1
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Terconazole loaded edge-activated hybrid elastosome for revamped corneal permeation in ocular mycosis: In-vitro characterization, statistical optimization, microbiological assessment, and in-vivo evaluation. Int J Pharm X 2025; 9:100333. [PMID: 40292341 PMCID: PMC12023791 DOI: 10.1016/j.ijpx.2025.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Herein, we investigated the preparation and characterization of Terconazole loaded edge-activated hybrid elastosome (TCN-EHE) adopting thin film hydration technique for the treatment of ocular mycosis. Terconazole (TCN) is a broad spectrum antimycotic agent suffering from sparse aqueous solubility impeding its use in ophthalmic preparations. The scrutinized formulation variables namely X1: Surfactant: Edge activator ratio (SAA: EA), X2: Pluronic® L121 contribution (% of total SAA) and X3: EA concentration (%w/v) were optimized adopting D-optimal design. Ten runs were prepared and characterized regarding their entrapment efficiency, particle size, polydispersity index and zeta potential. An optimized formula was generated, with high desirability, exhibited satisfactory entrapment efficiency, nanoscaled particle size aligning with TEM, plausible zeta potential and bi-phasic release pattern which were not altered after short-term storage. The optimized TCN-EHE displayed 1.94-fold enhanced ex-vivo corneal permeation flux. Safety was ratified through measured corneal hydration level, pH and histopathological evaluation. In-vivo corneal uptake visualized by confocal laser microscopy demonstrated 2.7-fold deeper penetration. Moreover, Superior antifungal activity has been demonstrated displaying 37 % bigger zone of inhibition, 8-fold lower minimum inhibitory and minimum fungal concentration alongside significantly higher biofilm inhibition activity at all tested concentrations for the optimized TCN-EHE compared to TCN suspension. Conclusively, we could prospect that TCN-EHE might be a revamped therapeutic alternative for the delivery of poorly soluble antimycotic agents for the combat of ocular mycosis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M. Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Zhang J, Zou Z, He Y, Filipczak N, Yalamarty SSK, Li X, Torchilin VP. Hybrid micellar preparations for co-delivery of PARP-1 siRNA and quercetin for cataract treatment. J Control Release 2025; 382:113700. [PMID: 40189052 DOI: 10.1016/j.jconrel.2025.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cataract remains a major cause of ocular blindness. Cyclic Arg-Gly-Asp-d-Phe-Lys (RGD) peptide was introduced to the surface of self-assembled hybrid micelles for the co-delivery of poly (ADP-ribose) polymerase 1 (PARP-1) small-interfering RNA (siRNA) and quercetin (Q/siP-c-M). Q/siP-c-M exhibited uniform particle size distribution, good dispersibility, high encapsulation efficiency, and strong stability for siRNA and quercetin. Q/siP-c-M significantly improved the transcorneal co-delivery of siRNA and quercetin to the deeper cornea and led to greater drug accumulation. In addition, Q/siP-c-M significantly increased the activity of catalase and the content of adenosine triphosphate (ATP), reduced the expression of PARP-1 protein, and effectively prevented lipid peroxidation in the lens. Among selenite-induced cataract rats, the Q/siP-c-M-treated rats produced higher levels of ATP and catalase, as well as lower levels of malondialdehyde and PARP-1 protein expression compared with those in the model group. Administration of quercetin further resulted in a decrease in neutrophil extracellular trap formation and downregulation of gene expression of related proteins and pro-inflammatory cytokines. These observations indicated that quercetin has the potential to serve as a therapeutic for alleviating an excessive inflammatory reaction characterized by an overabundance of neutrophil extracellular traps in the eyes. Therefore, this study highlights the potential of Q/siP-c-M against cataract development through the regulation of the immune response by regulating inflammatory conditions. Furthermore, Q/siP-c-M may offer benefits in terms of apoptosis attenuation for lens epithelial cells.
Collapse
Affiliation(s)
- Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Nanchang 330004, Jiangxi, China
| | - Zhilin Zou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yao He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | | | - Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Key Laboratory of Modern Preparation of TCM, Ministry of Education, State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| |
Collapse
|
3
|
Amankwa CE, DebNath B, Pham JH, Johnson GA, Zhang W, Ranjan A, Stankowska DL, Acharya S. Optimized PLGA encapsulated SA-2 nanosuspension exhibits sustained intraocular pressure reduction in the mouse microbead occlusion model of ocular hypertension. Eur J Pharm Sci 2025; 206:107016. [PMID: 39827971 DOI: 10.1016/j.ejps.2025.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Elevated intraocular pressure (IOP) is implicated in the structural and functional damage to the retinal ganglion cells (RGCs) in primary open-angle glaucoma (POAG). Topical IOP lowering agents provide short-term relief, necessitating frequent dosing. Moreover, non-adherence to frequent eyedrops administration contributes significantly to visual field loss and worsens the disease outcome. We optimized the poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulation of hybrid antioxidant-nitric oxide donor SA-2 (SA-2NP), investigated its bioavailability, duration of IOP lowering efficacy, and effects on retinal function in the microbead model of ocular hypertension (OHT). SA-2 was bioavailable in the anterior and posterior segments after 1, 8, and 24 h post-single topical eyedrop administration. SA-2NP significantly lowered IOP (∼25-34%) and preserved the RGC function after weekly eyedrop administration for 3 weeks in C57BL/6J mice. In conclusion, the optimized SA-2NP formulation demonstrated optimal bioavailability, ocular safety, and prolonged IOP-lowering efficacy in the mouse microbead occlusion model of OHT.
