling and in vivo Evaluation. Drug Des Devel Ther 2020; 14:27-41. [PMID: 32021089 PMCID: PMC6954845 DOI: 10.2147/dddt.s232111] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers. PURPOSE OF THE STUDY This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability. MATERIALS AND METHODS NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation. RESULTS The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed. CONCLUSION The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.
Collapse
Affiliation(s)
- Hajra Afeera Hameed
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Medicinal, Aromatic & Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Ahmed Bari
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Syed Saeed Ali
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah27272, United Arab Emirates
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad22060, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| |
Collapse
|
37
|
Foppoli A, Maroni A, Moutaharrik S, Melocchi A, Zema L, Palugan L, Cerea M, Gazzaniga A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int J Pharm 2019; 572:118723. [DOI: 10.1016/j.ijpharm.2019.118723] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
38
|
Development and evaluation of budesonide-based modified-release liquid oral dosage forms. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Wu Y, Zhang W, Huang J, Luo Z, Li J, Wang L, Di L. Mucoadhesive improvement of alginate microspheres as potential gastroretentive delivery carrier by blending with Bletilla striata polysaccharide. Int J Biol Macromol 2019; 156:1191-1201. [PMID: 31756485 DOI: 10.1016/j.ijbiomac.2019.11.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
Abstract
As polysaccharide from Bletilla striata (BSP) was anticipated with mucoadhesive improvement in sodium alginate (SA) microspheres, BSP was mixed with SA to construct a composite microsphere to retain in the gastrointestinal tract for a long time. The morphological properties, particle size and thermodynamic properties of the microspheres in combination with comprehensive evaluations in the swelling properties, mucin adsorption, ex vivo and in vivo gastric retention were determined to characterize the mucoadhesion of SA-BSP blend microspheres. Results showed that the prepared microspheres were discrete and spherical. The addition of BSP increased flexibility and reduced rigidity of SA microsphere. Furthermore, the swelling property, mucin adsorption ability and the retention rate on the gastric mucosa of SA matrix were increased after blending with BSP. Mucoadhesion tests showed the SA-BSP microspheres stayed much longer in rats' stomach than the SA microsphere did. Above all, the SA-BSP microspheres with the enhanced mucoadhesion suggested being a potential drug carrier in developing the gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Yujia Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Jianyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Zichen Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China.
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China.
| |
Collapse
|
40
|
Bertoni S, Machness A, Tiboni M, Bártolo R, Santos HA. Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Biopolymers 2019; 111:e23336. [PMID: 31724750 DOI: 10.1002/bip.23336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The pharmacological therapy for gastrointestinal (GI) diseases, such as inflammatory bowel diseases, continues to present challenges in targeting efficacy. The need for maximal local drug exposure at the inflamed regions of the GI tract has led research to focus on a disease-targeted drug delivery approach. Smart nanomaterials responsive to the reactive oxygen species (ROS) concentrated in the inflamed areas, can be formulated into nanoplatforms to selectively release the active compounds, avoiding unspecific drug delivery to healthy tissues and limiting systemic absorption. Recent developments of ROS-responsive nanoplatforms include combination with other materials to obtain multi-responsive systems and modifications/derivatization to increase the interactions with biological tissues, cell uptake and targeting. This review describes the applications of ROS-responsive nanosystems for on-demand drug delivery to the GI tract.
