1
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Alves LP, Oliveira KDS, dos Santos ACG, de Melo DF, Moreira LMCDC, Oshiro Junior JA, da Silva DTC, Cavalcanti ALDM, Damasceno BPGDL. Cellulose Acetate Microparticles Synthesized from Agave sisalana Perrine for Controlled Release of Simvastatin. Polymers (Basel) 2024; 16:1898. [PMID: 39000753 PMCID: PMC11243862 DOI: 10.3390/polym16131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Simvastatin (SIM) is widely prescribed to treat hyperlipidemia, despite its limitations, such as a short half-life and low oral bioavailability. To overcome these drawbacks, the development of a controlled-release formulation is desirable. This study aims to develop a microparticulate system based on cellulose acetate (ACT) obtained from Agave sisalana Perrine to promote a controlled SIM release. SIM-loaded microparticles (SMP) were prepared using the solvent emulsification-evaporation method. Several parameters were evaluated, including particle size, surface charge, morphology, encapsulation efficiency, thermochemical characteristics, crystallinity, and in vitro release profile. ACT exhibited favorable flow properties after acetylation, with a degree of substitution values superior to 2.5, as confirmed by both the chemical route and H-NMR, indicating the formation of cellulose triacetate. The obtained SMP were spherical with an average size ranging from 1842 to 1857 nm, a zeta potential of -4.45 mV, and a high SIM incorporation efficiency (98%). Thermal and XRD analyses revealed that SIM was homogeneously dispersed into the polymeric matrix in its amorphous state. In vitro studies using dialysis bags revealed that the controlled SIM release from microparticles was higher under simulated intestinal conditions and followed the Higuchi kinetic model. Our results suggest that ACT-based microparticles are a promising system for SIM delivery, which can improve its bioavailability, and result in better patient compliance.
Collapse
Affiliation(s)
- Larissa Pereira Alves
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Kevin da Silva Oliveira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Ana Cláudia Gonçalves dos Santos
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Demis Ferreira de Melo
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - João Augusto Oshiro Junior
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Airlla Laana de Medeiros Cavalcanti
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| |
Collapse
|
3
|
Li Y, Chen Y, Xue Y, Jin J, Xu Y, Zeng W, Liu J, Xie J. Injectable Hydrogel Delivery System with High Drug Loading for Prolonging Local Anesthesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309482. [PMID: 38477406 PMCID: PMC11200007 DOI: 10.1002/advs.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Peripheral nerve block is performed for precise pain control and lesser side effects after surgery by reducing opioid consumption. Injectable hydrogel delivery systems with high biosafety and moisture content have good clinical application prospects for local anesthetic delivery. However, how to achieve high drug loading and long-term controlled release of water-soluble narcotic drugs remains a big challenge. In this study, heterogeneous microspheres and an injectable gel-matrix composite drug delivery system are designed in two steps. First, heterogeneous hydrogel microspheres loaded with ropivacaine (HMS-ROP) are prepared using a microfluidic chip and in situ alkalization. An injectable self-healing hydrogel matrix (Gel) is then prepared from modified carboxymethylcellulose (CMC-ADH) and oxidized hyaluronic acid (OHA). A local anesthetic delivery system, Gel/HMS-ROP/dexmedetomidine (DEX), with long-term retention and drug release in vivo is prepared by combining HMS-ROP and Gel/DEX. The drug loading of HMS-ROP reached 41.1%, with a drug release time of over 160 h in vitro, and sensory and motor blockade times in vivo of 48 and 36 h, respectively. In summary, the sequential release and synergistic analgesic effects of the two anesthetics are realized using core-shell microspheres, DEX, and an injectable gel, providing a promising strategy for long-acting postoperative pain management.
