1
|
Wang X, Du W, Wang Y, Khan AR, Zhang H. LPM electrode loaded with RAPA-PLGA drug sustained-release system can reduce local fibrous tissue hyperplasia and local bioelectrical impedance. Eur J Med Res 2025; 30:347. [PMID: 40301872 PMCID: PMC12042559 DOI: 10.1186/s40001-025-02619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
OBJECTIVE This study aims to design and fabricate a leadless pacemaker (LPM) electrode loaded with rapamycin (RAPA)-poly(lactic-co-glycolic acid) (PLGA) drug sustained-release system to reduce the local fibrous tissue proliferation after LPM implantation, reduce local bioelectrical impedance, and facilitate the safe extraction of LPM after use. METHODS We fabricated an LPM electrode loaded with the RAPA-PLGA drug-sustained-release system and carried out in vitro and in vivo experiments to verify its effect. RESULTS A scanning electron microscope showed that the LPM electrode cavity was loaded with the RAPA-PLGA drug's sustained-release system. The energy-dispersive spectrometer showed that the LPM electrode had RAPA and PLGA-related elements. The average drug loading rate of the drug sustained-release system was (51.02% ± 2.66) %, and the encapsulation rate was (85.04% ± 4.43%). The RAPA loaded in the electrode chamber was about (337.83 ± 53.66)μg. In vitro release results show that the LPM electrode loaded with RAPA-PLGA can continue to release for 44 days. In vitro cell inhibition experiments showed that the drug-loaded electrode group had an obvious inhibitory effect on fibroblasts, and the difference between the groups was significant (p < 0.05). In vivo experiments showed that the local bioelectrical impedance of the drug-loaded electrode group is lower than that of the control group, with a difference between groups with statistical significance (p < 0.05). The histopathological analysis of tissue sections from the site of (LPM electrode implantation revealed reduced fibrous tissue hyperplasia in the drug-loaded electrode group compared to the control group. Additionally, H&E staining indicated that the implantation of drug-loaded electrodes did not induce abnormal alterations in the liver, heart, spleen, lung, or kidney tissues. CONCLUSION The LPM electrode loaded with RAPA-PLGA demonstrates significant, sustained drug release and anti-proliferative effects in vitro. This drug-loaded electrode has been deemed safe for implantation in animal models. It can effectively inhibit local fibrous tissue proliferation and reduce local bioelectrical impedance, offering a technical strategy to prolong the in vivo functionality of LPMs and enhance clinical procedures.
Collapse
Affiliation(s)
- Xiu Wang
- College of Clinical Medicine, Hebei University of Engineering, Handan, 056000, China
| | - Wentao Du
- Department of Cardiovascular Medicine, Affiliated Hospital of Hebei Engineering University, Handan, 056000, Hebei, China.
| | - Yunyun Wang
- College of Clinical Medicine, Hebei University of Engineering, Handan, 056000, China
| | - Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, 251100, Shandong, China
| | - Haijun Zhang
- College of Clinical Medicine, Hebei University of Engineering, Handan, 056000, China.
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, 251100, Shandong, China.
- School of Medicine, Tongji University, Shanghai, 200000, China.
| |
Collapse
|
2
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2025; 15:1156-1180. [PMID: 39661312 PMCID: PMC11870889 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
3
|
Serizawa M, van Delft P, Schoenmakers PJ, Peters RAH, Gargano AFG. Size-Exclusion Chromatography-Electrospray-Ionization Mass Spectrometry To Characterize End Group and Chemical Distribution of Poly(lactide- co-glycolide) Copolymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40162665 DOI: 10.1021/jasms.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The characterization of the microstructure of in vivo degradable polyesters is gaining increased interest thanks to their high-performance applications, such as drug delivery systems. The design of such material requires a high level of understanding of the critical material attributes of the polyesters, such as molecular-weight distribution (MWD), chemical-composition distribution (CCD), and end-groups (functionality-type distribution, FTD). Size-exclusion chromatography (SEC) hyphenated with mass spectrometry (MS) is an effective method for analyzing the microstructure of polymers. While the MWD can be determined by size-exclusion chromatography hyphenated with ultraviolet spectrometry and refractive index, the CCD and FTD can be determined by SEC-MS. However, previous applications of SEC-MS have not assessed if polymer fragmentation can occur during the analysis process. In order to correctly interpret CCD and FTD, it is important to establish whether SEC-MS methods can be applied to biodegradable polymers and to recognize if fragmentation processes occur. In this study, we investigate whether SEC-MS methods can be applied to PLGA biodegradable polyesters. The research demonstrates that the choice of alkali metal salt used during ionization can influence the stability of PLGA during SEC-MS analysis. CsI was found to minimize fragmentations during ESI-MS, simplifying the MS spectra and allowing isomeric PLGA structures to be distinguished. The resulting method facilitates FTD and CCD determination. Additionally, when combined with selective degradation, the described method can provide insights into the "blockiness" of the polymer and support the development of sequence-controlled PLGA synthesis.
Collapse
Affiliation(s)
- Masashi Serizawa
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Material Characterization Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | | | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ron A H Peters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Covestro, TAP, Group Innovation and Sustainibility, Sluisweg 12, 5145 PE Waalwijk, The Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
You T, Zhang S. Recent advances in PLGA polymer nanocarriers for ovarian cancer therapy. Front Oncol 2025; 15:1526718. [PMID: 40196734 PMCID: PMC11973302 DOI: 10.3389/fonc.2025.1526718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, and early diagnosis and effective treatment have been the focus of research in this field. It is because of its late diagnosis, acquired resistance mechanisms, and systemic toxicity of chemotherapeutic agents that the treatment of ovarian cancer is challenging. Combination chemotherapy can potentially improve therapeutic efficacy by activating multiple downstream pathways to overcome resistance and reduce the required dose. In recent years, PLGA-lipid hybrid nanoparticles have demonstrated their potential as an emerging drug delivery system for treating ovarian cancer. PLGA (poly (lactic-co-glycolic acid) has become a highly sought-after biomaterial for the clinical translation of adjustable drug delivery regimens due to its biodegradability, biocompatibility, and multifunctionality, coupled with controlled drug release, which can effectively overcome multidrug resistance and improve the efficiency of chemotherapy. Combination therapies are gradually becoming an ideal alternative to traditional drug formulations. The application of nanoparticles not only improves the therapeutic effect but also reduces the side effects, which provides strong support for personalized precision medicine. We review polymeric nanoparticle carriers for drug combinations used in the treatment of ovarian cancer, particularly the combination of paclitaxel analogs (commonly used first-line therapy for ovarian cancer) with other small molecule therapeutic agents and cavitation combination therapy under ultrasound targeting (Figure 1). The elucidation of these issues will provide a theoretical basis for future exploration of novel NNDDS targeting GRPR for anti-OC therapy. This review presents research on recent advances in PLGA polymer nanoparticles in ovarian cancer, focusing on the use of PLGA degradable microspheres for loading chemotherapeutic agents and ultrasound combination therapy.