Collapse
Affiliation(s)
- Charles E Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Biddut DebNath
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gretchen A Johnson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Wei Zhang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
4
|
Esteruelas G, Ettcheto M, Haro I, Herrando-Grabulosa M, Gaja-Capdevila N, Gomara MJ, Navarro X, Espina M, Souto EB, Camins A, García ML, Sánchez-López E. Novel Tissue-Specific Multifunctionalized Nanotechnological Platform Encapsulating Riluzole Against Motor Neuron Diseases. Int J Nanomedicine 2025; 20:2273-2288. [PMID: 40007904 PMCID: PMC11853070 DOI: 10.2147/ijn.s479819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 02/27/2025] Open
Abstract
Background Motor neuron diseases are neurological disorders characterized by progressive degeneration of upper and/or lower motor neurons. Amyotrophic Lateral Sclerosis (ALS) is the most common form of motor neuron diseases, where patients suffer progressive paralysis, muscle atrophy and finally death. Despite ALS severity, no treatment is safe and fully effective. In this area, Riluzole was the first drug approved and it constitutes the gold-standard for this pathology. However, to obtain suitable therapeutic efficacy, Riluzole requires high doses that are associated with severe adverse effects in other tissues. To attain Riluzole therapeutic efficacy avoiding other organs side-effects, new therapeutic strategies to enhance the delivery of Riluzole specifically to motor neurons constitute an unmet medical need. In this area, we have developed a novel multifunctional nanostructurated carrier to selectively deliver Riluzole to motor neurons. Results This work develops and characterizes at in vitro and in vivo levels a tissue-targeted formulation of peptide and PEG-labelled PLGA nanoparticles encapsulating Riluzole. For this purpose, pVEC, a cell penetrating peptide able to increase transport through the blood-brain barrier, was attached to the nanoparticles surface. The multifunctionalized nanoparticles show suitable characteristics for the release of Riluzole in the central nervous system and were detected in motor neurons within 1 h after administration while significantly reducing the concentration of Riluzole in non-therapeutic organs responsible of side effects. Conclusion A novel drug delivery system has been developed and characterized, demonstrating enhanced CNS biodistribution of riluzole, which shows promise as efficient therapeutic tool for motor neuron diseases, including amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, 08034, Spain
| | - Miren Ettcheto
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Research Network Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institute of Pere Virgili Health Research (IISPV), Reus, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, 08034, Spain
| | - Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Núria Gaja-Capdevila
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria Jose Gomara
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, 08034, Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Antoni Camins
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Research Network Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research Network Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, 08034, Spain
- Biomedical Research Network Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Huang S, Xu Y, Luo Y, Wang Z, Li F, Qin Z, Ban J. Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration. Pharmaceutics 2024; 16:1496. [PMID: 39771476 PMCID: PMC11677563 DOI: 10.3390/pharmaceutics16121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms. METHODS The novel ocular drug delivery system developed in this study utilizes poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified with cell-penetrating peptides (CPPs). In vitro drug release studies were conducted to evaluate the sustained-release properties of the nanoparticles. Ex vivo experiments using MDCK cells assessed corneal permeability and uptake efficiency. Additionally, in vivo studies were performed in rabbit eyes to determine the nanoparticles' resistance to elimination by tears and their retention time in the aqueous humor. RESULTS In vitro drug release studies demonstrated superior sustained-release properties of the nanoparticles. Ex vivo experiments revealed enhanced corneal permeability and increased uptake efficiency by MDCK cells. In vivo studies in rabbit eyes confirmed the nanoparticles' resistance to elimination by lacrimal fluid and their ability to extend retention time in the aqueous humor. CPP modification significantly improved ocular retention, corneal penetration, and cellular endocytosis efficiency. CONCLUSIONS The CPP-modified PLGA nanoparticles provide an effective and innovative solution for ocular drug delivery, offering improved bioavailability, prolonged retention, and enhanced drug penetration, thereby overcoming the challenges of traditional intraocular drug administration methods.
Collapse
Affiliation(s)
- Sa Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin 541104, China
- Guangdong Laboratory Animals Monitoring Institute, No. 11 Fengxin Road, Guangzhou 510663, China
| | - Yuan Xu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Yingyao Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Zhijiong Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Zhenmiao Qin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| |
Collapse
|
6
|
Wang H, Song F, Qi X, Zhang X, Ma L, Shi D, Bai X, Dou S, Zhou Q, Wei C, Zhang BN, Wang T, Shi W. Penetrative Ionic Organic Molecular Cage Nanozyme for the Targeted Treatment of Keratomycosis. Adv Healthc Mater 2024; 13:e2401179. [PMID: 38895924 DOI: 10.1002/adhm.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Keratomycosis, caused by pathogenic fungi, is an intractable blinding eye disease. Corneal penetration is an essential requirement for conventional antifungal medications to address keratomycosis. Due to the distinctive anatomical and physiological structure of the cornea, the therapeutic efficacy is hampered by the inadequate penetration capacity. Despite the emergence of diverse antifungal drug delivery systems and advanced antifungal nanomaterials, it has remained challenging to achieve corneal penetration over the past decade. This study fabricates a penetrative ionic organic molecular cage-based nanozyme (OMCzyme) for treating keratomycosis. The synthesis of OMCzyme involved two steps. Initially, the ionic OMC is synthesized by a [2+3] cycloimination reaction of triformylphloroglucinol and 2,3-diaminopropionic acid. Subsequently, OMCzyme is fabricated by coordination of Fe2⁺ with carboxyl anions and phenolic hydroxyls in the organic cage, and further deposition of silver nanoparticles on the surface of OMC-Fe complex. The as-prepared OMCzyme demonstrates excellent water dispersion, peroxidase-like activity, in vitro and in vivo biocompatibility, and corneal penetration. Notably, the nanozyme displays targeted antifungal activity, effectively combating Fusarium solani with negligible cytotoxicity toward human corneal epithelial cells. The hybrid mimic is further demonstrated to be effective in treating keratomycosis in mice, indicating the potential of OMCzyme for curing fungal infectious diseases.
Collapse
Affiliation(s)
- Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Fangying Song
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xia Qi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiaoyu Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Li Ma
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiaofei Bai
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Chao Wei
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
7
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
8
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
9
|
Faria MJ, González-Méijome JM, Real Oliveira MECD, Carracedo G, Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv Drug Deliv Rev 2024; 210:115321. [PMID: 38679293 DOI: 10.1016/j.addr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.
Collapse
Affiliation(s)
- Maria João Faria
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - José M González-Méijome
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CEORLab - Clinical and Experimental Optometry Research Lab, Centre of Physics, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - M Elisabete C D Real Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, University Complutense of Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain.
| | - Marlene Lúcio
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
10
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Qin Z, Li B, Deng Q, Wen Y, Feng S, Duan C, Zhao B, Li H, Gao Y, Ban J. Polymer Nanoparticles with 2-HP-β-Cyclodextrin for Enhanced Retention of Uptake into HCE-T Cells. Molecules 2024; 29:658. [PMID: 38338402 PMCID: PMC10856407 DOI: 10.3390/molecules29030658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-β-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-β-CD)/PLGA NPs and the drug-loaded TA-(2-HP-β-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-β-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-β-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-β-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-β-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.