Collapse
Affiliation(s)
- Yongchun Li
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - You Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Jinlong Jin
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Yixin Xu
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - Weian Zeng
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Jingdun Xie
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| |
Collapse
|
4
|
Sheikhi M, Sharifzadeh M, Hennink WE, Firoozpour L, Hajimahmoodi M, Khoshayand MR, Shirangi M. Design of experiments approach for the development of a validated method to determine the exenatide content in poly(lactide-co-glycolide) microspheres. Eur J Pharm Biopharm 2023; 192:56-61. [PMID: 37783361 DOI: 10.1016/j.ejpb.2023.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Due to the lack of pharmacopeia guidelines for injectable microspheres based on poly (D, L-lactide-co-glycolide) (PLGA), an internal method validation is a critical prerequisite for quality assurance. One of the essential issues of developing peptide-based drugs loaded PLGA microspheres is the precise determination of the amount of peptide drug entrapped in the microspheres. The aim of this study is the development and optimization of a method for measuring the drug content loading of PLGA microspheres using exenatide as a model peptide drug. Exenatide-loaded PLGA microspheres were prepared by a double emulsion solvent evaporation method. The extraction method to determine exenatide content in microspheres was optimized using Design of Experiments (DoE) approach. After the initial screening of six factors, using Fractional Factorial design (FFD), four of them, including type of organic solvent, buffer/organic solvent ratio (v/v), shaking time and pH, exhibited significant effects on the response, namely the exenatide loading, and a Box-Behnken design (BBD) was subsequently applied to obtain its optimum level. The optimum level for organic solvent volume, buffer/organic solvent ratio, shaking time, and pH were 4 ml, 1, 5.6 hrs, and pH 6, respectively. The exenatide content in microspheres under these conditions was 6.4 ± 0.0 (%w/w), whereas a value of 6.1% was predicted by the derived equation. This excellent agreement between the actual and the predicted value demonstrates that the fitted model can thus be used to determine the exenatide content.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| |
Collapse
|
5
|
Miller RC, Lee J, Kim YJ, Han HS, Kong H. In-drop thermal cycling of microcrystal assembly for senescence control (MASC) with minimal variation in efficacy. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302232. [PMID: 37901180 PMCID: PMC10611434 DOI: 10.1002/adfm.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Indexed: 10/31/2023]
Abstract
The secretome from mesenchymal stem cells (MSCs) has recently gained attention for new therapeutics. However, clinical application requires in vitro cell manufacturing to attain enough cells. Unfortunately, this process often drives MSCs into a senescent state that drastically changes cellular secretion activities. Antioxidants are used to reverse and prevent the propagation of senescence; however, their activity is short-lived. Polymer-stabilized crystallization of antioxidants has been shown to improve bioactivity, but the broad crystal size distribution (CSD) significantly increases the efficacy variation. Efforts were made to crystalize drugs in microdroplets to narrow the CSD, but the fraction of drops containing at least one crystal can be as low as 20%. To this end, this study demonstrates that in-drop thermal cycling of hyaluronic acid-modified antioxidant crystals, named microcrystal assembly for senescence control (MASC), can drive the fraction of microdrops containing crystals to >86% while achieving significantly narrower CSDs (13±3μm) than in bulk (35±11μm). Therefore, this approach considerably improves the practicality of CSD-control in drops. In addition to exhibiting uniform release, MASC made with antioxidizing N-acetylcysteine extended the release time by 40%. MASC further improves the restoration of reactive oxygen species homeostasis in MSCs, thus minimizing cellular senescence and preserving desired secretion activities. We propose that MASC is broadly useful to controlling senescence of a wide array of therapeutic cells during biomanufacturing.