Collapse
Affiliation(s)
| | - Shengmin Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Ao Y, Jiang D. Polydopamine-Induced BMP7-Poly (Lactic-Co-Glycolic Acid)-Nanoparticle Coating Facilitates Osteogenesis in Porous Tantalum Scaffolds. J Biomed Mater Res A 2025; 113:e37835. [PMID: 39835772 DOI: 10.1002/jbm.a.37835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects. Porous tantalum (PT) scaffolds have shown beneficial clinical effects in the repair of bone defects, surface modification of PT to induce osteogenic differentiation of mesenchymal stem cells (MSC) is the key to optimizing this material. Poly (lactic-co-glycolic acid) nanoparticle (PLGA NPs) encapsulating bone morphogenetic protein 7 (BMP7) (BPNPs) was prepared by a double emulsion (water/oil/water [W/O/W]) method and adhered on polydopamine (PDA)-coated PT (PPT) that was prepared by biomimetic method to prepare BPNPs-coated PPT (BPPT). The successful preparation of BPPT was monitored by scanning electron microscopy (SEM) and energy spectrum. Murine calvarial preosteoblasts (MC3T3-E1) cells were co-cultured with BPPT, vitro experiments showed that BPPT promoted cell proliferation and osteogenic differentiation. BPPT was further implanted into the bone defect of the distal femoral epiphysis of the rabbit. At 4 weeks postoperatively, in the BPPT group, high-resolution CT reconstruction indicated that bone volume/total volume (BV/TV) was near 50%, and the hard tissue section indicated that the depth of new bone ingrowth into the scaffolds was nearly 2 mm. The immunofluorescence staining of bone tissue around the bone defects indicated that the expression of osteogenic-related proteins was higher in the BPPT group than the other groups. Taken together, our results suggest that BPPT promoted early osteointegration, which may provide a novel approach for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Yu Ao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Serizawa M, Reekers J, van Delft P, van Bruijnsvoort M, Schoenmakers PJ, Gargano AFG. Functionality-type and chemical-composition separation of poly(lactide-co-glycolide) using gradient elution normal-phase liquid chromatography with basic and acidic additives. J Chromatogr A 2024; 1730:465137. [PMID: 38996514 DOI: 10.1016/j.chroma.2024.465137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used. The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization - high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. 13Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA. Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios. To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved. This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.
Collapse
Affiliation(s)
- Masashi Serizawa
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Material Characterization laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan.
| | - Jeroen Reekers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | | | | | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Almayda N, Masruri M, Safitri A. Effectiveness of Using Gum Arabic for Co-Microencapsulation of Ruellia tuberosa L. and Tithonia diversifolia Extracts as Encapsulating Agent and Release Studies. SCIENTIFICA 2024; 2024:9097238. [PMID: 38827017 PMCID: PMC11142852 DOI: 10.1155/2024/9097238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
This study used a combination of leaves extracts from Ruellia tuberosa L. and Tithonia diversifolia plants encapsulated using gum Arabic. The selection of leaves in medicinal plants because they are rich in bioactive compounds that provide health benefits. The encapsulation technique was microencapsulation through freeze-drying, since the nanoencapsulation for the plant extracts is unlikely to be conducted due to their large particle sizes. The resulting microcapsules were then tested their biological activities in vitro. Several conditions affect microcapsules' production, including pH, gum Arabic concentration, and stirring time were assessed. The optimum conditions were chosen based on the highest encapsulation efficiency. The results showed that the optimum microcapsules preparation was achived at pH 5, gum Arabic concentration of 4% (w/v), and stirring time of 60 min with an encapsulation efficiency of 84.29%. The in vitro assays include inhibition of alpha-amylase and antioxidant activities, resulted in the respective IC50 values of 54.74 μg/mL and 152.74 μg/mL. Releases of bioactive compounds from the microcapsules were investigated under pH 2.2 and pH 7.4 from 30 to 120 min. Results indicated a release of 43.10% at pH 2.2 and 42.26% at pH 7.4 during 120 min, demonstrating the controlled release behavior of the encapsulated bioactive compounds; nonetheless, their release behavior was not pH-dependent. This study confirms that microencapsulation has an important role in the development of plant extracts with maintained biological functions as well as maintaining their stability.
Collapse
Affiliation(s)
- Nabila Almayda
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| | - Masruri Masruri
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| | - Anna Safitri
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
- Research Center for Smart Molecules of Natural Genetic Resources (SMONAGENES), Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
| |
Collapse
|
8
|
Zheng LX, Yu Q, Li Q, Zheng CD. Targeted local anesthesia: a novel slow-release Fe 3O 4-lidocaine-PLGA microsphere endowed with a magnetic targeting function. J Anesth 2024; 38:232-243. [PMID: 38310577 DOI: 10.1007/s00540-023-03305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
PURPOSE Lidocaine microspheres can prolong the analgesic time to 24-48 h, which still cannot meet the need of postoperative analgesia lasting more than 3 days. Therefore, we added Fe3O4 to the lidocaine microspheres and used an applied magnetic field to attract Fe3O4 to fix the microspheres around the target nerves, reducing the diffusion of magnetic lidocaine microspheres to the surrounding tissues and prolonging the analgesic time. METHODS Fe3O4-lidocaine-PLGA microspheres were prepared by the complex-emulsion volatilization method to characterize and study the release properties in vitro. The neural anchoring properties and in vivo morphology of the drug were obtained by magnetic resonance imaging. The nerve blocking effect and analgesic effect of magnetic lidocaine microspheres were evaluated by animal experiments. RESULTS The mean diameter of magnetically responsive lidocaine microspheres: 9.04 ± 3.23 μm. The encapsulation and drug loading of the microspheres were 46.18 ± 3.26% and 6.02 ± 1.87%, respectively. Magnetic resonance imaging showed good imaging of Fe3O4-Lidocain-PLGA microspheres, a drug-carrying model that slowed down the diffusion of the microspheres in the presence of an applied magnetic field. Animal experiments demonstrated that this preparation had a significantly prolonged nerve block, analgesic effect, and a nerve anchoring function. CONCLUSION Magnetically responsive lidocaine microspheres can prolong analgesia by slowly releasing lidocaine, which can be immobilized around the nerve by a magnetic field on the body surface, avoiding premature diffusion of the microspheres to surrounding tissues and improving drug targeting.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qian Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China
| | - Chuan-Dong Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
9
|
Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications. Adv Colloid Interface Sci 2024; 325:103098. [PMID: 38335660 DOI: 10.1016/j.cis.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The electrospray (ES) technique has proven to be an effective and a versatile approach for crafting drug delivery carriers with diverse dimensions, multiple layers, and varying morphologies. Achieving the desired particle properties necessitates careful optimization of various experimental parameters. This review delves into the most prevalent ES system configurations employed for this purpose, such as monoaxial, coaxial, triaxial, and multi-needle setups with solid or liquid collector. In addition, this work underscores the significance of ES in drug delivery carriers and its remarkable ability to encapsulate a wide spectrum of therapeutic agents, including drugs, nucleic acids, proteins, genes and cells. Depth examination of the critical parameters governing the ES process, including the choice of polymer, surface tension, voltage settings, needle size, flow rate, collector types, and the collector distance was conducted with highlighting on their implications on particle characteristics, encompassing morphology, size distribution, and drug encapsulation efficiency. These insights illuminate ES's adaptability in customizing drug delivery systems. To conclude, this review discusses ES process optimization strategies, advantages, limitations and future directions, providing valuable guidance for researchers and practitioners navigating the dynamic landscape of modern drug delivery systems.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| | - Yasser Shahzad
