1
|
Sun M, Monahan K, Moquet J, Barnard S. Ionizing Radiation May Induce Tumors Partly Through the Alteration or Regulation of Mismatch Repair Genes. Cancers (Basel) 2025; 17:564. [PMID: 40002162 PMCID: PMC11852753 DOI: 10.3390/cancers17040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Ionizing radiation is mutagenic and carcinogenic, and it is reported to induce primary and secondary tumors with intestinal tumors being one of the most commonly observed. However, the pathological and molecular mechanism(s) underlying the radiation-associated tumorigenesis remain unclear. A link between radiation and somatic tumorigenesis partly through genetic, epigenetic alteration and/or regulation of mismatch repair (MMR) genes has been hypothesized for the first time within this review. Clinical observations and experimental findings provide significant support for this association including MMR mutations as well as altered MMR RNA and protein expressions that occurred post-exposure, although existing evidence in published literature is sparse in this niche area. Some speculative mechanisms are suggested with this review to inform future research. Further studies are needed to understand the roles of the MMR system in response to radiation and to test this possible connection which could potentially provide useful and urgently needed information for clinical guidance.
Collapse
Affiliation(s)
- Mingzhu Sun
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark’s Hospital, London North West University Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jayne Moquet
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Stephen Barnard
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| |
Collapse
|
2
|
Wojcik A, Zölzer F. The scientific nature of the linear no-threshold (LNT) model used in the system of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:483-489. [PMID: 39222266 PMCID: PMC11588861 DOI: 10.1007/s00411-024-01092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
During the first half of the 20th century, it was commonly assumed that radiation-induced health effects occur only when the dose exceeds a certain threshold. This idea was discarded for stochastic effects when more knowledge was gained about the mechanisms of radiation-induced cancer. Currently, a key tenet of the international system of radiological protection is the linear no-threshold (LNT) model where the risk of radiation-induced cancer is believed to be directly proportional to the dose received, even at dose levels where the effects cannot be proven directly. The validity of the LNT approach has been questioned on the basis of a claim that only conclusions that can be verified experimentally or epidemiologically are scientific and LNT should, thus, be discarded because the system of radiological protection must be based on solid science. The aim of this publication is to demonstrate that the LNT concept can be tested in principle and fulfils the criteria of a scientific hypothesis. The fact that the system of radiological protection is also based on ethics does not render it unscientific either. One of the fundamental ethical concepts underlying the LNT model is the precautionary principle. We explain why it is the best approach, based on science and ethics (as well as practical experience), in situations of prevailing uncertainty.
Collapse
Affiliation(s)
- Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden.
- Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Friedo Zölzer
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Sciences, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Dimitrova T, Hristova E, Petrova N. Low-Dose Ionizing Radiation Exposure on Human Male Gametes: Damage or Benefit. Life (Basel) 2024; 14:830. [PMID: 39063584 PMCID: PMC11277789 DOI: 10.3390/life14070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of medical devices for diagnosis and radiotherapy, concerns about the effects of low doses of ionizing radiation are also growing. There is no consensus among scientists on whether they might have beneficial effects on humans in certain cases or pose more risks, making the exposure unreasonable. While the damaging consequences of high-dose radiation have been known since the discovery of radioactivity, low-dose effects present a much bigger investigative challenge. They are highly specific and include radio-adaptive responses, bystander effects, and genomic instability. Current data regarding the consequences of exposure to low-dose radiation on the quality of male gametes and fertility potential are contradictory. The reports suggest two directions: indirect impact on male gametes-through spermatogenesis-or direct effects at low doses on already mature spermatozoa. Although mature gametes are used for observation in both models, they are fundamentally different, leading to varied results. Due to their unique physiological characteristics, in certain cases, exposure of spermatozoa to low-dose ionizing radiation could have positive effects. Despite the findings indicating no beneficial effects of low-dose exposure on male fertility, it is essential to research its impact on mature spermatozoa, as well.
Collapse
Affiliation(s)
- Tsvetomira Dimitrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
- Invitro OB Medical Center “Dimitrov”, 1750 Sofia, Bulgaria
| | - Elena Hristova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
| | - Nadya Petrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
| |
Collapse
|
4
|
Allison W. Society and Nuclear Energy: What Is the Role for Radiological Protection? HEALTH PHYSICS 2024; 126:405-418. [PMID: 38568161 DOI: 10.1097/hp.0000000000001795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The harm that society expects from ionizing radiation does not match experience. Evidently there is some basic error in this assumption. A reconsideration based on scientific principles shows how simple misunderstandings have exaggerated dangers. The consequences for society are far-reaching. The immediate impact of ionizing radiation on living tissue is destructive. However, this oxidative damage is similar to that produced during normal metabolic activity where the subsequent biological reaction is not only protective but also stimulates enhanced protection. This adaptation means that the response to oxidative damage depends on past experience. Similarly, social reaction to a radiological accident depends on the regulations and attitudes generated by the perception of previous instances. These shape whether nuclear technology and ionizing radiation are viewed as beneficial or as matters to avoid. Evidence of the spurious damage to society caused by such persistent fear in the second half of the 20 th century suggests that these laws and attitudes should be rebased on evidence. The three stages of radiological impact-the initial physical damage, the subsequent biological response, and the personal and social reaction-call on quite different logic and understanding. When these are confused, they lead to regulations and public policy decisions that are often inept, dangerous, and expensive. One example is when the mathematical rigor of physics, appropriate to the immediate impact, is misapplied to the adaptive behavior of biology. Another, the tortured historical reputation of nuclear technology, is misinterpreted as justifying a radiological protection policy of extreme caution.Specialized education and closed groups of experts tend to lock in interdisciplinary misperceptions. In the case of nuclear technology, the resulting lack of independent political confidence endangers the adoption of nuclear power as the replacement for fossil fuels. In the long term, nuclear energy is the only viable source of large-scale primary energy, but this requires a re-working of public understanding.
Collapse
Affiliation(s)
- Wade Allison
- Physics Department and Keble College, University of Oxford, UK; Present address: Southfields, Ludgershall, Aylesbury, UK HP18 9PB
| |
Collapse
|
5
|
Hendrick RE, Smith RA. Benefit-to-radiation-risk of low-dose computed tomography lung cancer screening. Cancer 2024; 130:216-223. [PMID: 37909872 DOI: 10.1002/cncr.34855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The US National Lung Screening Trial (NLST) and Dutch-Belgian NELSON randomized controlled trials have shown significant mortality reductions from low-dose computed tomography (CT) lung cancer screening (LCS). NLST, ITALUNG, and COSMOS trials have provided detailed dosimetry data for LCS. METHODS LCS trial mortality benefit results, organ dose and effective dose data, and Biological Effects of Ionizing Radiation, Report VII (BEIR VII) organ dose-to-cancer-mortality risk data are used to estimate benefit-to-radiation-risk ratios of the NLST, ITALUNG, and COSMOS trials. Data from those trials also are used to estimate benefit-to-radiation-risk ratios for longer-term LCS corresponding to scenarios recommended by United States Preventive Services Task Force and the American Cancer Society. RESULTS Including only screening doses, NLST benefit-to-radiation-risk ratios are 12:1 for males, 19:1 for females, and 16:1 overall. Including both screening and estimated follow-up doses, benefit-to-radiation-risk ratios for NLST are 9:1 for males, 13:1 for females, and 12:1 overall. For the ITALUNG trial, the benefit-to-radiation-risk ratio is 58-63:1. For the COSMOS trial, assuming sex-specific mortality benefits like those of the NELSON trial, the benefit-to-radiation-risk ratio is 23:1. Assuming a conservative 20% mortality benefit, annual screening in people 50-79 years old with a 20+ pack-year history of smoking has benefit-to-radiation-risk ratios of 23:1 (with follow-up doses adding 40% to screening doses) to 29:1 (with follow-up adding 10%) based on COSMOS dose data. CONCLUSIONS Based on linear, no threshold BEIR VII dose-risk estimates, benefit-to-radiation-risk ratios for LCS are highly favorable. Results emphasize the importance of using modern CT technologies, maintaining low diagnostic follow-up rates, and minimizing both screening and diagnostic follow-up doses. PLAIN LANGUAGE SUMMARY The benefits of lung cancer screening significantly outweigh estimates of future harms associated with exposure to radiation during screening and diagnostic follow-up examinations. Our findings emphasize the importance of lung cancer screening practices using state-of-the-art computed tomography scanners and specialized low-dose lung screening and diagnostic follow-up techniques.