Collapse
Affiliation(s)
- Zhenmiao Qin
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Baohua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Qiyi Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Shiquan Feng
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Chengcheng Duan
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Beicheng Zhao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Hailong Li
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Yanan Gao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| |
Collapse
|
12
|
Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, Gad RA, Omar NN, Elkomy MH, Khasawneh MA, Abdelaal N. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X 2023; 5:100174. [PMID: 36908304 PMCID: PMC9992749 DOI: 10.1016/j.ijpx.2023.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
Collapse
Key Words
- A, aqueous phase
- AMP, Amphotericin-B
- ANOVA, Analysis of variance
- Amphotericin-B
- Atomic force microscopy (AFM)
- BCS, Biopharmaceutical Classification System
- BLF, Bovine Lactoferrin
- CD14, Cluster of differentiation 14
- CK, Creatine kinase
- Candida albicans
- Confocal laser scanning microscopy (CLSM)
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DSC, Differential scanning calorimetry
- Draize test
- EDC, ethyl-3-(3-dimethyl aminopropyl) carbodiimide
- EE%, Entrapment efficiency
- FT-IR, Fourier transform infrared
- FT-IR, Fourier-transform infrared spectroscopy
- GRAS, Generally recognized as a safe
- HCE-2, human corneal epithelial cells
- J, steady-state flux
- Kp, permeability coefficient
- LPS, Lipopolysaccharide
- Lactoferrin
- MIC, minimum inhibitory concentration
- NCCLS, National Committee for Clinical Laboratory Standards
- NHS, N-hydroxysuccinimide
- NPs, nanoparticles
- Nanoparticles
- O, organic phase
- P188, Kolliphor®P188
- P407, Poloxamer 407
- PBS, Phosphate buffered saline solution
- PDI, Polydispersity index
- PEG, polyethylene glycol
- PEI, poly-ethylene imine
- PLGA, Poly (lactic-co-glycolic acid)
- PS, Particle size
- Q24, amount penetrated after 24 h
- QR, Quantity retained
- REC, rules of the Study Ethics Committee
- SD, Standard deviations
- SE, Standard error
- SEM, Scanning electron microscope
- TEM, Transmission electron microscopy
- Triblock polymers PLGA-PEG-PEI
- ZP, Zeta potential.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Shrouk A. Ghaffar
- Tactical Medical Department, Caduceus Lane Healthcare, Alexandria 21532, Egypt
| | - Raghda Hager
- Department of Medicinal Microbiology and Immunology, Faculty of Medicine King Salman International University, El-Tor, South Siniai, Egypt
| | - Nahla A. Elzohairy
- Air Force Specialized Hospital, Cairo 19448, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, 62511, Saudi Arabia
| | - Passant M. Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21532, Egypt
| | - Rania A. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Nasreen N. Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 17551, United Arab Emirates
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
14
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Liang Z, Zhang Z, Lu P, Yang J, Han L, Liu S, Zhou T, Li J, Zhang J. The effect of charges on the corneal penetration of solid lipid nanoparticles loaded econazole after topical administration in rabbits. Eur J Pharm Sci 2023:106494. [PMID: 37315870 DOI: 10.1016/j.ejps.2023.106494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Fungal keratitis is an infectious disease caused by pathogenic fungi with a high blindness rate. Econazole (ECZ) is an imidazole antifungal drug with insoluble ability. Econazole-loaded solid lipid nanoparticles (E-SLNs) were prepared by microemulsion method, then modified with positive and negative charge. The mean diameter of cationic E-SLNs, nearly neutral E-SLNs and anionic E-SLNs were 18.73±0.14, 19.05±0.28, 18.54±0.10 nm respectively. The Zeta potential of these different charged SLNs formulations were 19.13±0.89, -2.20±0.10, -27.40±0.67 mV respectively. The Polydispersity Index (PDI) of these three kinds of nanoparticles were about 0.2. The Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) analysis showed that the nanoparticles were a homogeneous system. Compared with Econazole suspension (E-Susp), SLNs exhibited sustained release capability, stronger corneal penetration and enhanced inhibition of pathogenic fungi without irritation. The antifungal ability was further improved after cationic charge modification compared with E-SLNs. Studies on pharmacokinetics showed that the order of the AUC and t1/2 of different preparations was cationic E-SLNs > nearly neutral E-SLNs > anionic E-SLNs > E-Susp in cornea and aqueous humor. It was shown that SLNs could increase corneal penetrability and ocular bioavailability while these capabilities were further enhanced with positive charge modification compared with negative charge ones.
Collapse
Affiliation(s)
- Zhen Liang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhen Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ping Lu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Han
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Susu Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Tianyang Zhou
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
16
|
Llorente X, Esteruelas G, Bonilla L, Agudelo MG, Filgaira I, Lopez-Ramajo D, Gong RC, Soler C, Espina M, García ML, Manils J, Pujol M, Sánchez-López E. Riluzole-Loaded Nanostructured Lipid Carriers for Hyperproliferative Skin Diseases. Int J Mol Sci 2023; 24:ijms24098053. [PMID: 37175765 PMCID: PMC10179084 DOI: 10.3390/ijms24098053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions.