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
10
|
Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, Shao T, Piao Y, Jin L, Gao J. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. Int J Nanomedicine 2024; 19:1571-1595. [PMID: 38406600 PMCID: PMC10888034 DOI: 10.2147/ijn.s445269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Long-acting injectable microspheres have been on the market for more than three decades, but if calculated on the brand name, only 12 products have been approved by the FDA due to numerous challenges in achieving a fully controllable drug release pattern. Recently, more and more researches on the critical factors that determine the release kinetics of microspheres shifted from evaluating the typical physicochemical properties to exploring the microstructure. The microstructure of microspheres mainly includes the spatial distribution and the dispersed state of drug, PLGA and pores, which has been considered as one of the most important characteristics of microspheres, especially when comparative characterization of the microstructure (Q3) has been recommended by the FDA for the bioequivalence assessment. This review extracted the main variables affecting the microstructure formation from microsphere formulation compositions and preparation processes and highlighted the latest advances in microstructure characterization techniques. The further understanding of the microsphere microstructure has significant reference value for the development of long-acting injectable microspheres, particularly for the development of the generic microspheres.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Changhao Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Xinming Hu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Tianjiao Shao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Yan Piao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Lili Jin
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| |
Collapse
|
11
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
12
|
Martin V, Francisca Bettencourt A, Santos C, Sousa Gomes P. Reviewing particulate delivery systems loaded with repurposed tetracyclines - From micro to nanoparticles. Int J Pharm 2024; 649:123642. [PMID: 38029863 DOI: 10.1016/j.ijpharm.2023.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibacterial agents recognized for their multifaceted properties, including anti-inflammatory, angiogenic and osteogenic effects. This versatility positions them as suitable candidates for drug repurposing, benefitting from well-characterized safety and pharmacological profiles. In the attempt to explore both their antibacterial and pleiotropic effects locally, innovative therapeutic strategies were set on engineering tetracycline-loaded micro and nanoparticles to tackle a vast number of clinical applications. Moreover, the conjoined drug carrier can function as an active component of the therapeutic approach, reducing off-target effects and accumulation, synergizing to an improvement of the therapeutic efficacy. In this comprehensive review we will critically evaluate recent advances involving the use of tetracyclines loaded onto micro- or nanoparticles, intended for biomedical applications, and discuss emerging approaches and current limitations associated with these drug carriers. Owing to their distinctive physical, chemical, and biological properties, these novel carriers have the potential to become a platform technology in personalized regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal.
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Pedro Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| |
Collapse
|
13
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zivar Nejad Ebrahimi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Pawelec KM, Tu E, Chakravarty S, Hix JML, Buchanan L, Kenney L, Buchanan F, Chatterjee N, Das S, Alessio A, Shapiro EM. Incorporating Tantalum Oxide Nanoparticles into Implantable Polymeric Biomedical Devices for Radiological Monitoring. Adv Healthc Mater 2023; 12:e2203167. [PMID: 36848875 PMCID: PMC10460461 DOI: 10.1002/adhm.202203167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Longitudinal radiological monitoring of biomedical devices is increasingly important, driven by the risk of device failure following implantation. Polymeric devices are poorly visualized with clinical imaging, hampering efforts to use diagnostic imaging to predict failure and enable intervention. Introducing nanoparticle contrast agents into polymers is a potential method for creating radiopaque materials that can be monitored via computed tomography. However, the properties of composites may be altered with nanoparticle addition, jeopardizing device functionality. Thus, the material and biomechanical responses of model nanoparticle-doped biomedical devices (phantoms), created from 0-40 wt% tantalum oxide (TaOx ) nanoparticles in polycaprolactone and poly(lactide-co-glycolide) 85:15 and 50:50, representing non, slow, and fast degrading systems, respectively, are investigated. Phantoms degrade over 20 weeks in vitro in simulated physiological environments: healthy tissue (pH 7.4), inflammation (pH 6.5), and lysosomal conditions (pH 5.5), while radiopacity, structural stability, mechanical strength, and mass loss are monitored. The polymer matrix determines overall degradation kinetics, which increases with lower pH and higher TaOx content. Importantly, all radiopaque phantoms could be monitored for a full 20 weeks. Phantoms implanted in vivo and serially imaged demonstrate similar results. An optimal range of 5-20 wt% TaOx nanoparticles balances radiopacity requirements with implant properties, facilitating next-generation biomedical devices.
Collapse
Affiliation(s)
- Kendell M. Pawelec
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
| | - Ethan Tu
- Department of Biomedical EngineeringMichigan State University775 Woodlot DrEast LansingMI48824USA
| | - Shatadru Chakravarty
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
- Present address:
TechInsightsSuite 500, 1891 Robertson RdNepeanONK2H 5B7Canada
| | - Jeremy M. L. Hix
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State University775 Woodlot DrEast LansingMI48824USA
| | - Lane Buchanan
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
| | - Legend Kenney
- Department of Biomedical EngineeringMichigan State University775 Woodlot DrEast LansingMI48824USA
| | - Foster Buchanan
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
- Present address:
Lake Erie College of Osteopathic Medicine1858 W Grandview BlvdEriePA16509USA
| | - Nandini Chatterjee
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
| | - Subhashri Das
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
| | - Adam Alessio
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State University775 Woodlot DrEast LansingMI48824USA
- Department of Computational Mathematics Science EngineeringMichigan State University428 S. Shaw LnEast LansingMI48824USA
| | - Erik M. Shapiro
- Department of RadiologyMichigan State University846 Service RdEast LansingMI48824USA
| |
Collapse
|
15
|
Bauer A, Berben P, Chakravarthi SS, Chattorraj S, Garg A, Gourdon B, Heimbach T, Huang Y, Morrison C, Mundhra D, Palaparthy R, Saha P, Siemons M, Shaik NA, Shi Y, Shum S, Thakral NK, Urva S, Vargo R, Koganti VR, Barrett SE. Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium "Long-Acting Injectables" Working Group. Pharm Res 2023; 40:1601-1631. [PMID: 36811809 DOI: 10.1007/s11095-022-03391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 02/24/2023]
Abstract
Long-acting injectable (LAI) formulations can provide several advantages over the more traditional oral formulation as drug product opportunities. LAI formulations can achieve sustained drug release for extended periods of time, which results in less frequent dosing requirements leading to higher patient adherence and more optimal therapeutic outcomes. This review article will provide an industry perspective on the development and associated challenges of long-acting injectable formulations. The LAIs described herein include polymer-based formulations, oil-based formulations, and crystalline drug suspensions. The review discusses manufacturing processes, including quality controls, considerations of the Active Pharmaceutical Ingredient (API), biopharmaceutical properties and clinical requirements pertaining to LAI technology selection, and characterization of LAIs through in vitro, in vivo and in silico approaches. Lastly, the article includes a discussion around the current lack of suitable compendial and biorelevant in vitro models for the evaluation of LAIs and its subsequent impact on LAI product development and approval.
