1
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
2
|
Nagesh PKB, Monette S, Shamu T, Giralt S, Jean SCS, Zhang Z, Fuks Z, Kolesnick R. Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies. Int J Radiat Oncol Biol Phys 2024; 120:558-569. [PMID: 37815783 PMCID: PMC10947531 DOI: 10.1016/j.ijrobp.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. METHODS AND MATERIALS For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GI-ARS lethal dose for this mouse strain. RESULTS Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these findings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. CONCLUSIONS Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tambudzai Shamu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Division of Hematologic Malignancies, Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha C St Jean
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Champalimaud Center, Lisbon, Portugal
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
3
|
Kusumoto J, Muraki Y, Sakakibara A, Furudoi S, Akashi M. Effect of Statins on Patients With Osteoradionecrosis of the Jaw. J Oral Maxillofac Surg 2024:S0278-2391(24)00687-6. [PMID: 39208868 DOI: 10.1016/j.joms.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoradionecrosis of the jaw (ORN) is a late complication of radiation therapy. Radiation-induced fibrosis is the most likely mechanism for developing ORN, and statins are effective against radiation-induced fibrosis. However, no reports have indicated the direct effectiveness of statins in treating ORN. PURPOSE This study aimed to measure the association between statin exposure and ORN disease resolution. STUDY DESIGN, SETTING, SAMPLE This retrospective cohort study included patients with ORN diagnosed between January 2008 and December 2020 at the Hospital's Department of Oral and Maxillofacial Surgery. Patients who were immunocompromised or followed up for < 6 months were excluded. PREDICTOR VARIABLE The predictor variable was statin exposure, which was defined as the use of statins for dyslipidemia. MAIN OUTCOME VARIABLE The main outcome variable was ORN disease progression status (good prognosis). Patients who showed full recovery and improvement were included in the good prognosis group, and those who showed invariance and deterioration were included in the poor prognosis group. COVARIATES We analyzed the clinicodemographic including the age of onset, sex, history of smoking, alcohol consumption, history of chemotherapy, tumor site, association with dental treatment, location (maxilla or mandible), the time to ORN onset from radiation therapy, and stage of ORN, and treatment characteristics including hyperbaric oxygen therapy, long-term macrolide administration, and sequestrectomy. ANALYSES We analyzed the association between statin exposure or covariates and time to ORN improvement using bivariate and multivariate Cox regression. The significance level was set at P = .05. RESULTS We analyzed 102 patients, and the improvement rate was 32.4%. The favorable prognostic factors were statin exposure (adjusted hazard ratio [HR], 3.71; 95% confidence interval [CI], 1.62 to 8.50; P = .002), onset in the maxilla (HR, 2.15; 95% CI, 1.02 to 4.55; P = .045), and stage 1 of ORN (HR, 2.65; 95% CI, 1.20 to 5.83; P = .016). CONCLUSION AND RELEVANCE In this study, statin exposure, onset in the maxilla, and stage 1 of Lyons's classification were favorable prognostic factors for ORN. Although this study's findings were insufficient to recommend statin use for ORN, statins may be a novel and effective treatment for ORN.
Collapse
Affiliation(s)
- Junya Kusumoto
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yumi Muraki
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akiko Sakakibara
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan; Department Head, Department of Oral and Maxillofacial Surgery, Mitsubishi Kobe Hospital, Kobe, Japan
| | - Shungo Furudoi
- Department Head, Department of Oral Surgery, Konan Medical Center, Kobe, Japan
| | - Masaya Akashi
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan; Professor, Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Dent RA. Management of Casualties from Radiation Events. EUROPEAN BURN JOURNAL 2023; 4:584-595. [PMID: 39600027 PMCID: PMC11571868 DOI: 10.3390/ebj4040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2024]
Abstract
Radiation events such as nuclear war, nuclear reactor incidents, and the deployment of a radioactive dispersal device (dirty bomb) are all significant threats in today's world. Each of these events would bring significant challenges to clinicians caring for patients with burns and traumatic injuries who are also contaminated or irradiated. The result of a nuclear exchange in a densely populated area could result in thousands of patients presenting with trauma, burns, and combined injury (trauma and burn in an irradiated patient). In this review, we will discuss the three major types of ionizing radiation: alpha, beta, and gamma, and their respective health hazards and biological effects. Additionally, we will discuss the types of burn injuries in a nuclear disaster, caring for the contaminated patient, and managing the combined injury of burn trauma with acute radiation syndrome. The reader will also be left with an understanding of how to prioritize lifesaving interventions, estimate the absorbed dose of radiation, and predict the onset of acute radiation syndrome. While some animal models for morbidity and mortality exist, there is limited modern day human data for patients with combined injury and burns associated with a nuclear disaster due to the infrequent nature of these events. It is extremely important to continue multidisciplinary research on the prevention of, preparedness for, and the response to nuclear events. Furthermore, continued exploration of novel treatments for radiation induced burns and the management of combined injury is necessary.