Collapse
Affiliation(s)
- Xavier Llorente
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Mariana Garnica Agudelo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Ingrid Filgaira
- Departament de Patologia i Terapèutica Experimental and Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Daniel Lopez-Ramajo
- Departament de Patologia i Terapèutica Experimental and Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Ruoyi C Gong
- Departament de Patologia i Terapèutica Experimental and Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental and Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Joan Manils
- Departament de Patologia i Terapèutica Experimental and Hospital Universitari de Bellvitge-Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| |
Collapse
|
17
|
Ana RD, Gliszczyńska A, Sanchez-Lopez E, Garcia ML, Krambeck K, Kovacevic A, Souto EB. Precision Medicines for Retinal Lipid Metabolism-Related Pathologies. J Pers Med 2023; 13:jpm13040635. [PMID: 37109021 PMCID: PMC10145959 DOI: 10.3390/jpm13040635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidation of lipids and lipoproteins contributes to inflammation processes that promote the development of eye diseases. This is a consequence of metabolism dysregulation; for instance, that of the dysfunctional peroxisomal lipid metabolism. Dysfunction of lipid peroxidation is a critical factor in oxidative stress that causes ROS-induced cell damage. Targeting the lipid metabolism to treat ocular diseases is an interesting and effective approach that is now being considered. Indeed, among ocular structures, retina is a fundamental tissue that shows high metabolism. Lipids and glucose are fuel substrates for photoreceptor mitochondria; therefore, retina is rich in lipids, especially phospholipids and cholesterol. The imbalance in cholesterol homeostasis and lipid accumulation in the human Bruch's membrane are processes related to ocular diseases, such as AMD. In fact, preclinical tests are being performed in mice models with AMD, making this area a promising field. Nanotechnology, on the other hand, offers the opportunity to develop site-specific drug delivery systems to ocular tissues for the treatment of eye diseases. Specially, biodegradable nanoparticles constitute an interesting approach to treating metabolic eye-related pathologies. Among several drug delivery systems, lipid nanoparticles show attractive properties, e.g., no toxicological risk, easy scale-up and increased bioavailability of the loaded active compounds. This review analyses the mechanisms involved in ocular dyslipidemia, as well as their ocular manifestations. Moreover, active compounds as well as drug delivery systems which aim to target retinal lipid metabolism-related diseases are thoroughly discussed.
Collapse
Affiliation(s)
- Raquel da Ana
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
| | - Karolline Krambeck
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Health Sciences School, Guarda Polytechnic Institute, 6300-035 Guarda, Portugal
| | - Andjelka Kovacevic
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
19
|
AbouSamra MM, El Hoffy NM, El-Wakil NA, Awad GEA, Kamel R. Computational Investigation to Design Ofloxacin-Loaded Hybridized Nanocellulose/Lipid Nanogels for Accelerated Skin Repair. Gels 2022; 8:gels8090593. [PMID: 36135305 PMCID: PMC9498533 DOI: 10.3390/gels8090593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. Ofloxacin-loaded hybridized nanocellulose/lipid nanogels (OFX-HNCNs) were prepared and evaluated adopting a computational method based on regression analysis. The optimized nanogels (OFX-HNCN7) showed a spherical outline with an encapsulation efficiency (EE), particle size (PS) and zeta potential (ZP) values of 97.53 ± 1.56%, 200.2 ± 6.74 nm and -26.4 ± 0.50 mV, respectively, with an extended drug release profile. DSC examination of OFX-HNCN7 proved the amorphization of the encapsulated drug into the prepared OFX-HNCNs. Microbiological studies showed the prolonged inhibition of bacterial growth by OFX-HNCN7 compared to the free drug. The cytocompatibility of OFX-HNCN7 was proved by Sulforhodamine B assay. Tissue repair was evaluated using the epidermal scratch assay based on cell migration in human skin fibroblast cell line, and the results depicted that cell treated with OFX-HNCN7 showed a faster and more efficient healing compared to the control. In overall, the obtained findings emphasize the benefits of using the eco-friendly bioactive nanocellulose, hybridized with lipid, to prepare a nanocarrier for skin repair.
Collapse
Affiliation(s)
- Mona M. AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nada M. El Hoffy
- Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| | - Nahla A. El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza 12622, Egypt
| | - Ghada E. A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Giza 12622, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| |
Collapse
|
20
|
Literature-based drug-drug similarity for drug repurposing: impact of Medical Subject Headings term refinement and hierarchical clustering. Future Med Chem 2022; 14:1309-1323. [PMID: 36017692 DOI: 10.4155/fmc-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: We describe herein, an improved procedure for drug repurposing based on refined Medical Subject Headings (MeSH) terms and hierarchical clustering method. Materials & methods: In the present study, we have employed MeSH data from MEDLINE (2019), 1669 US FDA approved drugs from Open FDA and a refined set of MeSH terms. Refinement of MeSH terms was performed to include terms related to mechanistic information of drugs and diseases. Results and Conclusions: In-depth analysis of the results obtained, demonstrated greater efficiency of the proposed approach, based on refined MeSH terms and hierarchical clustering, in terms of number of selected drug candidates for repurposing. Further, analysis of misclustering and size of noise clusters suggest that the proposed approach is reliable and can be employed in drug repurposing.
Collapse
|
21
|
Mastropasqua L, Nubile M, Acerra G, Detta N, Pelusi L, Lanzini M, Mattioli S, Santalucia M, Pietrangelo L, Allegretti M, Dua HS, Mehta JS, Pandolfi A, Mandatori D. Bioengineered Human Stromal Lenticule for Recombinant Human Nerve Growth Factor Release: A Potential Biocompatible Ocular Drug Delivery System. Front Bioeng Biotechnol 2022; 10:887414. [PMID: 35813999 PMCID: PMC9260024 DOI: 10.3389/fbioe.2022.887414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Small incision lenticule extraction (SMILE), is a surgical procedure for the myopia correction, during which a corneal stromal lenticule is extracted. Given that we have previously demonstrated how this discarded tissue could be repurposed as a bio-scaffold for stromal engineering, this study aimed to explore its use as an ocular drug delivery system of active molecules, using neurotrophic factor Nerve Growth Factor (NGF). We employed human stromal lenticules directly collected from healthy donors undergoing SMILE. Following a sodium dodecylsulfate (SDS) treatment, decellularized lenticules were incubated with a suspension of polylactic-co-glycolic-acid (PLGA) microparticles (MPs) loaded with recombinant human NGF (rhNGF-MPs). Fluorescent MPs (Fluo-MPs) were used as control. Data demonstrated the feasibility to engineer decellularized lenticules with PLGA-MPs which remain incorporated both on the lenticules surface and in its stromal. Following their production, the in vitro release kinetic showed a sustained release for up to 1 month of rhNGF from MPs loaded to the lenticule. Interestingly, rhNGF was rapidly released in the first 24 h, but it was sustained up to the end of the experiment (1 month), with preservation of rhNGF activity (around 80%). Our results indicated that decellularized human stromal lenticules could represent a biocompatible, non-immunogenic natural scaffold potential useful for ocular drug delivery. Therefore, combining the advantages of tissue engineering and pharmaceutical approaches, this in vitro proof-of-concept study suggests the feasibility to use this scaffold to allow target release of rhNGF in vivo or other pharmaceutically active molecules that have potential to treat ocular diseases.