Collapse
Affiliation(s)
- Andrea Bauer
- Sunovion Pharmaceuticals, Marlborough, MA, 01752, USA
| | | | | | | | - Ashish Garg
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Ye Huang
- AbbVie Inc., North Chicago, IL, 60064, USA
| | | | | | | | - Pratik Saha
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Maxime Siemons
- Janssen R&D, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Yi Shi
- AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sara Shum
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | | | - Shweta Urva
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Vargo
- Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | | |
Collapse
|
16
|
Rohde F, Walther M, Baur F, Windbergs M. A Dual‐Function Electrospun Matrix for the Prevention of Herpes Simplex Virus‐1 Infections after Corneal Transplantation. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Felix Rohde
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Florentin Baur
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
17
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
18
|
Pawelec KM, Tu E, Chakravarty S, Hix JM, Buchanan L, Kenney L, Buchanan F, Chatterjee N, Das S, Alessio A, Shapiro EM. Incorporating Radiopacity into Implantable Polymeric Biomedical Devices for Clinical Radiological Monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523025. [PMID: 36711467 PMCID: PMC9881976 DOI: 10.1101/2023.01.06.523025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Longitudinal radiological monitoring of biomedical devices is increasingly important, driven by risk of device failure following implantation. Polymeric devices are poorly visualized with clinical imaging, hampering efforts to use diagnostic imaging to predict failure and enable intervention. Introducing nanoparticle contrast agents into polymers is a potential method for creating radiopaque materials that can be monitored via computed tomography. However, properties of composites may be altered with nanoparticle addition, jeopardizing device functionality. This, we investigated material and biomechanical response of model nanoparticle-doped biomedical devices (phantoms), created from 0-40wt% TaO x nanoparticles in polycaprolactone, poly(lactide-co-glycolide) 85:15 and 50:50, representing non-, slow and fast degrading systems, respectively. Phantoms degraded over 20 weeks in vitro, in simulated physiological environments: healthy tissue (pH 7.4), inflammation (pH 6.5), and lysosomal conditions (pH 5.5), while radiopacity, structural stability, mechanical strength and mass loss were monitored. The polymer matrix determined overall degradation kinetics, which increased with lower pH and higher TaO x content. Importantly, all radiopaque phantoms could be monitored for a full 20-weeks. Phantoms implanted in vivo and serially imaged, demonstrated similar results. An optimal range of 5-20wt% TaO x nanoparticles balanced radiopacity requirements with implant properties, facilitating next-generation biomedical devices.
Collapse
Affiliation(s)
| | - Ethan Tu
- Michigan State University, Dept Biomedical Engineering, East Lansing, MI 48823
| | | | - Jeremy Ml Hix
- Michigan State University, Dept Radiology, East Lansing, MI 48823
- Michigan State University, Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI 48823
| | - Lane Buchanan
- Michigan State University, Dept Radiology, East Lansing, MI 48823
| | - Legend Kenney
- Michigan State University, Dept Biomedical Engineering, East Lansing, MI 48823
| | - Foster Buchanan
- Michigan State University, Dept Radiology, East Lansing, MI 48823
| | | | - Subhashri Das
- Michigan State University, Dept Radiology, East Lansing, MI 48823
| | - Adam Alessio
- Michigan State University, Dept Radiology, East Lansing, MI 48823
- Michigan State University, Dept Biomedical Engineering, East Lansing, MI 48823
- Michigan State University, Dept of Computational Mathematics Science Engineering, East Lansing, MI 48823
| | - Erik M Shapiro
- Michigan State University, Dept Radiology, East Lansing, MI 48823
| |
Collapse
|
19
|
Wang Y, Guo Q, Wang W, Wang Y, Fang K, Wan Q, Li H, Wu T. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. NANOSCALE 2022; 14:18217-18230. [PMID: 36468670 DOI: 10.1039/d2nr06081g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For patients suffering from traumatic brain injury (TBI), the closure of dural defects after decompressive craniectomy is the prerequisite to restoring normal physiological functions. It is also an urgent challenge to provide a neuroprotection effect against the primary and secondary nerve damage during long-term recovery. To solve these issues, we herein develop a class of bioactive, nanofibrous dural substitutes that can long-term release insulin-like growth factor 1 (IGF-1) for improving the survival and neurite outgrowth of neural cells after TBI. Such dural substitutes were polycaprolactone (PCL) nanofibers encapsulated with hyaluronic acid methacryloyl (HAMA)/IGF-1 by blend or coaxial electrospinning techniques, achieving bioactive PCL/HAMA/IGF nanofibrous dural substitutes with different release profiles of IGF-1. The nanofibrous dural substitutes exhibited good mechanical properties and hydrophobicity, which prevent cerebrospinal fluid leakage, maintain normal intracranial pressure, and avoid external impact on the brain. We also found that the viability and neurite outgrowth of SH-SY5Y cells and primary neurons were significantly enhanced after neurite transection or oxygen and glucose deprivation treatment. Taken together, such PCL/HAMA/IGF nanofibrous dural substitutes hold promising potential to provide neuroprotection effects after primary and secondary nerve damage in TBI, which would bring significant benefits to the field of neurosurgery involving the use of artificial dura mater.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qingxia Guo
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Yuanfei Wang
- Department of Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| |
Collapse
|
20
|
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022; 14:pharmaceutics14122728. [PMID: 36559223 PMCID: PMC9786338 DOI: 10.3390/pharmaceutics14122728] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-556047523
| | - Fatima D. Alharbi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud S. Alhibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Nouf B. Alanazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bayan Y. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Turki Almugaiteeb
- Taqnia-Research Products Development Company, Riyadh 13244, Saudi Arabia
| | | | - Rami M. Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Vallejo-Zamora JA, Vega-Cantu YI, Rodriguez C, Cordell GA, Rodriguez-Garcia A. Drug-Eluting, Bioresorbable Cardiovascular Stents─Challenges and Perspectives. ACS APPLIED BIO MATERIALS 2022; 5:4701-4717. [PMID: 36150217 DOI: 10.1021/acsabm.2c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.
Collapse
Affiliation(s)
- Julio A Vallejo-Zamora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Yadira I Vega-Cantu
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, Nuevo León66629, Mexico
| | - Geoffrey A Cordell
- Natural Products, Inc., Evanston, Illinois60201, United States
- College of Pharmacy, University of Florida, Gainesville, Florida32610, United States
| | - Aida Rodriguez-Garcia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León66455, Mexico
| |
Collapse
|
22
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Microfluidic-preparation of PLGA microcarriers with collagen patches for MSCs expansion and osteogenic differentiation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Chen M, Li J, Shu G, Shen L, Qiao E, Zhang N, Fang S, Chen X, Zhao Z, Tu J, Song J, Du Y, Ji J. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization. J Nanobiotechnology 2022; 20:179. [PMID: 35366904 PMCID: PMC8976998 DOI: 10.1186/s12951-022-01385-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.