Collapse
Affiliation(s)
- R Edward Hendrick
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert A Smith
- Early Cancer Detection Science Department, American Cancer Society, Kennesaw, Georgia, USA
| |
Collapse
|
6
|
Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, Wojcik A, Lundholm L. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11:1297942. [PMID: 38162630 PMCID: PMC10755029 DOI: 10.3389/fpubh.2023.1297942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Zuzana Kocibalova
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fabian Brückner
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Bosch de Basea M, Thierry-Chef I, Harbron R, Hauptmann M, Byrnes G, Bernier MO, Le Cornet L, Dabin J, Ferro G, Istad TS, Jahnen A, Lee C, Maccia C, Malchair F, Olerud H, Simon SL, Figuerola J, Peiro A, Engels H, Johansen C, Blettner M, Kaijser M, Kjaerheim K, Berrington de Gonzalez A, Journy N, Meulepas JM, Moissonnier M, Nordenskjold A, Pokora R, Ronckers C, Schüz J, Kesminiene A, Cardis E. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat Med 2023; 29:3111-3119. [PMID: 37946058 PMCID: PMC10719096 DOI: 10.1038/s41591-023-02620-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.
Collapse
Affiliation(s)
- Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Richard Harbron
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
| | - Graham Byrnes
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Maria-Odile Bernier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Lucian Le Cornet
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Jérémie Dabin
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Gilles Ferro
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Tore S Istad
- Norwegian Radiation and Nuclear Safety Authority, Oslo, Norway
| | - Andreas Jahnen
- Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlo Maccia
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), Sèvres, France
| | - Françoise Malchair
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), Sèvres, France
| | - Hilde Olerud
- Norwegian Radiation and Nuclear Safety Authority, Oslo, Norway
- Norwegian Radiation Protection Authority, Østerås, Norway
- University of South-Eastern Norway, Kongsberg, Norway
| | - Steven L Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jordi Figuerola
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Peiro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Hilde Engels
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Christoffer Johansen
- Cancer Late Effect Research Oncology Clinic (CASTLE), Center for Surgery and Cancer, Rigshospitalet, Copenhagen, Denmark
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Magnus Kaijser
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Amy Berrington de Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Institute of Cancer Research, London, UK
| | - Neige Journy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | | | - Monika Moissonnier
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Arvid Nordenskjold
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Roman Pokora
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Cecile Ronckers
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
- Pompeu Fabra University, Barcelona, Spain.
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Andersson B, Langen B, Liu P, Dávila López M. Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction. Front Oncol 2023; 13:1156009. [PMID: 37256187 PMCID: PMC10225714 DOI: 10.3389/fonc.2023.1156009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and underlies analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity and specificity of biomarker identification, increase analytical speed, and avoid multicollinearity and human bias. Aim To develop a resource-efficient ML framework for radiation biomarker discovery using gene expression data from irradiated normal tissues. Further, to identify biomarker panels predicting radiation dose with tissue specificity. Methods A strategic search in the Gene Expression Omnibus database identified a transcriptomic dataset (GSE44762) for normal tissues radiation responses (murine kidney cortex and medulla) suited for biomarker discovery using an ML approach. The dataset was pre-processed in R and separated into train and test data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor (GA/KNN) mandated optimization and 13 ML models were tested using the caret package in R. Biomarker performance was evaluated and visualized via Principal Component Analysis (PCA) and dose regression. The novelty of ML-identified biomarker panels was evaluated by literature search. Results Caret-based feature selection and ML methods vastly improved processing time over the GA approach. The KNN method yielded overall best performance values on train and test data and was implemented into the framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These candidates successfully categorized dose groups and tissues in PCA. Regression analysis showed that correlation between predicted and true dose was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively. Conclusion The caret framework is a powerful tool for radiation biomarker discovery optimizing performance with resource-efficiency for broad implementation in the field. The KNN-based approach identified Brf2, Ddit4l, and Gria3 mRNA as novel candidates that have been uncharacterized as radiation biomarkers to date. The biomarker panel showed good performance in dose and tissue separation and dose regression. Further training with larger cohorts is warranted to improve accuracy, especially for lower doses.
Collapse
Affiliation(s)
- Björn Andersson
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Peidi Liu
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Dávila López
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Brooks AL, Conca J, Glines WM, Waltar AE. How the Science of Radiation Biology Can Help Reduce the Crippling Fear of Low-level Radiation. HEALTH PHYSICS 2023; 124:407-424. [PMID: 36989223 DOI: 10.1097/hp.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
ABSTRACT The fear of radiation has been present almost since the discovery of radiation, but has intensified since the "dawn of the atomic age" over 75 y ago. This fear has often served as an impediment to the safe and beneficial uses of radiation and radioactive material. The underlying causes of such fear are varied, can be complex, and are often not associated with any scientific knowledge or understanding. The authors believe that a clear understanding of the current scientific knowledge and understanding of the effects of radiation exposure may be useful in helping to allay some of the fear of radiation. This manuscript attempts to (1) address several scientific questions that we believe have contributed to the fear of radiation, (2) review the data derived from research that can be used to address these questions, and (3) summarize how the results of such scientific research can be used to help address the fear of low-dose and low-dose-rate radiation. Several examples of how fear of radiation has affected public perception of radiological events are discussed, as well as a brief history of the etiology of radiation fear. Actions needed to reduce the public fear of radiation and help fulfill the full societal benefits of radiation and radioactive materials are suggested.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University, Chief Scientist, DOE Low Dose Program, 6802 W. 13th Avenue, Kennewick, WA 99338
| | - James Conca
- President UFA Ventures, Inc., Richland, WA, Science writer for Forbes
| | - Wayne M Glines
- Senior Technical Advisor (retired), Department of Energy, 2315 Camas Avenue, Richland, WA 99354
| | - Alan E Waltar
- Professor and Head (retired), Department of Nuclear Engineering, Texas A&M University, Past President, American Nuclear Society, 12449 Ingalls Creek Road, Peshastin, WA 98847
| |
Collapse
|
11
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
12
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
13
|
Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway. J Clin Med 2022; 11:jcm11071814. [PMID: 35407422 PMCID: PMC8999539 DOI: 10.3390/jcm11071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Catheter ablation (CA) is a safe and efficient treatment in patients with an atrioventricular accessory pathway (AP). Electroanatomical mapping (EAM) systems are useful during CA of AP, especially for reducing fluoroscopy. There are limited data about the feasibility of CA procedures performed with the use of the EAM system entirely without fluoroscopy in adults with AP. The aim of the study is to assess the feasibility, efficacy and safety of CA with the use of EAM without fluoroscopy, compared to CA with EAM and fluoroscopy in patients with AP. Methods: The study included 83 consecutive patients (age 38.25 ± 15.8 years), who were subjected to CA for AP. In 40 patients CA was performed with the use of EAM without fluoroscopy (EAM group), and in 43 patients CA was performed with EAM and fluoroscopy (control group). Baseline characteristics, procedure parameters and complications were obtained from the medical records. Data on permanent success rate was obtained after the mean follow-up time of 1 year. Primary outcomes were acute procedural success rate, long term success rate at 1-year follow-up and complications. Secondary outcomes were the procedure time and number of applications. Results: There were no statistically significant differences in baseline characteristics between the groups, except for the AP locations. Right-sided AP was more common in the EAM group, while left-sided AP was more common in the control group (p = 0.007 and p = 0.004, respectively). Acute procedural success was achieved in 38 patients (95.0%) in the EAM group and in 39 patients (90.7%) in the control group (p = 0.449). Long term success rate was achieved in 36 patients (90.0%) in the EAM group and in 36 (83.7%) patients in the control group (p = 0.399). There was one minor complication in the form of RBBB in the EAM group (p = 0.138). The mean procedure time was shorter in the EAM group compared to the control group (93.0 ± 58.3 min vs. 127.6 ± 57.5 min; p = 0.009). Conclusions: CA of both right-sided and left-sided AP completely guided by EAM without the use of fluoroscopy is feasible, safe and effective.