Collapse
Affiliation(s)
- Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Mario Nubile
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | | | - Nicola Detta
- Dompé Farmaceutici SpA, Via Tommaso de Amicis, Naples, Italy
| | - Letizia Pelusi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Manuela Lanzini
- Ophthalmology Clinic, Department of Medicine and Aging Science, “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Simone Mattioli
- Dompé Farmaceutici SpA, Via Tommaso de Amicis, Naples, Italy
| | - Manuela Santalucia
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Harminder S. Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Group, Singapore Eye Research Institute, Corneal and External Department, Singapore National Eye Centre, Singapore, Singapore
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), StemTeCh Group, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Domitilla Mandatori,
| |
Collapse
|
22
|
Wang TZ, Guan B, Liu XX, Ke LN, Wang JJ, Nan KH. A topical fluorometholone nanoformulation fabricated under aqueous condition for the treatment of dry eye. Colloids Surf B Biointerfaces 2022; 212:112351. [PMID: 35091382 DOI: 10.1016/j.colsurfb.2022.112351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Fluorometholone (FMT) is a frequently prescribed drug for the alleviation of dry eye. However, due to low aqueous solubility, it has been routinely used as an ophthalmic suspension, which is characterized by low bioavailability, inconvenience of administration, and difficulty in delivering accurate dose. Furthermore, the opaque appearance of the ophthalmic suspension is not desirable for optical purpose. In the present study, a transparent FMT nanoformulation (FMT-CD NPs) was fabricated by the cyclodextrin (CD) nanoparticle technology without organic solvents. It was demonstrated that FMT was encapsulated in an amorphous form, which was associated with increased release rate and enhanced corneal penetration efficiency. The biocompatibility of FMT-CD NPs was confirmed by the Live/Dead assay, CCK-8 assay and the wound healing assay. Most importantly, FMT-CD NPs alleviated dry eye signs more efficiently than the commercial eye drop, with one-fifth the dosage of FMT in the latter. Collectively, our study provides a promising FMT formulation for improved management of dry eye while reducing drug related side effects.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Bin Guan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Xin-Xin Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Lin-Nan Ke
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing-Jie Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China.
| | - Kai-Hui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China.
| |
Collapse
|
23
|
Esteruelas G, Halbaut L, García-Torra V, Espina M, Cano A, Ettcheto M, Camins A, Souto EB, Luisa García M, Sánchez-López E. Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. Int J Pharm 2022; 612:121379. [PMID: 34915146 DOI: 10.1016/j.ijpharm.2021.121379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Riluzole-loaded PLGA nanoparticles (RLZ-NPs) were developed to improve the biopharmaceutical profile of RLZ after ocular administration. Moreover, RLZ-NPs were dispersed in an in situ gelling system (RLZ-NPs-Gel) for topical administration as a potential neuroprotective strategy against glaucoma. Formulations were optimized using the design of experiments approach. Characterization of the physicochemical and rheological properties, as well as interaction studies were carried out. To ensure RLZ-NPs-Gel ocular safety, the irritant potential was also evaluated in vitro and in vivo. Moreover, in vivo ocular biodistribution was also undertaken. Optimized RLZ-NPs showed an average size below 200 nm, an encapsulation efficiency greater than 90% and a negative surface charge. Interaction studies of RLZ-NPs showed that RLZ was dispersed in the polymeric matrix. RLZ-NPs-Gel possess a pseudoplastic behavior and a medium-low post-gelling viscosity to avoid discomfort after ocular application. Simultaneously, RLZ-NPs-Gel were able to increase RLZ-NPs contact with the ocular surface. Both formulations demonstrated the ability to be distributed in the posterior eye segment after 24 h of their application obtaining a more delayed distribution for RLZ-NPs-Gel. Therefore, a novel in situ gelling system able to disperse RLZ-NPs has been successfully developed as innovative neuroprotective strategy for potential topical treatment of glaucoma.
Collapse
Affiliation(s)
- Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Victor García-Torra
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Zhang T, Jin X, Zhang N, Jiao X, Ma Y, Liu R, Liu B, Li Z. Targeted drug delivery vehicles mediated by nanocarriers and aptamers for posterior eye disease therapeutics: barriers, recent advances and potential opportunities. NANOTECHNOLOGY 2022; 33:162001. [PMID: 34965522 DOI: 10.1088/1361-6528/ac46d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xinyi Jiao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yuanyuan Ma
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Boshi Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| |
Collapse
|
25
|
Enhanced Transdermal Delivery of Pranoprofen Using a Thermo-Reversible Hydrogel Loaded with Lipid Nanocarriers for the Treatment of Local Inflammation. Pharmaceuticals (Basel) 2021; 15:ph15010022. [PMID: 35056079 PMCID: PMC8778151 DOI: 10.3390/ph15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
A biocompatible topical thermo-reversible hydrogel containing Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs) was studied as an innovative strategy for the topical treatment of skin inflammatory diseases. The PF-NLCs-F127 hydrogel was characterized physiochemically and short-time stability tests were carried out over 60 days. In vitro release and ex vivo human skin permeation studies were carried out in Franz diffusion cells. In addition, a cytotoxicity assay was studied using the HaCat cell line and in vivo tolerance study was performed in humans by evaluating the biomechanical properties. The anti-inflammatory effect of the PF-NLCs-F127 was evaluated in adult male Sprague Daw-ley® rats using a model of inflammation induced by the topical application of xylol for 1 h. The developed PF-NLCs-F127 exhibited a heterogeneous structure with spherical PF-NLCs in the hydrogel. Furthermore, a thermo-reversible behaviour was determined with a gelling temperature of 32.5 °C, being close to human cutaneous temperature and thus favouring the retention of PF. Furthermore, in the ex vivo study, the amount of PF retained and detected in human skin was high and no systemic effects were observed. The hydrogel was found to be non-cytotoxic, showing cell viability of around 95%. The PF-NLCs-F127 is shown to be well tolerated and no signs of irritancy or alterations of the skin's biophysical properties were detected. The topical application of PF-NLCs-F127 hydrogel was shown to be efficient in an inflammatory animal model, preventing the loss of stratum corneum and reducing the presence of leukocyte infiltration. The results from this study confirm that the developed hydrogel is a suitable drug delivery carrier for the transdermal delivery of PF, improving its dermal retention, opening the possibility of using it as a promising candidate and safer alternative to topical treatment for local skin inflammation and indicating that it could be useful in the clinical environment.