Collapse
|
25
|
Li Q, Chen Q, Yang X, Zhang Y, Lv L, Zhang Z, Zeng S, Lv J, Liu S, Fu B. Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive. J Nanobiotechnology 2022; 20:84. [PMID: 35177088 PMCID: PMC8851817 DOI: 10.1186/s12951-022-01241-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Immune checkpoint inhibitor-mediated immunotherapy cannot be carried out on a large scale clinically due to its low universality. In recent years, cyclic guanosine monophosphate synthase/interferon gene stimulating factor (cGAS/STING)-mediated innate immune signaling pathway-mediated immunotherapy has attracted more and more attention. In addition, metabolic inhibitors also show good effects on tumor treatment, but their application is often limited because of their large first pass effect or difficult administration. Methods The particle size and potential parameters were measured by DLS. In order to determine the optimal ratio of the two drugs, we calculated the CI value of different nanoparticles through MTT experiment, and simulated their synergistic effect through Gaussian software. Then the morphology and crystal form of the best proportion of drugs were studied by TEM and XRD. The anti-tumor mechanism of composite nanoparticles was confirmed by the determination of metabolic related indexes, Q-PCR and WB. The antitumor effect and immune activation effect were comprehensively evaluated by in vivo and in vitro experiments. Results Here, we found and synthesized BCP nanoparticles ((BPA + CPI) @ PLGA NPs) which can effectively reduce the metabolism of tumor cells and inhibit cell proliferation. At the same time, the release of mitochondrial DNA (mtDNA) caused by mitochondrial metabolism disorder further activated the cGAS/STING signal pathway in Hepa1–6 cells. We found that the drug-treated Hepa1–6 cells had obvious TBK1 phosphorylation and STING dimerization. Combined with STING agonist, it could effectively promote the activation of CD8 T cells and enhanced the therapeutic effect on liver cancer. Conclusion Our results showed that PLGA nanocarrier can successfully improve the dosage forms of two metabolic inhibitors and show the effect of synergistic therapy. BCP nanoparticles can also activate the innate immunity of tumor cells and significantly enhance tumor inhibition after combined with STING agonists. This study has high reference and transformation value for the combined treatment of immunosuppression and metabolic inhibition. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01241-y.
Collapse
Affiliation(s)
- Qian Li
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qiubing Chen
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue Yang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuelan Zhang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linyue Lv
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuyou Zhang
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaowei Zeng
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxi Lv
- Department of Clinical Medicine, Fourth Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Bishi Fu
- Department of Paediatrics, State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
26
|
Lin J, Huang J, Wu J, Tang B, Li C, Xiao H. Poly(lactic acid-co-glycolic acid)-based celecoxib extended-release microspheres for the local treatment of traumatic heterotopic ossification. J Biomater Appl 2022; 36:1458-1468. [PMID: 35043696 DOI: 10.1177/08853282211056937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic heterotopic ossification (THO) is a serious and common clinical post-traumatic complication for which there is no effective and safe drug treatment. Routine administration of nonsteroidal anti-inflammatory drugs (NSAIDs) after injury is extensively used approach for THO. However, serious adverse events can occur in the event of an overdose of NSAIDs. In our study, we have developed a poly(lactic acid-co-glycolic acid) (PLGA) microsphere by emulsifying solvent volatilization for the prolonged slow delivery of celecoxib (CLX). Three groups of celecoxib-poly(lactic acid-co-glycolic acid) microspheres (CLX-PLGA MPs) were prepared with particle sizes of 3.75±1.28 μm, 49.56±17.15 μm, and 94.98±42.53 μm. Meanwhile, related parameters of microspheres in each group were studied: drug loading (DL), encapsulation rate (EE), and slow-release behavior. The DL and EE of the 3 CLX-PLGA MPs did not vary significantly, and subsequently, we selected the second drug loading microspheres with a retardation period of about 70 days for subsequent experiments. Moreover, cellular and animal experiments suggest that the microspheres are biocompatible and can be safely applied to localized trauma tissue. Finally, it is demonstrated that CLX-PLGA MPs have an effect on inhibiting the osteogenic differentiation of bone marrow mesenchymal stem cells and have the potential to inhibit ectopic bone formation of the THO model in Sprague-Dawley rat. Therefore, this study suggests that CLX-PLGA MPs are expected to be applied topically in the early post-traumatic period to prevent the development of THO.
Collapse
Affiliation(s)
- Jialiang Lin
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Junchao Huang
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Jiang Wu
- Tinglin Hospital of Jinshan District, Shanghai, China
| | - Bo Tang
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Congbin Li
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Haijun Xiao
- Affiliated Fengxian Hospital to Southern Medical University, Shanghai, China
| |
Collapse
|
27
|
Effect of Formulation Variables for the Production of WGA-Grafted, Levodopa-Loaded PLGA Nanoparticles. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/www.scientific.net/jbbbe.54.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Levodopa is used for the treatment of Parkinson’s disease (PD) for the last few decades. However, adverse reactions such as dyskinesia, somnolence, nausea, itching, rash, as well as the need for frequent dosing and low bioavailability problems affect the success of the treatment. To prevent side effects caused by conventional therapy, a nanoparticular drug delivery system has been developed, in which receptors are constantly stimulated, and the frequency of dosing is reduced. In this study, levodopa was loaded in Poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) which modified with Wheat Germ Agglutinin (WGA) To increase the effectiveness of levodopa, reduce its side effects and apply to the nasal area which is an alternative way for brain targeting with lower doses. To obtain the optimum levodopa loaded PLGA nanoparticles, the effect of some formulation variables such as polyvinyl alcohol (PVA) concentration, homogenization speed, polymer amount and molecular weight, and levodopa content on the entrapment efficiency (EE) and particle size of the nanoparticles were investigated. Besides these variables, the effect of different parameters on the WGA binding constant was also searched. In addition to in vitro release studies, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectrophotometer (FT-IR), and Transmission electron microscopy (TEM) analysis were used in the characterization of nanoparticles. Among all formulations, A2 and A8a which was produced with different molcular weights of PLGA, different added levodopa amounts and with different homogenization speeds were chosen as optimum formulations due to their sustained release properties and the ability to release 80 % of their drug content.WGA binding constant was found 78.20 % for A8a-1 and 95 % for A2-1. In this study, we aimed to determine the effect of different formulation parameters on the development of levodopa loaded and WGA grafted PLGA nanoparticles and on the quality characteristics of nanoparticle formulations such as particle size, zeta potential, and EE. In this paper, our results are demonstrated for a better understanding of the effect of process parameters on the development of nanoparticle-based drug delivery systems by using the double-emulsion solvent evaporation technique and on WGA binding of drug-loaded PLGA nanoparticles.
Collapse
|
28
|
Pawar MA, Vora LK, Kompella P, Pokuri VK, Vavia PR. Long-acting microspheres of Human Chorionic Gonadotropin hormone: In-vitro and in-vivo evaluation. Int J Pharm 2022; 611:121312. [PMID: 34822964 DOI: 10.1016/j.ijpharm.2021.121312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Human Chorionic Gonadotropin (hCG) hormone is used to cause ovulation, treat infertility in women, and increase sperm count in men. Conventional hCG solution formulations require multiple administration of hCG per week and cause patient noncompliance. The long-acting PLGA depot microspheres (MS) approach with hCG can improve patient compliance, increase the efficacy of hCG with a lower total dose and improve quality of life. Therefore, hCG was encapsulated by a modified double emulsion solvent evaporation technique within PLGA MS by high-speed homogenizer and industrially scalable in-line homogenizer, respectively. MS was characterized for particle size, encapsulation efficiency (EE), surface morphology, and in-vitro release. The spherical, dense, non-porous microspheres were obtained with a size of 58.88 ± 0.18 µm. Microspheres showed high EE (77.4% ± 5.9%) with low initial burst release (12.82% ± 2.07%). Circular Dichroism and SDS-PAGE analysis indicated good stability and structural integrity of hCG in the microspheres. Its bioactivity was proven further by a bioassay study in immature Wistar rats. Pharmacokinetic analysis showed that the hCG PLGA MS maintained serum hCG concentration up to 13 days compared to multiple injections of a marketed conventional parenteral injectable formulation of hCG. Thus, it can be ascertained that the hCG PLGA MS may have great potential for clinical use in long-term therapy.