Collapse
|
14
|
Khan MGM, Wang Y. Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 2022; 11:cells11030356. [PMID: 35159169 PMCID: PMC8834401 DOI: 10.3390/cells11030356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cells exposed to ionizing radiation undergo a series of complex responses, including DNA damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation. However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression. A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions. In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings, we also illustrate the conceptual function and possible dichotomous role of p21Waf1, a transcriptional target of p53, in response to LDIR.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
15
|
Rühm W, Laurier D, Wakeford R. Cancer risk following low doses of ionising radiation - Current epidemiological evidence and implications for radiological protection. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503436. [PMID: 35094811 DOI: 10.1016/j.mrgentox.2021.503436] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 01/05/2023]
Abstract
Recent studies suggest that every year worldwide about a million patients might be exposed to doses of the order of 100 mGy of low-LET radiation, due to recurrent application of radioimaging procedures. This paper presents a synthesis of recent epidemiological evidence on radiation-related cancer risks from low-LET radiation doses of this magnitude. Evidence from pooled analyses and meta-analyses also involving epidemiological studies that, individually, do not find statistically significant radiation-related cancer risks is reviewed, and evidence from additional and more recent epidemiological studies of radiation exposures indicating excess cancer risks is also summarized. Cohorts discussed in the present paper include Japanese atomic bomb survivors, nuclear workers, patients exposed for medical purposes, and populations exposed environmentally to natural background radiation or radioactive contamination. Taken together, the overall evidence summarized here is based on studies including several million individuals, many of them followed-up for more than half a century. In summary, substantial evidence was found from epidemiological studies of exposed groups of humans that ionizing radiation causes cancer at acute and protracted doses above 100 mGy, and growing evidence for doses below 100 mGy. The significant radiation-related solid cancer risks observed at doses of several 100 mGy of protracted exposures (observed, for example, among nuclear workers) demonstrate that doses accumulated over many years at low dose rates do cause stochastic health effects. On this basis, it can be concluded that doses of the order of 100 mGy from recurrent application of medical imaging procedures involving ionizing radiation are of concern, from the viewpoint of radiological protection.
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.
| | - D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future.
Collapse
|
17
|
Oakley PA, Betz JW, Harrison DE, Siskin LA, Hirsh DW. Radiophobia Overreaction: College of Chiropractors of British Columbia Revoke Full X-Ray Rights Based on Flawed Study and Radiation Fear-Mongering. Dose Response 2021; 19:15593258211033142. [PMID: 34421439 PMCID: PMC8375354 DOI: 10.1177/15593258211033142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Fears over radiation have created irrational pressures to dissuade radiography use within chiropractic. Recently, the regulatory body for chiropractors practicing in British Columbia, Canada, the College of Chiropractors of British Columbia (CCBC), contracted Pierre Côté to review the clinical use of X-rays within the chiropractic profession. A "rapid review" was performed and published quickly and included only 9 papers, the most recent dating from 2005; they concluded, "Given the inherent risks of radiation, we recommend that chiropractors do not use radiographs for the routine and repeat evaluation of the structure and function of the spine." The CCBC then launched an immediate review of the use of X-rays by chiropractors in their jurisdiction. Member and public opinion were gathered but not presented to their members. On February 4, 2021, the College announced amendments to their Professional Conduct Handbook that revoked X-ray rights for routine/repeat assessment and management of patients with spine disorders. Here, we highlight current and historical evidence that substantiates that X-rays are not a public health threat. We also point out critical and insurmountable flaws in the single paper used to support irrational and unscientific policy that discriminates against chiropractors who practice certain forms of evidence-based X-ray-guided methods.
Collapse
Affiliation(s)
| | | | | | | | | | - International Chiropractors Association Rapid Response Research Review Subcommittee
- Private Practice, Newmarket, ON, Canada
- Private Practice, Boise, ID, USA
- CBP NonProfit, Inc, Eagle, ID, USA
- Private Practice, Green Brook, NJ, USA
- Private Practice, Laurel, MD, USA
| |
Collapse
|
18
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
19
|
Van Voorhies WA, Castillo HA, Thawng CN, Smith GB. The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans Nematode to Background and Below-Background Radiation Levels. Front Public Health 2020; 8:581796. [PMID: 33178665 PMCID: PMC7596186 DOI: 10.3389/fpubh.2020.581796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of the biological effects of low-level and below-background radiation are important in understanding the potential effects of radiation exposure in humans. To study this issue we exposed the nematode Caenorhabditis elegans to average background and below-background radiation levels. Two experiments were carried-out in the underground radiation biology laboratory at the Waste Isolation Pilot Plant (WIPP) in New Mexico USA. The first experiment used naïve nematodes with data collected within 1 week of being placed underground. The second experiment used worms that were incubated for 8 months underground at below background radiation levels. Nematode eggs were placed in two incubators, one at low radiation (ca.15.6 nGy/hr) and one supplemented with 2 kg of natural KCl (ca. 67.4 nGy/hr). Phenotypic variables measured were: (1) egg hatching success (2) body size from larval development to adulthood, (3) developmental time from egg to egg laying adult, and (4) egg laying rate of young adult worms. Transcriptome analysis was performed on the first experiment on 72 h old adult worms. Within 72 h of being underground, there was a trend of increased egg-laying rate in the below-background radiation treatment. This trend became statistically significant in the group of worms exposed to below-background radiation for 8 months. Worms raised for 8 months in these shielded conditions also had significantly faster growth rates during larval development. Transcriptome analyses of 72-h old naïve nematode RNA showed significant differential expression of genes coding for sperm-related proteins and collagen production. In the below-background radiation group, the genes for major sperm protein (msp, 42% of total genes) and sperm-related proteins (7.5%) represented 49.5% of the total genes significantly up-regulated, while the majority of down-regulated genes were collagen (col, 37%) or cuticle-related (28%) genes. RT-qPCR analysis of target genes confirmed transcriptomic data. These results demonstrate that exposure to below-background radiation rapidly induces phenotypic and transcriptomic changes in C. elegans within 72 h of being brought underground.