Collapse
Affiliation(s)
- Ryan C. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonghwi Lee
- Department of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology-Europe, Saarbrucken 66123, Germany
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Lesnak JB, Nakhla DS, Plumb AN, McMillan A, Saha S, Gupta N, Xu Y, Phruttiwanichakun P, Rasmussen L, Meyerholz DK, Salem AK, Sluka KA. Selective androgen receptor modulator microparticle formulation reverses muscle hyperalgesia in a mouse model of widespread muscle pain. Pain 2023; 164:1512-1523. [PMID: 36508167 PMCID: PMC10250561 DOI: 10.1097/j.pain.0000000000002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. Although preclinical and clinical studies demonstrate the analgesic effects of testosterone, clinical use of testosterone is limited by adverse androgenic effects. Selective androgen receptor modulators (SARMs) activate androgen receptors and overcome treatment limitations by minimizing androgenic side effects. Thus, we tested whether daily soluble SARMs or a SARM-loaded microparticle formulation alleviated muscle hyperalgesia in a mouse-model of widespread pain (male and female C57BL/6J mice). We tested whether the analgesic effects of the SARM-loaded microparticle formulation was mediated through androgen receptors by blocking androgen receptors with flutamide pellets. In vitro and in vivo release kinetics were determined for SARM-loaded microparticles. Safety and toxicity of SARM treatment was determined using serum cardiac and liver toxicity panels, heart histology, and conditioned place preference testing. Subcutaneous daily SARM administration, and 2 injections, 1 week apart, of SARM-loaded microparticles alleviated muscle hyperalgesia in both sexes and was prevented with flutamide treatment. Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - David S. Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Ashley N. Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - Alexandra McMillan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | | | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| |
Collapse
|
7
|
Lim YW, Tan WS, Ho KL, Mariatulqabtiah AR, Abu Kasim NH, Abd. Rahman N, Wong TW, Chee CF. Challenges and Complications of Poly(lactic- co-glycolic acid)-Based Long-Acting Drug Product Development. Pharmaceutics 2022; 14:614. [PMID: 35335988 PMCID: PMC8955085 DOI: 10.3390/pharmaceutics14030614] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is one of the preferred polymeric inactive ingredients for long-acting parenteral drug products that are constituted of complex formulations. Despite over 30 years of use, there are still many challenges faced by researchers in formulation-related aspects pertaining to drug loading and release. Until now, PLGA-based complex generic drug products have not been successfully developed. The complexity in developing these generic drug products is not just due to their complex formulation, but also to the manufacturing process of the listed reference drugs that involve PLGA. The composition and product attributes of commercial PLGA formulations vary with the drugs and their intended applications. The lack of standard compendial methods for in vitro release studies hinders generic pharmaceutical companies in their efforts to develop PLGA-based complex generic drug products. In this review, we discuss the challenges faced in developing PLGA-based long-acting injectable/implantable (LAI) drug products; hurdles that are associated with drug loading and release that are dictated by the physicochemical properties of PLGA and product manufacturing processes. Approaches to overcome these challenges and hurdles are highlighted specifically with respect to drug encapsulation and release.
Collapse
Affiliation(s)
- Yi Wen Lim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (Y.W.L.); (W.S.T.)
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (Y.W.L.); (W.S.T.)
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | | | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, Gao J, Zheng A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv 2021; 28:1342-1355. [PMID: 34180769 PMCID: PMC8245074 DOI: 10.1080/10717544.2021.1943056] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has garnered increasing attention as a candidate drug delivery polymer owing to its favorable properties, including its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and mechanical strength. PLAG are specifically used as microspheres for the sustained/controlled and targeted delivery of hydrophilic or hydrophobic drugs, as well as biological therapeutic macromolecules, including peptide and protein drugs. PLGAs with different molecular weights, lactic acid (LA)/glycolic acid (GA) ratios, and end groups exhibit unique release characteristics, which is beneficial for obtaining diverse therapeutic effects. This review aims to analyze the composition of PLGA microspheres, and understand the manufacturing process involved in their production, from a quality by design perspective. Additionally, the key factors affecting PLGA microsphere development are explored as well as the principles involved in the synthesis and degradation of PLGA and its interaction with active drugs. Further, the effects elicited by microcosmic conditions on PLGA macroscopic properties, are analyzed. These conditions include variations in the organic phase (organic solvent, PLGA, and drug concentration), continuous phase (emulsifying ability), emulsifying stage (organic phase and continuous phase interaction, homogenization parameters), and solidification process (relationship between solvent volatilization rate and curing conditions). The challenges in achieving consistency between batches during manufacturing are addressed, and continuous production is discussed as a potential solution. Finally, potential critical quality attributes are introduced, which may facilitate the optimization of process parameters.