Collapse
Affiliation(s)
- Serena Bertoni
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ariella Machness
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Mattia Tiboni
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Raquel Bártolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Oral administration of chondroitin sulfate-functionalized nanoparticles for colonic macrophage-targeted drug delivery. Carbohydr Polym 2019; 223:115126. [DOI: 10.1016/j.carbpol.2019.115126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
|
42
|
Development and evaluation of an omeprazole-based delayed-release liquid oral dosage form. Int J Pharm 2019; 567:118416. [PMID: 31175991 DOI: 10.1016/j.ijpharm.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Modified-release oral dosage forms are commonly used in pharmaceutics to delay or sustain the release of drugs. Nowadays, they are only marketed as solid dosage forms such as capsules or tablets. Therefore, the development of a liquid oral dosage form with modified-release properties has been keenly awaited to increase the compliance of patients with a swallowing impairment, such as paediatric, older or critically ill patients. In this study, a new technology has been developed that consists of multi-layered particles suspended extemporaneously in a syrup, using omeprazole as a model drug. The coating procedure was optimized to obtain a yield of minimum 90% w/w and a mean diameter below 500 µm. Eudragit® E100 and Eudragit® L100-55 were used to prevent the early release of omeprazole in the syrup and in the acidic environment of the stomach, respectively. These polymers allowed the stability of the coated particles to be ensured when dispersed in a liquid and the enteric release of the drug to be targeted. It was demonstrated that our new system presented similar release performances to existing marketed enteric dosage forms. It is able to protect omeprazole for 2 h in acidic medium at pH 1.2, while omeprazole was entirely released at pH 6.8 within 45 min. Once the final suspension is prepared extemporaneously, it presents sufficient stability to guarantee the administration of multiple doses filled into a syrup bottle and kept for a limited storage time at room temperature (e.g. up to 10 doses to be administered within 10 days).
Collapse
|
43
|
Zhou X, Liu Y, Huang Y, Ma Y, Lv J, Xiao B. Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Gao C, Liu L, Zhou Y, Bian Z, Wang S, Wang Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin Med 2019; 14:23. [PMID: 31236131 PMCID: PMC6580650 DOI: 10.1186/s13020-019-0245-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease that comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD involves the ileum, rectum, and colon, and common clinical manifestations of IBD are diarrhea, abdominal pain, and even bloody stools. Currently, non-steroidal anti-inflammatory drugs, glucocorticoids, and immunosuppressive agents are used for the treatment of IBD, while their clinical application is severely limited due to unwanted side effects. Chinese medicine (CM) is appealing more and more attention and investigation for the treatment of IBD owing to the potent anti-inflammation pharmacological efficacy and high acceptance by patients. In recent years, novel drug delivery systems are introduced apace to encapsulate CM and many CM-derived active constituents in order to improve solubility, stability and targeting ability. In this review, advanced drug delivery systems developed in the past and present to deliver CM for the treatment of IBD are summarized and future directions are discussed.
Collapse
Affiliation(s)
- Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| |
Collapse
|
45
|
Markovic M, Dahan A, Keinan S, Kurnikov I, Aponick A, Zimmermann EM, Ben-Shabat S. Phospholipid-Based Prodrugs for Colon-Targeted Drug Delivery: Experimental Study and In-Silico Simulations. Pharmaceutics 2019; 11:pharmaceutics11040186. [PMID: 30995772 PMCID: PMC6523355 DOI: 10.3390/pharmaceutics11040186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In ulcerative colitis (UC), the inflammation is localized in the colon, and one of the successful strategies for colon-targeting drug delivery is the prodrug approach. In this work, we present a novel phospholipid (PL)-based prodrug approach, as a tool for colonic drug targeting in UC. We aim to use the phospholipase A2 (PLA2), an enzyme that is overexpressed in the inflamed colonic tissues of UC patients, as the PL-prodrug activating enzyme, to accomplish the liberation of the parent drug from the prodrug complex at the specific diseased tissue(s). Different linker lengths between the PL and the drug moiety can dictate the rate of activation by PLA2, and subsequently determine the amount of free drugs at the site of action. The feasibility of this approach was studied with newly synthesized PL-Fmoc (fluorenylmethyloxycarbonyl) conjugates, using Fmoc as a model compound for testing our hypothesis. In vitro incubation with bee venom PLA2 demonstrated that a 7-carbon linker between the PL and Fmoc has higher activation rate than a 5-carbon linker. 4-fold higher colonic expression of PLA2 was demonstrated in colonic mucosa of colitis-induced rats when compared to healthy animals, validating our hypothesis of a colitis-targeting prodrug approach. Next, a novel molecular dynamics (MD) simulation was developed for PL-based prodrugs containing clinically relevant drugs. PL-methotrexate conjugate with 6-carbon linker showed the highest extent of PLA2-mediated activation, whereas shorter linkers were activated to a lower extent. In conclusion, this work demonstrates that for carefully designed PL-drug conjugates, PLA2 overexpression in inflamed colonic tissues can be used as prodrug-activating enzyme and drug targeting strategy, including insights into the activation mechanisms in a PLA2 binding site.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | | | | | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA.