Collapse
|
26
|
López-Machado A, Díaz N, Cano A, Espina M, Badía J, Baldomà L, Calpena AC, Biancardi M, Souto EB, García ML, Sánchez-López E. Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. Int J Pharm 2021; 609:121188. [PMID: 34655707 DOI: 10.1016/j.ijpharm.2021.121188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Natalia Díaz
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badía
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
27
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
28
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
29
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
30
|
Silva-Abreu M, Miralles E, Kamma-Lorger CS, Espina M, García ML, Calpena AC. Stabilization by Nano Spray Dryer of Pioglitazone Polymeric Nanosystems: Development, In Vivo, Ex Vivo and Synchrotron Analysis. Pharmaceutics 2021; 13:pharmaceutics13111751. [PMID: 34834165 PMCID: PMC8617923 DOI: 10.3390/pharmaceutics13111751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone-loaded PLGA-PEG nanoparticles (NPs) were stabilized by the spray drying technique as an alternative to the treatment of ocular inflammatory disorders. Pioglitazone-NPs were developed and characterized physiochemically. Interaction studies, biopharmaceutical behavior, ex vivo corneal and scleral permeation, and in vivo bioavailability evaluations were conducted. Fibrillar diameter and interfibrillar corneal spacing of collagen was analyzed by synchrotron X-ray scattering techniques and stability studies at 4 °C and was carried out before and after the spray drying process. NPs showed physicochemical characteristics suitable for ocular administration. The release was sustained up to 46 h after drying; ex vivo corneal and scleral permeation profiles of pioglitazone-NPs before and after drying demonstrated higher retention and permeation through cornea than sclera. These results were correlated with an in vivo bioavailability study. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in the organization of the corneal collagen after the treatment with pioglitazone-NPs before and after the drying process, regarding the negative control. The stabilization process by Nano Spray Dryer B-90 was shown to be useful in preserving the activity of pioglitazone inside the NPs, maintaining their physicochemical characteristics, in vivo bioavailability, and non-damage to corneal collagen function after SAXS analysis was observed.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-4578
| | - Esther Miralles
- CCiTUB (Scientific and Technological Centers), University of Barcelona, 08028 Barcelona, Spain;
| | | | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
31
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
32
|
Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021; 10:antiox10081245. [PMID: 34439493 PMCID: PMC8389307 DOI: 10.3390/antiox10081245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K(lysine)122/142R(Arginine) linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6WT and Sumoylation-deficient Prdx6-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery. We found that in vitro and subconjuctival delivery of Sumoylation-deficient Prdx6-NPs provided a greater protection of lens epithelial cells (LECs) derived from human and Prdx6-/--deficient mouse lenses against oxidative stress, and it also delayed the lens opacity in Shumiya cataract rats (SCRs) than TAT-HA-Prdx6WT-NPs. The encapsulation efficiencies of TAT-HA-Prdx6-NPs were ≈56%-62%. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analyses showed that the NPs were spherical, with a size of 50-250 nm and a negative zeta potential (≈23 mV). TAT-HA-Prdx6 analog-NPs released bioactive TAT-HA-Prdx6 (6%-7%) within 24 h. Sumoylation-deficient TAT-HA-Prdx6-NPs provided 35% more protection by reducing the oxidative load of LECs exposed to H2O2 compared to TAT-HA-Prdx6WT-NPs. A subconjuctival delivery of TAT-HA-Prdx6 analog-NPs demonstrated that released TAT-HA-Prdx6K122/142R could reduce lens opacity by ≈60% in SCRs. Collectively, our results demonstrate for the first time that the subconjuctival delivery of Sumoylation-deficient Prdx6-NPs is efficiently cytoprotective and provide a proof of concept for potential use to delay cataract and oxidative-related pathobiology in general.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200265, Ishikawa, Japan;
| | - Uday B. Kompella
- Departments of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dhirendra P. Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| |
Collapse
|
33
|
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4290. [PMID: 34361483 PMCID: PMC8347600 DOI: 10.3390/ma14154290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
In ocular drug delivery, maintaining an efficient concentration of the drug in the target area for a sufficient period of time is a challenging task. There is a pressing need for the development of effective strategies for drug delivery to the eye using recent advances in material sciences and novel approaches to drug delivery. This review summarizes the important aspects of ocular drug delivery and the factors affecting drug absorption in the eye including encapsulating excipients (chitosan, hyaluronic acid, poloxamer, PLGA, PVCL-PVA-PEG, cetalkonium chloride, and gelatin) for modified drug delivery.
Collapse
Affiliation(s)
- Melitini Koutsoviti
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| |
Collapse
|
34
|
Development and Validation of an HPLC-MS/MS Method for Pioglitazone from Nanocarriers Quantitation in Ex Vivo and In Vivo Ocular Tissues. Pharmaceutics 2021; 13:pharmaceutics13050650. [PMID: 34063615 PMCID: PMC8147631 DOI: 10.3390/pharmaceutics13050650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone (PGZ) is an oral anti-hyperglycemic agent, belongs to the class of thiazolidinediones, and is used for the treatment of diabetes mellitus type 2. In recent years, its anti-inflammatory activity has also been demonstrated in the literature for different diseases, including ocular inflammatory processes. Additionally, this drug belongs to Class II of the Biopharmaceutical Classification System, i.e., slightly soluble and highly permeable. The main objective of this study was to validate a new analytical HPLC-MS/MS method to quantify free-PGZ and PGZ from polymeric NPs to conduct nanoparticle application studies loaded with this active ingredient to transport it within ocular tissues. An accurate, sensitive, selective, reproducible and high throughput HPLC-MS/MS method was validated to quantify PGZ in cornea, sclera, lens, aqueous humor, and vitreous humor. The chromatographic separation was achieved in 10 min on a Kinetex C18 column. Linear response of PGZ was observed over the range of 5-100 ng/mL. The recovery of free-PGZ or PGZ from NPs was in the range of 85-110% in all tissues and levels tested. The intra-day and inter-day precision were <5% and <10%, respectively. The extracts were shown to be stable in various experimental conditions in all matrices studied. The range of concentrations covered by this validation is 80-1600 µg/kg of PGZ in ocular tissues. It is concluded that this method can be applied to quantify PGZ for in vivo and ex vivo biodistribution studies related to the ocular administration of free-PGZ and PGZ from nanoparticles.