Collapse
Affiliation(s)
- Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuhuai Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
9
|
Anderson AJ, Grey E, Bongiardina NJ, Bowman CN, Bryant SJ. Synthesis and Characterization of Click Nucleic Acid Conjugated Polymeric Microparticles for DNA Delivery Applications. Biomacromolecules 2021; 22:1127-1136. [PMID: 33621070 PMCID: PMC8669756 DOI: 10.1021/acs.biomac.0c01563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microparticle-mediated nucleic acid delivery is a popular strategy to achieve therapeutic outcomes via antisense gene therapy. However, current methods used to fabricate polymeric microparticles suffer from suboptimal properties such as particle polydispersity and low encapsulation efficiency. Here, a new particulate delivery system based on step-growth thiol-Michael dispersion polymerization is reported in which a low polydispersity microparticle is functionalized with a synthetic nucleic acid mimic, namely, click nucleic acids (CNA). CNA oligomers, exhibiting an average length of approximately four nucleic acid repeat units per chain for both adenine and thymine bases, were successfully conjugated to excess thiols present in the microparticles. Effective DNA loading was obtained by simple mixing, and up to 6 ± 2 pmol of complementary DNA/mg of particle was achieved, depending on the length of DNA used. In addition, DNA loading was orders of magnitude less for noncomplementary sequences and sequences containing an alternating base mismatch. The DNA release properties were evaluated, and it was found that release could be triggered by sudden changes in temperature but was unaffected over a range of pH. Finally, phagocytosis of loaded microparticles was observed by confocal microscopy and corroborated by an increase in cellular metabolic activity up to 90%. Overall, this work suggests that CNA functionalized microparticles could be a promising platform for controlled DNA delivery.
Collapse
Affiliation(s)
- Alex J Anderson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Emerson Grey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Nicholas J Bongiardina
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
Tamani F, Bassand C, Hamoudi M, Siepmann F, Siepmann J. Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Monolithic dispersions studied at lower temperatures. Int J Pharm 2021; 596:120220. [DOI: 10.1016/j.ijpharm.2021.120220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022]
|
11
|
Li X, Wei Y, Wen K, Han Q, Ogino K, Ma G. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine. Eur J Pharm Biopharm 2021; 160:143-151. [PMID: 33524537 DOI: 10.1016/j.ejpb.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/25/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Currently, the influences of free terminal groups (hydroxyl, carboxyl and ester) of PLGA on encapsulating active pharmaceutical ingredient are relatively ambiguous even though PLGA types were defined as critical quality attributes in vast majority of design of experiment process. In this study, emulsion method combined with premix membrane emulsification technique has been used to encapsulate ropivacaine (RVC), a small molecule local anesthetic in clinical. Based on the narrow particle size distribution, the influences and mechanisms of the terminal groups on properties of ropivacaine loaded microspheres have been investigated in detail. It was found that microspheres prepared by PLGA with hydroxyl or ester groups exhibited lower encapsulation efficiency but faster in vitro release rate than that of carboxyl groups. In the meanwhile, on microcosmic level analysis by quartz crystal microbalance with dissipation, atomic force microscope and confocal laser scanning microscopy, we attributed this distinction to the specific interaction between ropivacaine and different terminal groups. Subsequently, the reaction activation centers were verified by density functional simulation calculation and frontier molecular orbital theory at molecular level. Additionally, pharmacokinetics and pharmacodynamic research of infiltration anesthesia model were performed to compare sustained release ability, duration and intensity of the anesthetic effect in vivo. Finally, potential safety and toxicity were evaluated by the biochemical analysis. This study not only provides a novel mechanism of drug encapsulation process but also potential flexible selections in terms of various anesthesia indications in clinical.