Collapse
Affiliation(s)
- Wayne A. Van Voorhies
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| | - Hugo A. Castillo
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States
| | - Cung N. Thawng
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| | - Geoffrey B. Smith
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
20
|
|
21
|
Langen B, Helou K, Forssell-Aronsson E. The IRI-DICE hypothesis: ionizing radiation-induced DSBs may have a functional role for non-deterministic responses at low doses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:349-355. [PMID: 32583290 PMCID: PMC7368863 DOI: 10.1007/s00411-020-00854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Low-dose ionizing radiation (IR) responses remain an unresolved issue in radiation biology and risk assessment. Accurate knowledge of low-dose responses is important for estimation of normal tissue risk in cancer radiotherapy or health risks from occupational or hazard exposure. Cellular responses to low-dose IR appear diverse and stochastic in nature and to date no model has been proposed to explain the underlying mechanisms. Here, we propose a hypothesis on IR-induced double-strand break (DSB)-induced cis effects (IRI-DICE) and introduce DNA sequence functionality as a submicron-scale target site with functional outcome on gene expression: DSB induction in a certain genetic target site such as promotor, regulatory element, or gene core would lead to changes in transcript expression, which may range from suppression to overexpression depending on which functional element was damaged. The DNA damage recognition and repair machinery depicts threshold behavior requiring a certain number of DSBs for induction. Stochastically distributed persistent disruption of gene expression may explain-in part-the diverse nature of low-dose responses until the repair machinery is initiated at increased absorbed dose. Radiation quality and complexity of DSB lesions are also discussed. Currently, there are no technologies available to irradiate specific genetic sites to test the IRI-DICE hypothesis directly. However, supportive evidence may be achieved by developing a computational model that combines radiation transport codes with a genomic DNA model that includes sequence functionality and transcription to simulate expression changes in an irradiated cell population. To the best of our knowledge, IRI-DICE is the first hypothesis that includes sequence functionality of different genetic elements in the radiation response and provides a model for the diversity of radiation responses in the (very) low dose regimen.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
22
|
Socol Y, Gofman Y, Yanovskiy M, Brosh B. Assessment of probable scenarios of radiological emergency and their consequences. Int J Radiat Biol 2020; 96:1390-1399. [PMID: 32687423 DOI: 10.1080/09553002.2020.1798544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Despite the vast amount of literature on radiological emergencies, to the best of our knowledge there is no systematic review of probable scenarios and their consequences. This work aimed for compiling such review. MATERIALS AND METHODS The authors comprised a Red Team - that is, simulated best efforts to inflict maximal damage to the society by various means of radiological attacks. Nuclear warfare including improvised nuclear devices is beyond the scope of this work. RESULTS The direct radiogenic health consequences of any conceivable radiological accident, natural or man-made, are much less dangerous than those which are usually perceived. In each scenario, direct health effects are only a small part of the damage caused by fear and over-reaction; the damage is somewhat independent of the small health effect predicted for most of the scenarios. The reason is that nuclear radiation has become perceptually connected with nuclear apocalypses. This connection has caused the emotional description of radiological emergencies to frequently substitute quantitative considerations. For example, Chernobyl and Fukushima became major humanitarian disasters not because of the radiation itself but because of the over-reaction of both the authorities and the public, that led to the unjustified relocation of hundreds of thousands of people. In Fukushima, the evacuation was not justified at all and in Chernobyl the evacuated zone should have been re-populated after 1 month. CONCLUSIONS It is vital to educate decision makers, first responders and the public about the factual extent of possible radiological consequences, as well as about the very real danger of over-reaction. Since the extent of the countermeasures deployed is unavoidably connected, in the eye of the public, with the extent of the danger, we suggest launching educational campaigns that explain the factual extent of the radiation risk, followed by easing regulations and narrowing safety margins. Such measures will probably be the most efficient method of countering radiological terrorism: by depriving any adversary of the most important ability which is to cause an over-reaction.
Collapse
Affiliation(s)
| | - Yuriy Gofman
- Jerusalem College of Technology, Jerusalem, Israel
| | | | - Binyamin Brosh
- Building Division, The Standards Institution of Israel and Department of Industrial Engineering, Ariel University, Ariel, Israel
| |
Collapse
|
23
|
Suárez Fernández JP. The downfall of the linear non-threshold model. Rev Esp Med Nucl Imagen Mol 2020; 39:303-315. [PMID: 32693978 DOI: 10.1016/j.remn.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
The linear non-threshold model (LNTM) is a theoretical dose-response function as a result of extrapolating the late effects of high-dose exposure to ionizing radiation to the low-dose range, but there is great uncertainty about its validity. The acceptance of LNTM as the dominant probabilistic model have survived to the present day and it is actually the cornerstone of current radiation protection policies. In the last decades, advances in molecular and evolutive biology, cancer immunology, and many epidemiological and animal studies have cast serious doubts about the reliability of the NLTM, as well as suggesting alternative models, like the hormetic theory. Considering the given evidences, a discussion between the involved scientific societies and the regulatory commissions is promtly required in order to to reach a redefiniton of theradiation protection basis, as it would be specially crucial in the medical field.
Collapse
Affiliation(s)
- J P Suárez Fernández
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España.
| |
Collapse
|
24
|
Yanovskiy M, Levi ON, Shaki YY, Socol Y. Consequences of a large-scale nuclear accident and guidelines for evacuation: a cost-effectiveness analysis. Int J Radiat Biol 2020; 96:1382-1389. [PMID: 32521190 DOI: 10.1080/09553002.2020.1779962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE We aimed for a quantitative evaluation that justifies guidelines for evacuation which take into consideration both the human and economic costs. To the best of our knowledge, such an evaluation has not been performed yet. The present guidelines published by the International Atomic Energy Agency (IAEA) are probably based on averting radiation risk only; IAEA did not cite any quantitative estimation of the human cost of evacuation. MATERIALS AND METHODS Quantitative estimation of the human and monetary costs of evacuation and, alternatively, the human and monetary costs of radiation exposure (non-evacuation). Associating human life with monetary value is psychologically difficult and somewhat challenging ethically; however, there is no escape from such an association (cost-effectiveness analysis) when making decisions regarding public health and safety, since extraneous public expenditures lead to a statistical life shortening. Estimating worst-case health consequences of irradiation, we used the conservative linear no-threshold (LNT) model because this model is widely used in spite of its controversy. In our estimation of the human cost of evacuation, we considered three factors: (a) direct loss of life (after Fukushima, 1% of the evacuees died within 2 years due to causes directly related to their evacuation), (b) loss of quality of life, and (c) loss of wealth leading to loss of life. The connection of economic loss with loss of life was performed according to the median cost-effectiveness threshold of 50-100 thousand USD per quality-adjusted life year. RESULTS Even according to mortality calculations based on LNT, the overall loss of life due to evacuation is higher than the loss of life due to irradiation if the population-averaged first-year radiation dose is 500 mSv or less. CONCLUSIONS Based on the performed analysis, we suggest avoiding evacuation if the projected first-year dose is below 500 mSv. This suggested action level is about five-fold higher than the action level presently recommended by the IAEA (100 mSv per year).