Collapse
|
35
|
Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021; 147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
There are very limited options for treating traumatic brain injury (TBI). Nanoparticles offer the potential of targeting specific cell types, and, potentially, crossing the BBB under the right conditions making them an area of active research for treating TBI. This review focuses on polymeric nanoparticles and the impact of their chemistry, size, and surface groups on their interactions with the vasculature and cells of the brain following injury. The vast majority of the work in the field focuses on acute injury, and when the work is looked at closely, it suggests that nanoparticles rely on interactions with vascular and immune cells to alter the environment of the brain. Nonetheless, there are promising results from a number of approaches that lead to behavioral improvements coupled with neuroprotection that offer promise for therapeutic outcomes. The majority of approaches have been tested immediately following injury. It is not entirely clear what impact these approaches will have in chronic TBI, but being able to modulate inflammation specifically may have a role both during and after the acute phase of injury.
Collapse
Affiliation(s)
- Chiad Onyeje
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA.
| |
Collapse
|
36
|
Chen YC, Gad SF, Chobisa D, Li Y, Yeo Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J Control Release 2021; 330:438-460. [PMID: 33352244 DOI: 10.1016/j.jconrel.2020.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years. However, numerous challenges remain, and drug delivery technology is underutilized in some applications. This review showcases local drug delivery systems in different inflammatory diseases, including the targets well-known to drug delivery scientists (e.g., joints, eyes, and teeth) and other applications with untapped opportunities (e.g., sinus, bladder, and colon). In each section, we start with a brief description of the disease and commonly used therapy, introduce local drug delivery systems currently on the market or in the development stage, focusing on polymeric systems, and discuss the remaining challenges and opportunities in future product development.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sheryhan F Gad
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Dhawal Chobisa
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Integrated product development organization, Innovation plaza, Dr. Reddy's Laboratories, Hyderabad 500090, India
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
37
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
López ES, Machado ALL, Vidal LB, González-Pizarro R, Silva AD, Souto EB. Lipid Nanoparticles as Carriers for the Treatment of Neurodegeneration Associated with Alzheimer's Disease and Glaucoma: Present and Future Challenges. Curr Pharm Des 2020; 26:1235-1250. [PMID: 32067607 DOI: 10.2174/1381612826666200218101231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Glaucoma constitutes the second cause of blindness worldwide and it is considered a neurodegenerative disorder. In this sense, Alzheimer's disease, which is the most common type of dementia, also causes neurodegeneration. The association between both diseases remains unknown although it has been hypothesised that a possible connection might exist and it will be analysed throughout the review. In this sense, nanoparticulate systems and specially, lipid nanoparticles could be the key for effective neuroprotection. Lipid nanoparticles are the most recent type of drug nanoparticulate systems. These nanoparticles have shown great potential to encapsulate hydrophobic drugs increasing their bioavailability and being able to deliver them to the target tissue. In addition, they have shown great potential for ocular drug delivery. This review explores the most recent strategies employing lipid nanoparticles for AD and glaucoma.
Collapse
Affiliation(s)
- Elena S López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.,Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), University of Barcelona, Barcelona 08028, Spain
| | - Ana L L Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Lorena B Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | - Roberto González-Pizarro
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,National Drug Agency Department (ANAMED), Institute of Public Health (ISP), Chile
| | - Amelia D Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal.,Research Center and Agri- Environmental and Biological Technologies (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Baba K, Hashida N, Tujikawa M, Quantock AJ, Nishida K. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. Int J Pharm 2020; 592:120067. [PMID: 33189813 DOI: 10.1016/j.ijpharm.2020.120067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023]
Abstract
Fluorometholone is a widely used anti-inflammatory ophthalmic formulation, which elicits a lower ocular hypertensive response than other glucocorticoid medications. This serves to mitigate against the risk of steroid-induced glaucoma. Based on the hypothesis that an improved corneal permeability can increase the bioavailability of a drug, we sought to obtain fluorometholone in suspension with a small particle size. Accordingly, we describe the formulation of fluorometholone nanocrystal eye drops, which have a mean particle size of 201.2 ± 14.1 nm (standard deviation (s.d.)) when measured by dynamic light scattering. Scanning electron microscopy further indicates that fluorometholone nanocrystals are predominantly rectangular in shape. Fluorometholone microcrystals, on the other hand, with a mean particle size of 9.24 ± 4.51 µm (s.d.), tend to have a rod-like morphology. Powder x-ray diffraction revealed that fluorometholone microcrystal and nanocrystal formulations have the same crystal structure, with the main diffraction peaks at 2θ = 10.4 and 15.3°. The nanocrystal formulation was found to be stable, long-term, when stored at 10 °C for up to 6-months. High pressure liquid chromatography (HPLC) of the aqueous humor of rabbit eyes 15-240 mins after the in vivo application of fluorometholone eye drops to the ocular surface revealed that the molecule had been converted to 20α-dihydrofluorometholone (with no evidence of a 20β-dihydrofluorometholone fraction), and that penetration was 2-6 fold higher and longer lasting with the nanocrystal, rather than the microcrystal, formulation. In current study we show how newly generated fluorometholone nanocrystals when administered as eye drops enter the anterior chamber of the eye and become metabolized to dihydrofluorometholone.