Collapse
Affiliation(s)
- Xun Li
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Kang Wen
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingzhen Han
- State Key Laboratory of Multiphase Complex Systems, Research Department for Environmental Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
12
|
Xu J, Bai Y, Li X, Wei Z, Sun L, Yu H, Xu H. Porous Core/Dense Shell PLA Microspheres Embedded with High Drug Loading of Bupivacaine Crystals for Injectable Prolonged Release. AAPS PharmSciTech 2021; 22:27. [PMID: 33404960 DOI: 10.1208/s12249-020-01878-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Objective of the study was to design an injectable microsphere preparation with high drug loading of bupivacaine for prolonged release and local anesthetic. PLA or PLGA was used as the biodegradable matrix material to fabricate microspheres with the o/w emulsification-solvent evaporation method. The characterization of bupivacaine microspheres was observed by SEM, DSC, and XRPD. The microsphere preparation and extended drug release, as well as the plasma drug concentration and sciatic nerve blockade after injection of the microsphere formulation to rats were investigated. High drug-loading microspheres of more than 70% were successfully obtained with extended drug release over 5 days in vitro depending on the type of matrix and the feed ratio of drug to polymer. SEM, DSC, and XRPD results verified a novel microsphere structure characterized as the porous core composed of PLA material and form II bupivacaine crystals and dense shell formed of PLA layer. The mechanism that bupivacaine was dissolved inside the microsphere and diffused across the dense shell was suggested for drug release in vitro. The optimized PLA microsphere formulation showed low and steady plasma drug concentration over 5 days and prolonged duration of sensory and motor blockade of sciatic nerve lasted more than 3 days. Results indicated that the porous core-shell structure of PLA microsphere formulation would provide enormous potential as an injectable depot for locally prolonged delivery of bupivacaine and control of postoperative pain.
Collapse
|
13
|
Bolla PK, Gote V, Singh M, Yellepeddi VK, Patel M, Pal D, Gong X, Sambalingam D, Renukuntla J. Preparation and characterization of lutein loaded folate conjugated polymeric nanoparticles. J Microencapsul 2020; 37:502-516. [PMID: 32842813 DOI: 10.1080/02652048.2020.1809724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To prepare and characterise lutein-loaded polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOLATE) nanoparticles and evaluate enhanced uptake in SK-N-BE(2) cells. METHODS Nanoparticles were prepared using O/W emulsion solvent evaporation and characterised using DLS, SEM, DSC, FTIR and in-vitro release. Lutein-uptake in SK-N-BE(2) cells was determined using flow-cytometry, confocal-microscopy and HPLC. Control was lutein PLGA nanoparticles. RESULTS The size of lutein-loaded PLGA and PLGA-PEG-FOLATE nanoparticles were 189.6 ± 18.79 nm and 188.0 ± 4.06 nm, respectively. Lutein entrapment was ∼61%(w/w) and ∼73%(w/w) for PLGA and PLGA-PEG-FOLATE nanoparticles, respectively. DSC and FTIR confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies showed ∼1.6 and ∼2-fold enhanced uptake of lutein from PLGA-PEG-FOLATE nanoparticles compared to PLGA nanoparticles and lutein, respectively. Cumulative release of lutein was higher in PLGA nanoparticles (100% (w/w) within 24 h) compared to PLGA-PEG-FOLATE nanoparticles (∼80% (w/w) in 48 h). CONCLUSION Lutein-loaded PLGA-PEG-FOLATE nanoparticles could be a potential treatment for hypoxic ischaemic encephalopathy.