Collapse
Affiliation(s)
- Moshe Yanovskiy
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Ori Nissim Levi
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Yair Y Shaki
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Yehoshua Socol
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, Jerusalem, Israel
| |
Collapse
|
25
|
Kawanishi M, Yagi T. Exploration of biological phenomena of below-background natural radiation. THE NUCLEUS 2019. [DOI: 10.1007/s13237-018-0254-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Berthel E, Foray N, Ferlazzo ML. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation? Cancers (Basel) 2019; 11:cancers11070905. [PMID: 31261657 PMCID: PMC6678722 DOI: 10.3390/cancers11070905] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
The evaluation of radiation-induced (RI) risks is of medical, scientific, and societal interest. However, despite considerable efforts, there is neither consensual mechanistic models nor predictive assays for describing the three major RI effects, namely radiosensitivity, radiosusceptibility, and radiodegeneration. Interestingly, the ataxia telangiectasia mutated (ATM) protein is a major stress response factor involved in the DNA repair and signaling that appears upstream most of pathways involved in the three precited RI effects. The rate of the RI ATM nucleoshuttling (RIANS) was shown to be a good predictor of radiosensitivity. In the frame of the RIANS model, irradiation triggers the monomerization of cytoplasmic ATM dimers, which allows ATM monomers to diffuse in nucleus. The nuclear ATM monomers phosphorylate the H2AX histones, which triggers the recognition of DNA double-strand breaks and their repair. The RIANS model has made it possible to define three subgroups of radiosensitivity and provided a relevant explanation for the radiosensitivity observed in syndromes caused by mutated cytoplasmic proteins. Interestingly, hyper-radiosensitivity to a low dose and adaptive response phenomena may be also explained by the RIANS model. In this review, the relevance of the RIANS model to describe several features of the individual response to radiation was discussed.
Collapse
Affiliation(s)
- Elise Berthel
- Institut National de la Santé et de la Recherche Médicale, UA8, Radiations: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, UA8, Radiations: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France.
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale, UA8, Radiations: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France
| |
Collapse
|
27
|
Giuffrida D. Individual radiation protection: idea and research needs. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:641-646. [PMID: 30794994 DOI: 10.1088/1361-6498/ab0979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
28
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
29
|
Ferrero A, Takahashi N, Vrtiska TJ, Krambeck AE, Lieske JC, McCollough CH. Understanding, justifying, and optimizing radiation exposure for CT imaging in nephrourology. Nat Rev Urol 2019; 16:231-244. [PMID: 30728476 PMCID: PMC6447446 DOI: 10.1038/s41585-019-0148-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An estimated 4-5 million CT scans are performed in the USA every year to investigate nephrourological diseases such as urinary stones and renal masses. Despite the clinical benefits of CT imaging, concerns remain regarding the potential risks associated with exposure to ionizing radiation. To assess the potential risk of harmful biological effects from exposure to ionizing radiation, understanding the mechanisms by which radiation damage and repair occur is essential. Although radiation level and cancer risk follow a linear association at high doses, no strong relationship is apparent below 100 mSv, the doses used in diagnostic imaging. Furthermore, the small theoretical increase in risk of cancer incidence must be considered in the context of the clinical benefit derived from a medically indicated CT and the likelihood of cancer occurrence in the general population. Elimination of unnecessary imaging is the most important method to reduce imaging-related radiation; however, technical aspects of medically justified imaging should also be optimized, such that the required diagnostic information is retained while minimizing the dose of radiation. Despite intensive study, evidence to prove an increased cancer risk associated with radiation doses below ~100 mSv is lacking; however, concerns about ionizing radiation in medical imaging remain and can affect patient care. Overall, the principles of justification and optimization must remain the basis of clinical decision-making regarding the use of ionizing radiation in medicine.
Collapse
Affiliation(s)
- Andrea Ferrero
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Amy E Krambeck
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John C Lieske
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
30
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|
31
|
Abstract
OBJECTIVE Patient shielding is standard practice in diagnostic imaging, despite growing evidence that it provides negligible or no benefit and carries a substantial risk of increasing patient dose and compromising the diagnostic efficacy of an image. The historical rationale for patient shielding is described, and the folly of its continued use is discussed. CONCLUSION Although change is difficult, it is incumbent on radiologic technologists, medical physicists, and radiologists to abandon the practice of patient shielding in radiology.
Collapse
|
32
|
Yanovskiy M, Shaki YY, Socol Y. Ethics of Adoption and Use of the Linear No-Threshold Model. Dose Response 2019; 17:1559325818822602. [PMID: 30733652 PMCID: PMC6343444 DOI: 10.1177/1559325818822602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The linear no-threshold (LNT) model of ionizing radiation–induced cancer assumes that every increment of radiation dose, no matter how small, constitutes an increased cancer risk for humans. Linear no-threshold is presently the most widely applied model for radiation risk assessment. As such, it imposes very heavy burden on the society in both economic and human terms. This model, which was adopted in late 1950s in the wake of massive government investments in science, is controversial and raises important ethical issues. This article identifies 2 issues often missed: scientists usurping the role of policy makers and seeking funding and power. These issues should be considered together with the scientific controversy raging over the validity of the LNT model and the multiple other ethical issues regarding its ongoing use.
Collapse
Affiliation(s)
- Moshe Yanovskiy
- Jerusalem College of Technology, Jerusalem, Israel.,Gaidar Institute for Economic Policy, Moscow, Russia
| | - Yair Y Shaki
- Jerusalem College of Technology, Jerusalem, Israel
| | | |
Collapse
|
33
|
Malhotra A, Wu X, Chugh A, Mustafa A, Matouk CC, Gandhi D, Sanelli P. Risk of Radiation-Induced Cancer From Computed Tomography Angiography Use in Imaging Surveillance for Unruptured Cerebral Aneurysms. Stroke 2019; 50:76-82. [PMID: 30580703 DOI: 10.1161/strokeaha.118.022454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background and Purpose- Although computed tomography angiography (CTA) is an excellent, noninvasive imaging modality for surveillance of intracranial aneurysms, radiation concerns have been cited to restrict its use in surveillance imaging. The goal of this study was to estimate distributions of radiation-induced central nervous system cancer incidence from CTA surveillance for intracranial aneurysms, and the impact of frequency and duration of surveillance imaging using follow-up CTAs. Methods- Simulation-modeling approach was performed using data on CTA associated radiation risk. We used the Radiation Risk Assessment Tool, based on the data using the BEIR VII report (BEIR VII). Each CTA was assigned as a separate exposure event. Men and women, respectively, starting surveillance imaging at 30, 40, and 50 years and receiving annual CTAs were considered as separate subgroups. As a comparison, we also calculated the radiation-induced cancer risk in the same groups of patients but receiving CTAs every 2 and 5 years, respectively. Results- CTA-associated excess cancer risk per exposure increases relatively more rapidly with the first 10 exposures and plateaus after the 44th exposure. On average, per CTA incurs ≈0.0026% in excess lifetime cancer risk. Receiving CTA follow-up at a younger age, more frequent follow-up, longer surveillance period, and men are the major factors contributing to an elevated excess lifetime risk. In the highest risk group, male patient receiving annual CTA follow-ups from the age of 30 years, the excess lifetime risk is 0.115% at the age of 81 years. Conclusions- Radiation-induced brain cancer incidence associated with unruptured intracranial aneurysm surveillance strategies using CTA is low relative to the risk for aneurysmal rupture. Further cost-effectiveness/utility analyses might help assess this risk in the context of aneurysmal ruptures prevented by surveillance imaging.