Collapse
Affiliation(s)
- Manoj A Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | - Lalitkumar K Vora
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | | | | | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
29
|
He Y, Li Y, Zuo E, Chai S, Ren X, Fei T, Ma G, Wang X, Liu H. A Novel Antibacterial Titanium Modification with a Sustained Release of Pac-525. NANOMATERIALS 2021; 11:nano11123306. [PMID: 34947655 PMCID: PMC8704243 DOI: 10.3390/nano11123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid-alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-co- glycolic acid) (PLGA) microsphere layer as a sustained-release system. Hydroxyapatite (HA) in mineralization layer was primarily prepared on the Ti followed by the antibacterial coating of Pac-525 loaded by PLGA microspheres. After observing the antimicrobial peptides distributed uniformly on the titanium surface, the release assay showed that the release of Pac-525 from Pac@PLGA MS/HA coated Ti provided a large initial burst followed by a slow release at a flat rate. Pac@PLGA MS/HA coated Ti exhibited a strong cytotoxicity to both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, Pac@PLGA MS/HA coated Ti did not affect the growth and adhesion of the osteoblast-like cell line, MC3T3-E1. These data suggested that a bionic mineralized composite coating with long-term antimicrobial activity was successfully prepared.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Enjun Zuo
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Tao Fei
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| |
Collapse
|
30
|
Cheng X, Long D, Chen L, Jansen JA, Leeuwenburgh SC, Yang F. Electrophoretic deposition of silk fibroin coatings with pre-defined architecture to facilitate precise control over drug delivery. Bioact Mater 2021; 6:4243-4254. [PMID: 33997504 PMCID: PMC8102429 DOI: 10.1016/j.bioactmat.2021.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic precision and clinical applicability of drug-eluting coatings can be substantially improved by facilitating tunable drug delivery. However, the design of coatings which allows for precise control over drug release kinetics is still a major challenge. Here, a double-layered silk fibroin (SF) coating system was constructed by sequential electrophoretic deposition. A mixture of dissolved Bombyx mori SF (bmSF) molecules and pre-made bmSF nanospheres at different ratios was deposited as under-layer. Subsequently, this underlayer was covered by a top-layer comprising Antheraea pernyi SF (apSF) molecules (rich in arginylglycylaspartic acid, RGD) to improve the cellular response of the resulting double-layered coatings. Additionally, model drug doxycycline was either pre-mixed with dissolved bmSF molecules or pre-loaded into pre-made bmSF nanospheres at the same amount before their mixing and deposition. The thickness and nanosphere content of the under-layer architecture were proportional to the deposition time and nanosphere concentration in precursor mixtures, respectively. The surface topography, wettability, degradation rate and adhesion strength were comparable within the double-layered coating system. As expected, RGD-rich apSF top-layer improved cell adhesion, spreading and proliferation compared with bmSF top-layer. Furthermore, the amount and duration of drug release increased linearly with increasing nanosphere concentration at fixed deposition time, whereas drug release amount increased linearly with increasing deposition time. These results indicate that the dosage and kinetics of loaded drugs can be quantitatively tailored by altering nanosphere concentration and deposition time as main processing parameters. Overall, this study illustrates the strong potential of pre-defining coating architecture to facilitate control over drug delivery.
Collapse
Affiliation(s)
- Xian Cheng
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, PR China
| | - Dingpei Long
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| |
Collapse
|
31
|
PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int J Mol Sci 2021; 22:ijms22168884. [PMID: 34445587 PMCID: PMC8396256 DOI: 10.3390/ijms22168884] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.
Collapse
|
32
|
Maraldi M, Lisi M, Moretti G, Sponchioni M, Moscatelli D. Health care-associated infections: Controlled delivery of cationic antiseptics from polymeric excipients. Int J Pharm 2021; 607:120956. [PMID: 34333024 DOI: 10.1016/j.ijpharm.2021.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the treatment of health care-associated infections represents a serious issue, due to the increasing number of bacterial strains resistant to traditional antibiotics. The use of antiseptics like quaternary ammonium salts and biguanides is a viable alternative to face these life-threatening infections. However, their inherent toxicity as well as the necessity of providing a sustained release to avoid the formation of pathogen biofilms are compelling obstacles towards their assessment in the hospitals. Within this framework, the role of polymeric drug delivery systems is fundamental to overcome the aforementioned problems. Biocompatibility, biodegradability and excipient-drug interactions are crucial properties determining the efficacy of the formulation. In this work, we provide an in-depth analysis of the polymer drug delivery systems that have been developed or are under development for the sustained release of positively charged antiseptics, highlighting the crucial characteristics that allowed to achieve the most relevant therapeutic effects. We reported and compared natural occurring polymers and synthetic carriers to show their pros and cons and applicability in the treatment of health care-associated infections. Then, the discussion is focused on a particularly relevant class of materials adopted for the scope, represented by polyesters, which gave rise, due to their biodegradability, to the field of resorbable drug delivery devices. Finally, a specific analysis on the effect of the polymer functionalization over the formulation performances for the different types of polymeric carriers is presented.
Collapse
Affiliation(s)
- Matteo Maraldi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Marco Lisi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giacomo Moretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
33
|
Ahmed AMQ, Chen LQ, Du HH, Sun W, Cao QR. Formulation optimization and in vitro characterization of granisetron-loaded polylactic-co-glycolic acid microspheres prepared by a dropping-in-liquid emulsification technique. Curr Drug Deliv 2021; 19:721-729. [PMID: 34325634 DOI: 10.2174/1567201818666210729111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Traditional dosage forms of granisetron (GRN) decrease patient compliance associated with repeated drug administration because of the short half-life of the drug. METHODS In this study, novel GRN-loaded polylactic-co-glycolic acid (PLGA) sustained release microspheres were prepared for the first time via a dropping-in-liquid emulsification technique. The effect of various factors, such as pH of the outer phase, Tween80, polyvinyl alcohol (PVA) concentrations, and hardening process, on the encapsulation efficiency (EE), drug loading (DL), and particle size of microspheres were extensively studied. The physicochemical properties, including drug release, surface morphology, crystallinity, thermal changes, and molecular interactions, were also studied. RESULTS GRN has a pH-dependent solubility and showed a remarkably high solubility under an acidic condition. The EE of the alkaline medium (pH 8) was higher than that of the acidic medium (pH 4.0). EE and DL decreased in the presence of Tween80 in the outer phase, whereas EE significantly increased during hardening. The particle size of microspheres was not affected by PVA and Tween80 concentrations, but it was influenced by PVA volume and hardening. X-ray diffraction and differential scanning calorimetry results showed that the physical state of the drug changed from a crystalline form to an amorphous form, thereby confirming that the drug was encapsulated into the PLGA matrix. Fourier transform-infrared spectroscopy confirmed that some molecular interactions occurred between the drug and the polymer. GRN-loaded PLGA microspheres showed sustained release profiles of over 90% on week 3. CONCLUSION GRN-loaded PLGA microspheres with sustained release were successfully prepared, and they exhibited a relatively high EE without Tween 80 as an emulsifier and with hardening process.