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32603, USA.
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
46
|
Dexamethasone-Loaded Chitosan Beads Coated with a pH-Dependent Interpolymer Complex for Colon-Specific Drug Delivery. INT J POLYM SCI 2019. [DOI: 10.1155/2019/4204375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chitosan (CS) microparticles loaded with dexamethasone were prepared by spray drying, followed by coating with a pH-dependent interpolymer complex based on poly(acrylic acid)/poly(vinyl pyrrolidone) using an water-in-oil emulsion technique. The aim of this research was to evaluate the influence of PAA/PVP coating on the release of dexamethasone from loaded chitosan microparticles, in simulated gastric fluid (SGF, pH=1.2) and simulated intestinal fluid (SIF, pH=6.8). The release of dexamethasone from uncoated loaded CS microparticles was similar in both fluids, and almost complete release of the drug was achieved in 5 hours. In the coated loaded CS microparticles, the release of dexamethasone in SGF was reduced considerably, very close to zero, due to the interpolymer complex formation at low pH, demonstrating that this system applied as pH-dependent coating has a potential as a site-specific delivery system.
Collapse
|
47
|
Oral administration of colitis tissue-accumulating porous nanoparticles for ulcerative colitis therapy. Int J Pharm 2019; 557:135-144. [DOI: 10.1016/j.ijpharm.2018.12.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023]
|
48
|
Wang S, Attah R, Li J, Chen Y, Chen R. A pH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(ethylene glycol) for Oral Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2018; 4:4236-4243. [PMID: 33418822 DOI: 10.1021/acsbiomaterials.8b01040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oral administration is a noninvasive and convenient drug delivery route most preferred by patients. However, poor stability in the gastrointestinal tract and low bioavailability of hydrophobic drugs has greatly limited their oral administration. To address this problem, we report a pH-responsive, amphiphilic hydrogel drug carrier based on a pseudopeptide poly(l-lysine isophthalamide) (PLP) and poly(ethylene glycol) (PEG). The hydrogels were prepared by a simple N-(3-(dimethylamino)propyl)-N'-ethyl carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) coupling reaction, and the cross-linking was confirmed by infrared spectroscopy and differential scanning calorimetry analyses. Because of the pH-responsive conformational alteration of PLP, the hydrogels were relatively hydrophobic and collapsed at acidic pH, but became hydrophilic and swollen at neutral pH. The amphiphilicity enabled the hydrogels to well retain and protect hydrophobic model drugs in the simulated gastric fluid, but efficiently release them in the simulated intestinal fluid. These results suggested that the pH-responsive amphiphilic hydrogels are promising candidates for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Reva Attah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jiali Li
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Yitong Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Formulation of Carbopol ®/Poly(2-ethyl-2-oxazoline)s Mucoadhesive Tablets for Buccal Delivery of Hydrocortisone. Polymers (Basel) 2018; 10:polym10020175. [PMID: 30966211 PMCID: PMC6415335 DOI: 10.3390/polym10020175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Poly(2-ethyl-2-oxazoline) has become an excellent alternative to the use of poly(ethylene glycol) in pharmaceutical formulations due to its valuable physicochemical and biological properties. This work presents a formulation of poorly-water soluble drug, hydrocortisone, using interpolymer complexes and physical blends of poly(2-ethyl-2-oxazoline)s and two Carbopols® (Carbopol 974 and Carbopol 971) for oromucosal administration. The swelling, hydrocortisone release and mucoadhesive properties of a series of tablet formulations obtained by combination of different Carbopols with poly(2-ethyl-2-oxazoline)s of different molecular weights have been evaluated in vitro.
Collapse
|