Collapse
Affiliation(s)
- Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA.,Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Mahima Singh
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Venkata Kashyap Yellepeddi
- Division of Clinical Pharmacology, Department of Paediatrics, University of UTAH, Salt Lake City, UT, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Manan Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Xiaoming Gong
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Devaraj Sambalingam
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| |
Collapse
|
14
|
Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells. Pharmaceutics 2020; 12:pharmaceutics12090798. [PMID: 32847030 PMCID: PMC7558721 DOI: 10.3390/pharmaceutics12090798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of visual loss and is responsible for approximately 9% of global blindness. It is a progressive eye disorder seen in elderly people (>65 years) mainly affecting the macula. Lutein, a carotenoid, is an antioxidant, and has shown neuroprotective properties in the retina. However, lutein has poor bioavailability owing to poor aqueous solubility. Drug delivery to the posterior segment of the eye is challenging due to the blood–retina barrier. Retinal pigment epithelium (RPE) expresses the sodium-dependent multivitamin transporter (SMVT) transport system which selectively uptakes biotin by active transport. In this study, we aimed to enhance lutein uptake into retinal cells using PLGA–PEG–biotin nanoparticles. Lutein loaded polymeric nanoparticles were prepared using O/W solvent-evaporation method. Particle size and zeta potential (ZP) were determined using Malvern Zetasizer. Other characterizations included differential scanning calorimetry, FTIR, and in-vitro release studies. In-vitro uptake and cytotoxicity studies were conducted in ARPE-19 cells using flow cytometry and confocal microscopy. Lutein was successfully encapsulated into PLGA and PLGA–PEG–biotin nanoparticles (<250 nm) with uniform size distribution and high ZP. The entrapment efficiency of lutein was ≈56% and ≈75% for lutein-loaded PLGA and PLGA–PEG–biotin nanoparticles, respectively. FTIR and DSC confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies in ARPE-19 cells confirmed a higher uptake of lutein with PLGA–PEG–biotin nanoparticles compared to PLGA nanoparticles and lutein alone. In vitro cytotoxicity results confirmed that the nanoparticles were safe, effective, and non-toxic. Findings from this study suggest that lutein-loaded PLGA–PEG–biotin nanoparticles can be potentially used for treatment of AMD for higher lutein uptake.
Collapse
|
15
|
Tamani F, Hamoudi MC, Danede F, Willart J, Siepmann F, Siepmann J. Towards a better understanding of the release mechanisms of caffeine from PLGA microparticles. J Appl Polym Sci 2020. [DOI: 10.1002/app.48710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Fahima Tamani
- Univ. Lille, Inserm, CHU Lille, U1008, Lille, F‐59000 France
| | | | - Florence Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, F‐59650 Villeneuve d'Ascq France
| | | | | | | |
Collapse
|
16
|
Agnoletti M, Rodríguez-Rodríguez C, Kłodzińska SN, Esposito TVF, Saatchi K, Mørck Nielsen H, Häfeli UO. Monosized Polymeric Microspheres Designed for Passive Lung Targeting: Biodistribution and Pharmacokinetics after Intravenous Administration. ACS NANO 2020; 14:6693-6706. [PMID: 32392034 DOI: 10.1021/acsnano.9b09773] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Local as well as systemic therapy is often used to treat bacterial lung infections. Delivery of antibiotics to the vascular side of infected lung tissue using lung-targeting microspheres (MS) is a good alternative to conventional administration routes, allowing for localized high levels of antibiotics. This delivery route can also complement inhaled antibiotic therapy, especially in the case of compromised lung function. We prepared and characterized monodisperse poly(lactic-co-glycolic acid) (PLGA) MS loaded with levofloxacin using a flow-focusing glass microfluidic chip. In vitro characterization showed that the encapsulated LVX displayed a biphasic controlled release during 5 days and preserved its antibacterial activity. The MS degradation was investigated in vitro by cross-sectioning the MS using a focused ion beam scanning electron microscope and in vivo by histological examination of lung tissue from mice intravenously administered with the MS. The MS showed changes in the surface morphology and internal matrix, whereas the degradation in vivo was 3 times faster than that in vitro. No effect on the viability of endothelial and lung epithelial cells or hemolytic activity was observed. To evaluate the pharmacokinetics and biodistribution of the MS, complete quantitative imaging of the 111indium-labeled PLGA MS was performed in vivo with single-photon emission computed tomography imaging over 10 days. The PLGA MS distributed homogeneously in the lung capillaries. Overall, intravenous administration of 12 μm PLGA MS is suitable for passive lung targeting and pulmonary therapy.