Collapse
Affiliation(s)
- Ajay Malhotra
- From the Department of Radiology and Biomedical Imaging (A. Malhotra, X.W., A. Mustafa, C.C.M.), Yale School of Medicine
- The Imaging Clinical Effectiveness and Outcomes Research, Northwell Health, Long Island, NY (A. Malhotra)
| | - Xiao Wu
- From the Department of Radiology and Biomedical Imaging (A. Malhotra, X.W., A. Mustafa, C.C.M.), Yale School of Medicine
| | - Aditya Chugh
- University College of London, United Kingdom (A.C.)
| | - Adel Mustafa
- From the Department of Radiology and Biomedical Imaging (A. Malhotra, X.W., A. Mustafa, C.C.M.), Yale School of Medicine
| | - Charles C Matouk
- From the Department of Radiology and Biomedical Imaging (A. Malhotra, X.W., A. Mustafa, C.C.M.), Yale School of Medicine
- Department of Neurosurgery (C.C.M.), Yale School of Medicine
| | - Dheeraj Gandhi
- Interventional Neuroradiology; Nuclear Medicine, Neurology and Neurosurgery, University of Maryland School of Medicine, Baltimore (D.G.)
| | - Pina Sanelli
- Department of Radiology, Northwell Health and The Imaging Clinical Effectiveness and Outcomes Research, Long Island, NY (P.S.)
| |
Collapse
|
34
|
Doss M. Are We Approaching the End of the Linear No-Threshold Era? J Nucl Med 2018; 59:1786-1793. [PMID: 30262515 DOI: 10.2967/jnumed.118.217182] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The linear no-threshold (LNT) model for radiation-induced cancer was adopted by national and international advisory bodies in the 1950s and has guided radiation protection policies worldwide since then. The resulting strict regulations have increased the compliance costs for the various uses of radiation, including nuclear medicine. The concerns about low levels of radiation due to the absence of a threshold have also resulted in adverse consequences. Justification of the LNT model was based on the concept that low levels of radiation increase mutations and that increased mutations imply increased cancers. This concept may not be valid. Low-dose radiation boosts defenses such as antioxidants and DNA repair enzymes. The boosted defenses would reduce the endogenous DNA damage that would have occurred in the subsequent period, and so the result would be reduced DNA damage and mutations. Whereas mutations are necessary for causing cancer, they are not sufficient since the immune system eliminates cancer cells or keeps them under control. The immune system plays an extremely important role in preventing cancer, as indicated by the substantially increased cancer risk in immune-suppressed patients. Hence, since low-dose radiation enhances the immune system, it would reduce cancers, resulting in a phenomenon known as radiation hormesis. There is considerable evidence for radiation hormesis and against the LNT model, including studies of atomic bomb survivors, background radiation, environmental radiation, cancer patients, medical radiation, and occupational exposures. Though Commentary 27 published by the National Council on Radiation Protection and Measurements concluded that recent epidemiologic studies broadly support the LNT model, a critical examination of the studies has shown that they do not. Another deficiency of Commentary 27 is that it did not consider the vast available evidence for radiation hormesis. Other advisory body reports that have supported the LNT model have similar deficiencies. Advisory bodies are urged to critically evaluate the evidence supporting both sides and arrive at an objective conclusion on the validity of the LNT model. Considering the strength of the evidence against the LNT model and the weakness of the evidence for it, the present analysis indicates that advisory bodies would be compelled to reject the LNT model. Hence, we may be approaching the end of the LNT model era.
Collapse
Affiliation(s)
- Mohan Doss
- Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Puukila S, Thome C, Brooks AL, Woloschak G, Boreham DR. The influence of changing dose rate patterns from inhaled beta-gamma emitting radionuclide on lung cancer. Int J Radiat Biol 2018; 94:955-966. [PMID: 30257126 PMCID: PMC6759062 DOI: 10.1080/09553002.2018.1511929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose: Dose and dose rate are both appropriate for estimating risk from internally deposited radioactive materials. We investigated the role of dose rate on lung cancer induction in Beagle dogs following a single inhalation of strontium-90 (90Sr), cerium-144 (144Ce), yttrium-91 (91Y), or yttrium-90 (90Y). As retention of the radionuclide is dependent on biological clearance and physical half-life a representative quantity to describe this complex changing dose rate is needed. Materials and methods: Data were obtained from Beagle dog experiments from the Inhalation Toxicology Research Institute. The authors selected the dose rate at the effective half-life of each radionuclide (DRef). Results: Dogs exposed to DRef (1–100 Gy/day) died within the first year after exposure from acute lung disease. Dogs exposed at lower DRef (0.1–10 Gy/day) died of lung cancer. As DRef decreased further (<0.1 Gy/day 90Sr, <0.5 Gy/day 144Ce, <0.9 Gy/day 91Y, <8 Gy/day 90Y), survival and lung cancer frequency were not significantly different from control dogs. Conclusion: Radiation exposures resulting from inhalation of beta-gamma emitting radionuclides that decay at different rates based on their effective half-life, leading to different rates of decrease in dose rate and cumulative dose, is less effective in causing cancer than acute low linear energy transfer exposures of the lung.
Collapse
Affiliation(s)
- Stephanie Puukila
- a Department of Biology , Laurentian University , Sudbury , Canada.,b College of Medicine and Public Health , Flinders University , Adelaide , Australia
| | | | - Antone L Brooks
- c Department of Environmental Science , Retired Professor, Washington State University, Richland , WA , USA
| | - Gayle Woloschak
- d Northwestern University , Department of Radiation Oncology , Chicago , IL , USA
| | - Douglas R Boreham
- e Northern Ontario School of Medicine, Department of Medical Sciences , Sudbury , Canada.,f Bruce Power , Tiverton , Canada
| |
Collapse
|
36
|
Devic C, Ferlazzo ML, Foray N. Influence of Individual Radiosensitivity on the Adaptive Response Phenomenon: Toward a Mechanistic Explanation Based on the Nucleo-Shuttling of ATM Protein. Dose Response 2018; 16:1559325818789836. [PMID: 30093841 PMCID: PMC6081762 DOI: 10.1177/1559325818789836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023] Open
Abstract
The adaptive response (AR) phenomenon generally describes a protective effect caused by a "priming" low dose (dAR) delivered after a period of time (ΔtAR) before a higher "challenging" dose (DAR). The AR is currently observed in human cells if dAR, ΔtAR, and DAR belong to (0.001-0.5 Gy), (2-24 hours), (0.1-5 Gy), respectively. In order to investigate the molecular mechanisms specific to AR in human cells, we have systematically reviewed the experimental AR protocols, the cellular models, and the biological endpoints used from the 1980s. The AR appears to be preferentially observed in radiosensitive cells and is strongly dependent on individual radiosensitivity. To date, the model of the nucleo-shuttling of the ATM protein provides a relevant mechanistic explanation of the AR molecular and cellular events. Indeed, the priming dose dAR may result in the diffusion of a significant amount of active ATM monomers in the nucleus. These ATM monomers, added to those induced directly by the challenging dose DAR, may increase the efficiency of the response to DAR by a better ATM-dependent DNA damage recognition. Such mechanistic model would also explain why AR is not observed in radioresistant or hyperradiosensitive cells. Further investigations at low dose are needed to consolidate our hypotheses.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France.,Fibermetrix Company, Strasbourg, France
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| |
Collapse
|
37
|
Diagnostic Criteria for Assessment by General Practitioners of Patients Injured in Radiation Incidents and Cases of Radiological Terrorism. Disaster Med Public Health Prep 2018. [DOI: 10.1017/dmp.2017.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe general practitioner is an important figure in the provision of medical care during radiation incidents and cases of radiological terrorism. Knowing the nature of the radiation injury is essential for correct diagnosis and treatment. Insufficient knowledge of most physicians, and of general practitioners in particular, on the clinical manifestation of radiation injuries is the reason such conditions remain unrecognized and improperly treated. We suggest some simple diagnostic criteria for assessment of the injured by general practitioners, based on the results of our own studies and on the recommendations of prominent international organizations. (Disaster Med Public Health Preparedness. 2018;12:507–512)
Collapse
|
38
|
Diemberger I, Marazzi R, Casella M, Vassanelli F, Galimberti P, Luzi M, Borrelli A, Soldati E, Golzio PG, Fumagalli S, Francia P, Padeletti L, Botto G, Boriani G. The effects of gender on electrical therapies for the heart: procedural considerations, results and complications: A report from the XII Congress of the Italian Association on Arrhythmology and Cardiostimulation (AIAC). Europace 2018; 19:1911-1921. [PMID: 28520959 DOI: 10.1093/europace/eux034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
Use of cardiac implantable devices and catheter ablation is steadily increasing in Western countries following the positive results of clinical trials. Despite the advances in scientific knowledge, tools development, and techniques improvement we still have some grey area in the field of electrical therapies for the heart. In particular, several reports highlighted differences both in medical behaviour and procedural outcomes between female and male candidates. Women are referred later for catheter ablation of supraventricular arrhythmias, especially atrial fibrillation, leading to suboptimal results. On the opposite females present greater response to cardiac resynchronization, while the benefit of implantable defibrillator in primary prevention seems to be less pronounced. Differences on aetiology, clinical profile, and development of myocardial scarring are the more plausible causes. This review will discuss all these aspects together with gender-related differences in terms of acute/late complications. We will also provide useful hints on plausible mechanisms and practical procedural aspects.