Collapse
Affiliation(s)
| | - Li-Qing Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huan-Huan Du
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Mutukuri TT, Maa YF, Gikanga B, Sakhnovsky R, Zhou QT. Electrostatic spray drying for monoclonal antibody formulation. Int J Pharm 2021; 607:120942. [PMID: 34324986 DOI: 10.1016/j.ijpharm.2021.120942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
This study explored the feasibility of electrostatic spray drying for producing a monoclonal antibody (mAb) powder formulation at lower drying temperatures than conventional spray drying and its effect on protein stability. A mAb formulation was dried by either conventional spray drying or electrostatic spray drying with charge (ESD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC), and solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). Particle characterizations such as BET surface area, particle size distribution, and particle morphology were also performed. Conventional spray drying of the mAb formulation at the inlet temperature of 70 °C failed to generate dry powders due to poor drying efficiency; electrostatic spray drying at the same temperature and 5 kV charge enabled the formation of powder formulation with satisfactory moisture contents. Deconvoluted peak areas of deuterated samples from the ssHDX-MS study showed a good correlation with the loss of the monomeric peak area measured by size exclusion chromatography in the 90-day accelerated stability study conducted at 40 °C. Low-temperature (70 °C inlet temperature) drying with an electrostatic charge (5 kV) led to better protein physical stability as compared with the samples spray-dried at the high temperature (130 °C inlet temperature) without charge. This study shows that electrostatic spray drying can produce solid monoclonal antibody formulation at lower inlet temperature than traditional spray drying with better physical stability.
Collapse
Affiliation(s)
- Tarun Tejasvi Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yuh-Fun Maa
- Pharmaceutical Development, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benson Gikanga
- Pharmaceutical Development, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm 2021; 606:120926. [PMID: 34303818 DOI: 10.1016/j.ijpharm.2021.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.
Collapse
Affiliation(s)
| | - Bayan H Al-Anati
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yazan Al Thaher
- School of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
36
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 2021; 28:1397-1418. [PMID: 34184949 PMCID: PMC8248937 DOI: 10.1080/10717544.2021.1938756] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biodegradable microspheres have been widely used in the field of medicine due to their ability to deliver drug molecules of various properties through multiple pathways and their advantages of low dose and low side effects. Poly (lactic-co-glycolic acid) copolymer (PLGA) is one of the most widely used biodegradable material currently and has good biocompatibility. In application, PLGA with a specific monomer ratio (lactic acid and glycolic acid) can be selected according to the properties of drug molecules and the requirements of the drug release rate. PLGA-based biodegradable microspheres have been studied in the field of drug delivery, including the delivery of various anticancer drugs, protein or peptide drugs, bacterial or viral DNA, etc. This review describes the basic knowledge and current situation of PLGA biodegradable microspheres and discusses the selection of PLGA polymer materials. Then, the preparation methods of PLGA microspheres are introduced, including emulsification, microfluidic technology, electrospray, and spray drying. Finally, this review summarizes the application of PLGA microspheres in drug delivery and the treatment of pulmonary and ocular-related diseases.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bolun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
38
|
Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, Gao J, Zheng A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv 2021; 28:1342-1355. [PMID: 34180769 PMCID: PMC8245074 DOI: 10.1080/10717544.2021.1943056] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has garnered increasing attention as a candidate drug delivery polymer owing to its favorable properties, including its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and mechanical strength. PLAG are specifically used as microspheres for the sustained/controlled and targeted delivery of hydrophilic or hydrophobic drugs, as well as biological therapeutic macromolecules, including peptide and protein drugs. PLGAs with different molecular weights, lactic acid (LA)/glycolic acid (GA) ratios, and end groups exhibit unique release characteristics, which is beneficial for obtaining diverse therapeutic effects. This review aims to analyze the composition of PLGA microspheres, and understand the manufacturing process involved in their production, from a quality by design perspective. Additionally, the key factors affecting PLGA microsphere development are explored as well as the principles involved in the synthesis and degradation of PLGA and its interaction with active drugs. Further, the effects elicited by microcosmic conditions on PLGA macroscopic properties, are analyzed. These conditions include variations in the organic phase (organic solvent, PLGA, and drug concentration), continuous phase (emulsifying ability), emulsifying stage (organic phase and continuous phase interaction, homogenization parameters), and solidification process (relationship between solvent volatilization rate and curing conditions). The challenges in achieving consistency between batches during manufacturing are addressed, and continuous production is discussed as a potential solution. Finally, potential critical quality attributes are introduced, which may facilitate the optimization of process parameters.
Collapse
Affiliation(s)
- Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuhuai Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
39
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
40
|
Falcon ND, Saeed A. Prefunctionalised PLGA microparticles with dimethylaminoethyl moieties promote surface cell adhesion at physiological condition. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Chotchindakun K, Pekkoh J, Ruangsuriya J, Zheng K, Unalan I, Boccaccini AR. Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration. Polymers (Basel) 2021; 13:1794. [PMID: 34072334 PMCID: PMC8198921 DOI: 10.3390/polym13111794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is considered a suitable polymer for drug delivery systems and bone tissue engineering due to its biocompatibility and biodegradability. However, the lack of bioactivity and antibacterial activity hinders its biomedical applications. In this study, mesoporous bioactive glass nanoparticles (MBGN) were incorporated into PHBV to enhance its bioactivity, while cinnamaldehyde (CIN) was loaded in MBGN to introduce antimicrobial activity. The blank (PHBV/MBGN) and the CIN-loaded microspheres (PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20) were fabricated by emulsion solvent extraction/evaporation method. The average particle size and zeta potential of all samples were investigated, as well as the morphology of all samples evaluated by scanning electron microscopy. PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20 significantly exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli in the first 3 h, while CIN releasing behavior was observed up to 7 d. Human osteosarcoma cell (MG-63) proliferation and attachment were noticed after 24 h cell culture, demonstrating no adverse effects due to the presence of microspheres. Additionally, the rapid formation of hydroxyapatite on the composite microspheres after immersion in simulated body fluid (SBF) during 7 d revealed the bioactivity of the composite microspheres. Our findings indicate that this system represents an alternative model for an antibacterial biomaterial for potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Kittipat Chotchindakun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| | - Irem Unalan
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| |
Collapse
|
42
|
Kim CR, Jang EB, Hong SH, Yoon YE, Huh BK, Kim SN, Kim MJ, Moon HS, Choy YB. Indwelling urinary catheter assembled with lidocaine-loaded polymeric strand for local sustained alleviation of bladder discomfort. Bioeng Transl Med 2021; 6:e10218. [PMID: 34027100 PMCID: PMC8126825 DOI: 10.1002/btm2.10218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/03/2023] Open
Abstract
Indwelling urinary catheters (IUCs) are used in clinical settings to assist detrusor contraction in hospitalized patients. However, an inserted IUC often causes catheter-related bladder discomfort. To resolve this, we propose an IUC coupled with local, sustained release of an anesthetic drug, lidocaine. For this, a thin strand composed of poly (lactic-co-glycolic acid) and lidocaine was separately prepared as a drug delivery carrier, which was then wound around the surface of the IUC to produce the drug-delivery IUC. Our results revealed that the drug-delivery IUC could exert the pain-relief effects for up to 7 days when placed in the bladder of living rats. Cystometrogram tests indicated that the drug-delivery IUC could significantly relieve bladder discomfort compared with the IUC without lidocaine. Furthermore, the expression of pain-related inflammatory markers, such as nerve growth factor, cyclooxygenase-2, and interleukin-6 in the biopsied bladder tissues was significantly lower when the drug-delivery IUC was used. Therefore, we conclude that an IUC simply assembled with a drug-loaded polymer strand can continuously release lidocaine to allow for the relief of bladder discomfort during the period of IUC insertion.