Collapse
Affiliation(s)
- Monica Agnoletti
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Sylvia N Kłodzińska
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tullio V F Esposito
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Urs O Häfeli
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Tamani F, Bassand C, Hamoudi MC, Danede F, Willart JF, Siepmann F, Siepmann J. Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions. Int J Pharm 2019; 572:118819. [PMID: 31726196 DOI: 10.1016/j.ijpharm.2019.118819] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023]
Abstract
The aim of this study was to better understand the root causes for the (up to) 3 drug release phases observed with poly (lactic-co-glycolic acid) (PLGA) microparticles containing diprophylline particles: The 1st release phase ("burst release"), 2nd release phase (with an "about constant release rate") and 3rd release phase (which is again rapid and leads to complete drug exhaust). The behavior of single microparticles was monitored upon exposure to phosphate buffer pH 7.4, in particular with respect to their drug release and swelling behaviors. Diprophylline-loaded PLGA microparticles were prepared with a solid-in-oil-in-water solvent extraction/evaporation method. Tiny drug crystals were rather homogeneously distributed throughout the polymer matrix after manufacturing. Batches with "small" (63 µm), "medium-sized" (113 µm) and "large" (296 µm) microparticles with a practical drug loading of 5-7% were prepared. Importantly, each microparticle releases the drug "in its own way", depending on the exact distribution of the tiny drug crystals within the system. During the burst release, drug crystals with direct surface access rapidly dissolve. During the 2nd release phase tiny drug crystals (often) located in surface near regions which undergo swelling, are likely released. During the 3rd release phase, the entire microparticle undergoes substantial swelling. This results in high quantities of water present throughout the system, which becomes "gel-like". Consequently, the drug crystals dissolve, and the dissolved drug molecules rather rapidly diffuse through the highly swollen polymer gel.
Collapse
Affiliation(s)
- F Tamani
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M C Hamoudi
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - J F Willart
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
18
|
Abdel Raheem IA, Abdul Razek A, Elgendy AA, Saleh NM, Shaaban MI, Abd El-Hady FK. Design, Evaluation And Antimicrobial Activity Of Egyptian Propolis-Loaded Nanoparticles: Intrinsic Role As A Novel And Naturally Based Root Canal Nanosealer. Int J Nanomedicine 2019; 14:8379-8398. [PMID: 31695372 PMCID: PMC6814318 DOI: 10.2147/ijn.s219577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/12/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Propolis is a unique natural adhesive product collected by honeybees. It contains a diversity of bioactive compounds with reported functional properties such as antioxidants, antibacterial, antifungal, anti-inflammatory, antiviral and anticancer activity. Dental caries is a worldwide problem that caused by microbial growth usually progress from tooth enamel to the underlying pulpal tissues and root canal. This situation could be controlled by a sequence of steps to remove microorganisms and fill root canal with a suitable long-lasting root canal sealer. Unfortunately, leachable and degradation products of the currently used sealers compromised their antimicrobial activity by inflammatory modulation associated with irritation and toxicity of periapical tissues. MATERIALS AND METHODS Hence, propolis was selected to be designed as a natural root canal sealer due to its amazing functional properties. Moreover, its handling properties were enhanced and potentiated by its incorporation in polymeric nanoparticles (NPs). Frist, propolis was collected, extracted and analyzed for its bioactive compounds. After that, propolis-loaded NPs of PLGA (ProE-loaded NPs) were developed and fully characterized regarding physicochemical properties, in vitro release and in vitro cytotoxicity. Then, root canal sealers were fabricated and assayed for their antimicrobial activity. Both cytotoxicity and antimicrobial activity were compared to those of a model sealer; AH Plus®. RESULTS The results revealed that spherical nanoscopic NPs with narrow size distribution were obtained. ProE-loaded NPs exhibited accepted entrapment efficiency (>80) and prolonged release. In vitro cytotoxicity study confirmed the safety of ProE-loaded NPs. Also, the developed sealers showed antimicrobial activity versus bacterial strains of Enterococcus faecalis and Streptococcus mutans and antifungal activity against Candida albicans. CONCLUSION ProE-loaded NPs could be incorporated in and represented as a root canal sealer with prolonged release and enhanced cytocompatibility as well as antimicrobial activities.