Collapse
Affiliation(s)
- Igor Diemberger
- Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Policlinico S.Orsola-Malpighi, Via Massarenti n. 9, 40138, Bologna, Italy
| | - Raffaella Marazzi
- Department of Heart and Vessels, Ospedale di Circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| | - Michela Casella
- Cardiac Arrhythmia Research Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Vassanelli
- Chair and Unit of Cardiology, University of Brescia, Spedali Civili Hospital, Brescia, Italy
| | - Paola Galimberti
- Electrophysiology and Pacing Unit, Humanitas Clinical and Research Center, Rozzano-Milano, Italy
| | - Mario Luzi
- Cardiology Clinic, Marche Polytechnic University, Ancona, Italy
| | | | - Ezio Soldati
- Cardiac Thoracic and Vascular Department, University Hospital of Pisa, Italy
| | - Pier Giorgio Golzio
- Division of Cardiology, Department of Internal Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Stefano Fumagalli
- Intensive Care Unit, Geriatric Cardiology and Medicine Division, Experimental and Clinical Medicine Department, University of Florence and AOU Careggi, Florence, Italy
| | - Pietro Francia
- Cardiac Electrophysiology Unit, Cardiology, St. Andrea Hospital, University "Sapienza", Rome, Italy
| | - Luigi Padeletti
- University of Florence, Florence, Italy IRCCS MultiMedica, Sesto San Giovanni, Italy
| | - Gianluca Botto
- EP Unit, Department of Medicine, Sant'Anna Hospital, Como, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| |
Collapse
|
39
|
Pei H, Guo Z, Wang Z, Dai Y, Zheng L, Zhu L, Zhang J, Hu W, Nie J, Mao W, Jia X, Li B, Hei TK, Zhou G. RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle 2018; 17:1115-1123. [PMID: 29895215 PMCID: PMC6110603 DOI: 10.1080/15384101.2018.1480217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced lung injury (RILI) occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions, which ultimately result in carcinogenesis. However, the underlying mechanism is unknown. Here we show that Ras-related C3 botulinum toxin substrate 2 (RAC2) and transcription factor jun-B (JUNB) were upregulated in non-small cell carcinoma (NSCLC) tissues and were associated with poor prognoses for NSCLC patients. Ionizing radiation also caused increased expression of RAC2 in quiescent stage cells, and the reentry of quiescent cells into a new cell cycle. The activity of the serum response factor (SRF) was activated by RAC2 and other Rho family genes (RhoA, ROCK, and LIM kinase). Consequently, JUNB acted as an oncogene and induced abnormal proliferation of quiescent cells. Together, the results showed that RAC2 can be used as a target gene for radiation protection. A better understanding of the RAC2 and JUNB mechanisms in the molecular etiology of lung cancer will be helpful in reducing cancer risks and side effects during treatment of this disorder. Our study therefore provides a new perspective on the involvement of RAC2 and JUNB as oncogenes in the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- Radiotherapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianghong Jia
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Tom K. Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, NY, New York, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
40
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
41
|
Jin F, Luo HL, Zhou J, He YN, Liu XF, Zhong MS, Yang H, Li C, Li QC, Huang X, Tian XM, Qiu D, He GL, Yin L, Wang Y. Cancer risk assessment in modern radiotherapy workflow with medical big data. Cancer Manag Res 2018; 10:1665-1675. [PMID: 29970965 PMCID: PMC6021004 DOI: 10.2147/cmar.s164980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Modern radiotherapy (RT) is being enriched by big digital data and intensive technology. Multimodality image registration, intelligence-guided planning, real-time tracking, image-guided RT (IGRT), and automatic follow-up surveys are the products of the digital era. Enormous digital data are created in the process of treatment, including benefits and risks. Generally, decision making in RT tries to balance these two aspects, which is based on the archival and retrieving of data from various platforms. However, modern risk-based analysis shows that many errors that occur in radiation oncology are due to failures in workflow. These errors can lead to imbalance between benefits and risks. In addition, the exact mechanism and dose-response relationship for radiation-induced malignancy are not well understood. The cancer risk in modern RT workflow continues to be a problem. Therefore, in this review, we develop risk assessments based on our current knowledge of IGRT and provide strategies for cancer risk reduction. Artificial intelligence (AI) such as machine learning is also discussed because big data are transforming RT via AI.
Collapse
Affiliation(s)
- Fu Jin
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Huan-Li Luo
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Juan Zhou
- Forensic Identification Center, College of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, People’s Republic of China
| | - Ya-Nan He
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xian-Feng Liu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Ming-Song Zhong
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Han Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Chao Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Qi-Cheng Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xia Huang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xiu-Mei Tian
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Da Qiu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Guang-Lei He
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Li Yin
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
42
|
Kurtz MP, MacDougall RD, Nelson CP. Urology mythbusters: Radiation and radiophobia. J Pediatr Urol 2018; 14:291-295. [PMID: 29571659 DOI: 10.1016/j.jpurol.2018.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
In this episode of Mythbusters we critically examine the premise that there is strong biological and epidemiologic evidence that radiation exposure at levels associated with modern genitourinary diagnostic imaging increases the risk of subsequent malignancy, especially in children.