Collapse
Affiliation(s)
- Koichi Baba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Motokazu Tujikawa
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Division of Health Sciences, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Luo Y, Yang L, Feng P, Qiu H, Wu X, Lu S, Zhou M, Xu L, Zhu Y. Pranoprofen Nanoparticles With Poly(L- Lactide)-b- Poly( Ethylene Glycol)- b-Poly(L- Lactide) as the Matrix Toward Improving Ocular Anti-inflammation. Front Bioeng Biotechnol 2020; 8:581621. [PMID: 33224933 PMCID: PMC7674403 DOI: 10.3389/fbioe.2020.581621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Nanotechnology using biodegradable polymer carriers with good biocompatibility and bioabsorbability has been studied and applied extensively in drug delivery systems and biomedical engineering. In this work, the triblocked oligomer poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLEL) with the molecular weight of 2.08 KDa was first synthesized. Its chemistry was characterized by hydrogen nuclear magnetic resonance (1H-NMR) spectrum and Fourier transform infrared (FTIR) spectroscopy. Subsequently, the nanoparticles (NPs) of PLEL and pranoprofen (PF)-loaded PLEL were prepared with the average particle size of (151.7 ± 5.87) nm using the method of emulsion solvent evaporation. The formula and drug releasing profile were characterized by a transmission electron microscope (TEM), dynamic light scattering (DLS), and ultraviolet spectrophotometer (US). In vitro cytotoxicity assays and in vivo ophthalmic tests were performed to measure the safety and efficacy of the formulations. The results showed that PF NPs relieved the cytotoxicity of pure PF and eliminated ophthalmic irritation. The drug encapsulated in the nanoparticles displayed long-lasting release and good anti-inflammation efficiency in animal eyes. Therefore, we concluded that the present formula (PF NPs) could provide sustained drug release with good treatment effect on eye inflammation, and is promising for its use in ophthalmology in the future.
Collapse
Affiliation(s)
- Yang Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Lu Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo, China
| | - Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Shuwei Lu
- School of Medicine, Ningbo University, Ningbo, China
| | - Mi Zhou
- School of Medicine, Ningbo University, Ningbo, China
| | - Long Xu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yabin Zhu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
42
|
Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: formulation and in vivo evaluation. Drug Deliv Transl Res 2020; 11:1943-1957. [DOI: 10.1007/s13346-020-00856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
43
|
Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules 2020; 10:biom10070980. [PMID: 32630018 PMCID: PMC7408209 DOI: 10.3390/biom10070980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.
Collapse
|
44
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|
45
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
46
|
Essa D, Kondiah PPD, Choonara YE, Pillay V. The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Front Bioeng Biotechnol 2020; 8:48. [PMID: 32117928 PMCID: PMC7026499 DOI: 10.3389/fbioe.2020.00048] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Polymeric biomaterials have found widespread applications in nanomedicine, and poly(lactide-co-glycolide), (PLGA) in particular has been successfully implemented in numerous drug delivery formulations due to its synthetic malleability and biocompatibility. However, the need for preconception in these formulations is increasing, and this can be achieved by selection and elimination of design variables in order for these systems to be tailored for their specific applications. The starting materials and preparation methods have been shown to influence various parameters of PLGA-based nanocarriers and their implementation in drug delivery systems, while the implementation of computational simulations as a component of formulation studies can provide valuable information on their characteristics. This review provides a critical summary of the synthesis and applications of PLGA-based systems in bio-medicine and outlines experimental and computational design considerations of these systems.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321:1-22. [PMID: 32027938 DOI: 10.1016/j.jconrel.2020.01.057] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Topical instillation of eye drops remains the most common and easiest route of ocular drug administration, representing the treatment of choice for many ocular diseases. Nevertheless, low ocular bioavailability of topically applied drug molecules can considerably limit their efficacy. Over the last several decades, numerous drug delivery systems (DDS) have been developed in order to improve drug bioavailability on the ocular surfaces. This review systematically covers the most recent advances of DDS applicable by topical instillation, that have shown better performance in in vivo models compared to standard eye drop formulations. These delivery systems are based on in situ forming gels, nanoparticles and combinations of both. Most of the DDS have been developed using natural or synthetic polymers. Polymers offer many advantageous properties for designing advanced DDS including biocompatibility, gelation properties and/or mucoadhesiveness. However, despite the high number of studies published over the last decade, there are several limitations for clinical translation of DDS. This review article focuses on the recent advances for the development of ocular drug delivery systems. In addtion, the potential challenges for commercialization of new DDS are presented.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Gholizadeh
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Gonzalez-Pizarro R, Parrotta G, Vera R, Sánchez-López E, Galindo R, Kjeldsen F, Badia J, Baldoma L, Espina M, García ML. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine (Lond) 2019; 14:3089-3104. [DOI: 10.2217/nnm-2019-0201] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Development of fluorometholone-loaded PEG-PLGA nanoparticles (NPs) functionalized with cell-penetrating peptides (CPPs) for the treatment of ocular inflammatory disorders. Materials & methods: Synthesized polymers and peptides were used for elaboration of functionalized NPs, which were characterized physicochemically. Cytotoxicity and ability to modulate the expression of proinflammatory cytokines were evaluated in vitro using human corneal epithelial cells (HCE-2). NPs uptake was assayed in both in vitro and in vivo models. Results: NPs showed physicochemical characteristics suitable for ocular administration without evidence of cytotoxicity. TAT-NPs and G2-NPs were internalized and displayed anti-inflammatory activity in both HCE-2 cells and mouse eye. Conclusion: TAT-NPs and G2-NPs could be considered a novel strategy for the treatment of ocular inflammatory diseases of the anterior and posterior segment.
Collapse
Affiliation(s)
- Roberto Gonzalez-Pizarro
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, 08028 Catalonia, Spain
| | - Graziella Parrotta
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Southern Denmark, Denmark
| | - Rodrigo Vera
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Catalonia, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, 08028 Catalonia, Spain
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
| | - Frank Kjeldsen
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Southern Denmark, Denmark
| | - Josefa Badia
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Catalonia, Spain
| | - Laura Baldoma
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Catalonia, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, 08028 Catalonia, Spain
| | - María L García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Catalonia, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, 08028 Catalonia, Spain
| |
Collapse
|
49
|
Central composite design-based optimization and fabrication of benzylisothiocynate-loaded PLGA nanoparticles for enhanced antimicrobial attributes. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Bode C, Kranz H, Siepmann F, Siepmann J. Coloring of PLGA implants to better understand the underlying drug release mechanisms. Int J Pharm 2019; 569:118563. [DOI: 10.1016/j.ijpharm.2019.118563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
|