Collapse
Affiliation(s)
- Cho Rim Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Eun Bi Jang
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science & EngineeringHanyang UniversitySeoulRepublic of Korea
| | - Seong Hwi Hong
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Eun Yoon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Se Na Kim
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Min Ji Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hong Sang Moon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Biomedical EngineeringSeoul National University, College of MedicineSeoulRepublic of Korea
| |
Collapse
|
43
|
Chen Y, Mutukuri TT, Wilson NE, Zhou QT. Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Adv Drug Deliv Rev 2021; 172:211-233. [PMID: 33705880 PMCID: PMC8107147 DOI: 10.1016/j.addr.2021.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
Despite the boom in biologics over the past decade, the intrinsic instability of these large molecules poses significant challenges to formulation development. Almost half of all pharmaceutical protein products are formulated in the solid form to preserve protein native structure and extend product shelf-life. In this review, both traditional and emerging drying techniques for producing protein solids will be discussed. During the drying process, various stresses can impact the stability of protein solids. However, understanding the impact of stress on protein product quality can be challenging due to the lack of reliable characterization techniques for biological solids. Both conventional and advanced characterization techniques are discussed including differential scanning calorimetry (DSC), solid-state Fourier transform infrared spectrometry (ssFTIR), solid-state fluorescence spectrometry, solid-state hydrogen deuterium exchange (ssHDX), solid-state nuclear magnetic resonance (ssNMR) and solid-state photolytic labeling (ssPL). Advanced characterization tools may offer mechanistic investigations into local structural changes and interactions at higher resolutions. The continuous exploration of new drying techniques, as well as a better understanding of the effects caused by different drying techniques in solid state, would advance the formulation development of biological products with superior quality.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Tarun Tejasvi Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nathan E Wilson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
44
|
PLGA Microspheres Containing Hydrophobically Modified Magnesium Hydroxide Particles for Acid Neutralization-Mediated Anti-Inflammation. Tissue Eng Regen Med 2021; 18:613-622. [PMID: 33877618 DOI: 10.1007/s13770-021-00338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect. METHODS To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. In vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines. RESULTS The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect. CONCLUSION Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.
Collapse
|
45
|
Tamani F, Bassand C, Hamoudi M, Siepmann F, Siepmann J. Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Monolithic dispersions studied at lower temperatures. Int J Pharm 2021; 596:120220. [DOI: 10.1016/j.ijpharm.2021.120220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022]
|
46
|
Bhattarai JK, Neupane D, Nepal B, Demchenko AV, Stine KJ. Nanoporous Gold Monolith for High Loading of Unmodified Doxorubicin and Sustained Co-Release of Doxorubicin-Rapamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:208. [PMID: 33467416 PMCID: PMC7830488 DOI: 10.3390/nano11010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) have been widely explored for delivering doxorubicin (DOX), an anticancer drug, to minimize cardiotoxicity. However, their efficiency is marred by a necessity to chemically modify DOX, NPs, or both and low deposition of the administered NPs on tumors. Therefore, alternative strategies should be developed to improve therapeutic efficacy and decrease toxicity. Here we report the possibility of employing a monolithic nanoporous gold (np-Au) rod as an implant for delivering DOX. The np-Au has very high DOX encapsulation efficiency (>98%) with maximum loading of 93.4 mg cm-3 without any chemical modification required of DOX or np-Au. We provide a plausible mechanism for the high loading of DOX in np-Au. The DOX sustained release for 26 days from np-Au in different pH conditions at 37 °C, which was monitored using UV-Vis spectroscopy. Additionally, we encased the DOX-loaded np-Au with rapamycin (RAPA)-trapped poly(D,L-lactide-co-glycolide) (PLGA) to fabricate an np-Au@PLGA/RAPA implant and optimized the combinatorial release of DOX and RAPA. Further exploiting the effect of the protein corona around np-Au and np-Au@PLGA/RAPA showed zero-order release kinetics of DOX. This work proves that the np-Au-based implant has the potential to be used as a DOX carrier of potential use in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, Saint Louis, MO 63121, USA; (J.K.B.); (D.N.); (B.N.); (A.V.D.)
| |
Collapse
|
47
|
Xiao P, Qi P, Chen J, Song Z, Wang Y, He H, Tang X, Wang P. The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres. Int J Pharm 2020; 591:119964. [PMID: 33137449 DOI: 10.1016/j.ijpharm.2020.119964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
The aim of this study was to resolve the lag time problem for peptides loaded PLGA-Hydrogel Microspheres (PLGA-gel-Ms) by blending low molecular PLGA (Mw. 1 kDa) into PLGA (Mw. 10 kDa) as an intrinsic porogen, and then assess the in vitro-in vivo relationship (IVIVR). Here, Goserelin acetate (GOS) was chosen as the model peptides. When compared to additional types of porogen, the intrinsic porogen avoided impurities remaining and protected the bioactivities of the peptides. By adding 10% PLGA (Mw. 1 kDa), the lag time was eliminated both in vitro and in vivo with a desirable EE (97.04% ± 0.51%). The release mechanisms were found to be: a) initial GOS release mainly controlled by pores diffusion and b) autocatalysis of PLGA (Mw. 1 kDa) which increased the quantity of aqueous pores, as revealed by SEM images. To solve the challenges caused by multiphasic release profiles, for the first time the Segmented phases IVIVR were proposed and developed, and showed improved linear fitting effects and supported the proposed release mechanisms. The application of PLGA blends could provide a new insight into PLGA microsphere initial release rate regulation.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Pan Qi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Jin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Zilin Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Yidan Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.
| |
Collapse
|
48
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
49
|
Jadidi A, Salahinejad E, Sharifi E, Tayebi L. Drug-delivery Ca-Mg silicate scaffolds encapsulated in PLGA. Int J Pharm 2020; 589:119855. [PMID: 32911045 DOI: 10.1016/j.ijpharm.2020.119855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
The aim of this work is to develop dual-functional scaffolds for bone tissue regeneration and local antibiotic delivery applications. In this respect, bioresorbable bredigite (Ca7MgSi4O16) porous scaffolds were fabricated by a foam replica method, loaded with vancomycin hydrochloride and encapsulated in poly lactic-co-glycolic acid (PLGA) coatings. Field emission scanning electron microscopy, Archimedes porosimetry and Fourier-transform infrared spectroscopy were used to characterize the structure of the scaffolds. The drug delivery kinetics and cytocompatibility of the prepared scaffolds were also studied in vitro. The bare sample exhibited a burst release of vancomycin and low biocompatibility with respect to dental pulp stem cells based on the MTT assay due to the fast bioresorption of bredigite. While keeping the desirable characteristics of pores for tissue engineering, the biodegradable PLGA coatings modified the drug release kinetics, buffered physiological pH and hence improved the cell viability of the vancomycin-loaded scaffolds considerably.
Collapse
Affiliation(s)
- A Jadidi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - L Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
50
|
Wang B, Wang J, Shao J, Kouwer PH, Bronkhorst EM, Jansen JA, Walboomers XF, Yang F. A tunable and injectable local drug delivery system for personalized periodontal application. J Control Release 2020; 324:134-145. [DOI: 10.1016/j.jconrel.2020.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
|