Collapse
Affiliation(s)
| | - Amro Abdul Razek
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona Ibrahem Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| |
Collapse
|
19
|
Bode C, Kranz H, Siepmann F, Siepmann J. Coloring of PLGA implants to better understand the underlying drug release mechanisms. Int J Pharm 2019; 569:118563. [DOI: 10.1016/j.ijpharm.2019.118563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
|
20
|
Batool F, Agossa K, Lizambard M, Petit C, Bugueno IM, Delcourt-Debruyne E, Benkirane-Jessel N, Tenenbaum H, Siepmann J, Siepmann F, Huck O. In-situ forming implants loaded with chlorhexidine and ibuprofen for periodontal treatment: Proof of concept study in vivo. Int J Pharm 2019; 569:118564. [PMID: 31352049 DOI: 10.1016/j.ijpharm.2019.118564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Control of infection and inflammation is crucial for the success of periodontal treatment. In this study, in-situ forming implants (ISFI) loaded with chlorhexidine dihydrochloride (CHX) and ibuprofen (IBU) were developed and tested to optimize periodontal treatment outcomes. Release profiles were promising. Exposure to 1.5% and 5.3% CHX-IBU loaded ISFI's release media decreased significantly the P. gingivalis growth up to 20-fold and 35-fold, respectively, after 48 h (p < 0.05). The metabolic activity assay of gingival epithelial cells (EC) demonstrated 1.5% CHX-IBU-loaded ISFI to be non-toxic, therefore, it was selected for further experimentation. Furthermore, significant down-regulation of TNF-α release (34% at 6 h and 43% at 24 h, p < 0.05) in P. gingivalis lipopolysaccharide (Pg-LPS) stimulated EC exposed to 1.5% CHX-IBU ISFI release medium was demonstrated by ELISA. In vivo, 1.5% CHX-IBU ISFI was injected into the periodontal pocket in an experimental periodontitis mouse model and the reduction in inflammation and improvement in periodontal wound healing was evaluated through inflammatory cell scoring and histomorphometry at 7- and 15-days post-treatment. The results indicate that CHX-IBU loaded ISFI could be efficient as adjuvant to periodontal therapy for the control of infection and inflammation. Moreover, other (e.g., pro-regenerative) drugs could be incorporated into ISFI to further improve periodontal treatment outcomes.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Kevimy Agossa
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Martin Lizambard
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Elisabeth Delcourt-Debruyne
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Juergen Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Florence Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France.
| |
Collapse
|
21
|
Soni G, Yadav KS, Gupta MK. Design of Experiments (DoE) Approach to Optimize the Sustained Release Microparticles of Gefitinib. Curr Drug Deliv 2019; 16:364-374. [DOI: 10.2174/1567201816666181227114109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 01/31/2023]
Abstract
Background:
Gefitinib (GEF), the kinase inhibitor, is presently available as tablets to be taken orally in high doses of 250-500 mg per day due to its poor solubility. The solubility issues affect not only its onset of action but also the bioavailability. These drawbacks foresight the need to have an alternate dosage form, preferably a sustained release formulation.
Methods:
In the present study, microparticles were prepared by emulsion solvent evaporation using PLGA 50:50 (GEF-PLGA MP). A 32 factorial design was used to optimize the critical quality parameters to the set mean particle size in the range of 7.4±2.5 µm and entrapment efficiency of 80%. SEM microscopy of the prepared microparticles confirmed to have a spherical smooth shape. The GEFPLGA- MPs sustained the release of GEF for 72 hours. The first-order kinetics ruled the mechanism of drug release and was predicted to follow Fickian diffusion.
Result:
Anticancer efficacy was judged by the cytotoxicity studies using the L132 lung cancer cells. MTT assay showed 3-fold enhanced cytotoxicity of GEF loaded microparticles against L132 cells as compared to plain GEF.
Conclusion:
It was concluded that gefitinib can be efficiently loaded into the biodegradable polymer PLGA to provide sustained release of the drug.
Collapse
Affiliation(s)
- Govind Soni
- Oriental College of Pharmacy and Research, Oriental University, Indore-453555, MP, India
| | - Khushwant S. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), V.L Mehta Road, Vile Parle (W), Mumbai – 400 056, India
| | - Mahesh K. Gupta
- Oriental College of Pharmacy and Research, Oriental University, Indore-453555, MP, India
| |
Collapse
|