Collapse
Affiliation(s)
- M P Kurtz
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
| | - R D MacDougall
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - C P Nelson
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Seong KM, Kwon T, Park J, Youn B, Cha HJ, Kim Y, Moon C, Lee SS, Jin YW. Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea. Int J Radiat Biol 2018; 94:685-693. [PMID: 29775393 DOI: 10.1080/09553002.2018.1478163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. CONCLUSIONS After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Collapse
Affiliation(s)
- Ki Moon Seong
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - TaeWoo Kwon
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jina Park
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - BuHyun Youn
- b Department of Biological Sciences , Pusan National University , Busan , Republic of Korea
| | - Hyuk-Jin Cha
- c School of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yonghwan Kim
- d Department of Biological Sciences , Sookmyung Women's University , Seoul , Republic of Korea
| | - Changjong Moon
- e Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 PLUS Project Team , Chonnam National University , Gwangju , Republic of Korea
| | - Seung-Sook Lee
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea.,f Department of Pathology , Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Young Woo Jin
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
44
|
Patel A, Jackson B. Low-dose radiation use in diagnostic imaging and cancer therapy settings. Radiol Med 2018; 123:618-619. [PMID: 29671206 DOI: 10.1007/s11547-018-0892-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
Abstract
Current methods of radiation safety are characterized by age-old hypotheses that claim low doses of radiation, such as those received in diagnostic imaging and cancer treatment, increase the risk of cancer. The linear no-threshold hypothesis dates back to 70 years and has not been scientifically validated, yet it remains the driving force behind current regulatory policies concerning radiation exposure. The linear no-threshold hypothesis has birthed the "as low as reasonably achievable" concept that is commonly practiced in medical professions to limit radiation exposure. Both perpetuate an unscientific radiophobia stigma, while undermining the more likely result of stimulation of protective responses from the low doses of radiation. This article serves to reemphasize the fallacies of carcinogenic risk and to highlight the possible benefits of low-dose exposure in hopes of invalidating the concerns of physicians, the diagnostic imaging technologists, and patient populations that are subject to diagnostic imaging and cancer radiation therapies.
Collapse
Affiliation(s)
- Ashruta Patel
- Philadelphia College of Osteopathic Medicine - Georgia Campus, 625 Old Peachtree Rd NW, Suwanee, GA, 30024, USA.
| | - Breeanna Jackson
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, 430 School of Health Professions Building, 1705 University Boulevard, Birmingham, AL, 35294, USA
| |
Collapse
|
45
|
Rehman JU, Isa M, Ahmad N, Nasar G, Asghar HMNUHK, Gilani ZA, Chow JCL, Afzal M, Ibbott GS. Dosimetric, Radiobiological and Secondary Cancer Risk Evaluation in Head-and-Neck Three-dimensional Conformal Radiation Therapy, Intensity-Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy: A Phantom Study. J Med Phys 2018; 43:129-135. [PMID: 29962691 PMCID: PMC6020619 DOI: 10.4103/jmp.jmp_106_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/02/2022] Open
Abstract
This analysis estimated secondary cancer risks after volumetric modulated arc therapy (VMAT) and compared those risks to the risks associated with other modalities of head-and-neck (H&N) radiotherapy. Images of H&N anthropomorphic phantom were acquired with a computed tomography scanner and exported via digital imaging and communications in medicine (DICOM) standards to a treatment planning system. Treatment plans were performed using a VMAT dual-arc technique, a nine-field intensity-modulated radiation therapy (IMRT) technique, and a four-field three-dimensional conformal therapy (3DCRT) technique. The prescription dose was 66.0 Gy for all three techniques, but to accommodate the range of dosimeter responses, we delivered a single dose of 6.60 Gy to the isocenter. The lifetime risk for secondary cancers was estimated according to National Council on Radiation Protection and Measurements (NCRP) Report 116. VMAT delivered the lowest maximum doses to esophagus (23 Gy), and normal brain (40 Gy). In comparison, maximum doses for 3DCRT were 74% and 40%, higher than those for VMAT for the esophagus, and normal brain, respectively. The normal tissue complication probability and equivalent uniform dose for the brain (2.1%, 0.9%, 0.8% and 3.8 Gy, 2.6 Gy, 2.3 Gy) and esophagus (4.2%, 0.7%, 0.4% and 3.7 Gy, 2.2 Gy, 1.8 Gy) were calculated for the 3DCRT, IMRT and VMAT respectively. Fractional esophagus OAR volumes receiving more than 20 Gy were 3.6% for VMAT, 23.6% for IMRT, and 100% for 3DCRT. The calculations for mean doses, NTCP, EUD and OAR volumes suggest that the risk of secondary cancer induction after VMAT is lower than after IMRT and 3DCRT.
Collapse
Affiliation(s)
- Jalil Ur Rehman
- Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Muhammad Isa
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Ontario, Toronto, Canada
- Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Nisar Ahmad
- Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Gulfam Nasar
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - H. M. Noor Ul Huda Khan Asghar
- Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Zaheer Abbas Gilani
- Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - James C. L. Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Ontario, Toronto, Canada
| | - Muhammad Afzal
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
46
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
47
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Marsh RM. Arbitrary Radiation Dose “Limits” Must Not Set Standard of Care. J Am Coll Radiol 2018; 15:382-383. [DOI: 10.1016/j.jacr.2017.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
49
|
Itoh M, Kajihara R, Kato Y, Takano-Shimizu T, Inoue Y. Frequencies of chromosomal inversions in Drosophila melanogaster in Fukushima after the nuclear power plant accident. PLoS One 2018; 13:e0192096. [PMID: 29420572 PMCID: PMC5805227 DOI: 10.1371/journal.pone.0192096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
In order to investigate genetic impact of a large amount of radionuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, we surveyed 2,304 haploid genomes of Drosophila melanogaster collected in three localities in Fukushima in 2012 and 2013 for chromosomal inversions. No unique inversion was found in 298 genomes in 2012 and only two in 2,006 genomes in 2013. The observed frequencies were even lower than the long-term average frequency of unique inversions in Japan. The common cosmopolitan inversions were also examined in Fukushima, Kyoto, and Iriomote (Okinawa) in 2012. Among three samples in Fukushima, the flies in Iizaka, where environmental radiation level was the highest, showed the lowest frequency of In(2L)t, but the highest frequency of In(3R)P, contrary to the expectation of decreasing of their frequencies in higher polluted areas. These results suggest that, at this level of genetic analysis, Fukushima populations of D. melanogaster would not have been negatively impacted following the release of radionuclides. Transposable P-element mobility was not likely to induce DNA damage solely or synergistically with radioactivity, because their transposition activity was totally repressed in the Fukushima strains. However, it should be noted that, because of limitations in access to the exclusion zone, we could only sample the populations in areas of relatively low radioactive contamination (0.39-0.63 μSv/h). Therefore, the present study is likely to be underpowered to detect any effects that might be expected in heavily contaminated areas.
Collapse
Affiliation(s)
- Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryutaro Kajihara
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuko Kato
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
- Institute of Promotion of University Strategy, Global Excellence, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Yutaka Inoue
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Japan
| |
Collapse
|
50
|
Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol 2018; 48:21-30. [PMID: 29181580 DOI: 10.1007/s00247-017-4023-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/19/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
In the context of health care, risk assessment is the identification, evaluation and estimation of risk related to a particular clinical situation or intervention compared to accepted medical practice standards. The goal of risk assessment is to determine an acceptable level of risk for a given clinical treatment or intervention in association with the provided clinical circumstances for a patient or group of patients. In spite of the inherent challenges related to risk assessment in pediatric cross-sectional imaging, the potential risks of ionizing radiation and sedation/anesthesia in the pediatric population are thought to be quite small. Nevertheless both issues continue to be topics of discussion concerning risk and generate significant anxiety and concern for patients, parents and practicing pediatricians. Recent advances in CT technology allow for more rapid imaging with substantially lower radiation exposures, obviating the need for anesthesia for many indications and potentially mitigating concerns related to radiation exposure. In this review, we compare and contrast the potential risks of CT without anesthesia against the potential risks of MRI with anesthesia, and discuss the implications of this analysis on exam selection, providing specific examples related to neuroblastoma surveillance imaging.
Collapse
|