Collapse
Affiliation(s)
- Robert Alan Dent
- 85th WMD Civil Support Team, Utah Army National Guard, 1640 North 2200 West, Salt Lake City, UT 84116, USA
| |
Collapse
|
5
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
6
|
Li J, Jiang Y, Yu H, Liu L, Wang Q, Ju H, Zhang X, Wang W, Yin X, Wu Q, Xiao J, Miao J, Ye X, Li T, Tian H, Xue W. Effects of UCMSCs Delivered through Different Transplantation Approaches on Acute Radiation Enteritis in Rats. Cell Transplant 2021; 30:9636897211025230. [PMID: 34318709 PMCID: PMC8323445 DOI: 10.1177/09636897211025230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiation enteritis is the most common and serious complication of abdominal or
pelvic radiation therapy. Mesenchymal stem cells (MSCs), as well as cell
protection agents, inhibit apoptosis and promote the proliferation of injured
tissues. 3 human umbilical cords MSCs (UCMSCs) were injected into the tail vein
or peritoneal cavity of a rat model of radiation enteritis. The temporary
protective effect was assessed by identification of donor cells, detection of
cellular immune parameters and inflammatory cytokine levels, quantitation of
jejunum mucosal preservation and examination of the rat remaining life. Only the
rats in the intraperitoneal injection group exhibited a few positive donor cells
7 days after transplantation. CD4+/CD8+ T cells, a cellular immune parameter, decreased in the abdominal
exudate of intraperitoneal injection group, compared with the model-only control
and tail vein groups (both P < .05). Both serum and
abdominal exudate TNF-α and IL-6 levels in the intraperitoneally injected rats
rapidly decreased and were significantly different from those in the model-only
control and tail vein injection groups (all P < .05).
Mucosal surface area and survival time increased in the intraperitoneal
injection group compared with the vehicle and tail vein injection groups (all
P = .000). Therefore, the administration of UCMSCs with
intraperitoneal injection approach postponed death in a rat model of radiation
enteritis, which was associated with reduced serum levels of proinflammatory
cytokines (TNF-α, IL-6). However, UCMSCs injected via the tail vein triggered an
intense cellular immune response in the serum that adversely affects their
survival. This treatment failed to suppress circulating serum and abdominal
exudate levels of TNF-α and IL-6 and could not provide a therapeutic benefit for
prolonging life against acute radiation enteritis.
Collapse
Affiliation(s)
- Jun Li
- Medical School of Ningde Normal University, Ningde, China.,Medical School of Kunming University, Kunming, China
| | | | - Hua Yu
- Medical School of Kunming University, Kunming, China
| | - Lejiang Liu
- Medical School of Kunming University, Kunming, China
| | - Qiang Wang
- Cell Biological Therapy Center, and Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, and National and Local Joint Engineering Laboratory of Stem Cell and Immunocyte Biomedical Technology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, China
| | - Hongpin Ju
- Medical School of Kunming University, Kunming, China
| | - Xuemei Zhang
- Medical School of Kunming University, Kunming, China
| | - Wenqi Wang
- Medical School of Kunming University, Kunming, China
| | - Xudong Yin
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, China
| | - Jianzhong Xiao
- Medical School of Ningde Normal University, Ningde, China
| | - Jianrong Miao
- Medical School of Ningde Normal University, Ningde, China
| | - Xiao Ye
- Medical School of Ningde Normal University, Ningde, China
| | - Tianyu Li
- Class 1, Grade 2019, postgraduate student majoring in physics, School of Physical Science and Technology, Kunming University, Kunming, China
| | - Hui Tian
- Class 1, Grade 2018, Undergraduate majoring in chemistry teacher education, School of Chemistry and Chemical Engineering, Kunming University, Kunming, China
| | - Wei Xue
- Medical School of Kunming University, Kunming, China
| |
Collapse
|
7
|
Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 2021; 55:595-625. [PMID: 34181503 DOI: 10.1080/10715762.2021.1876854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
8
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
9
|
Metformin Protects the Rat Small Intestine Against Radiation Enteritis. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.67352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
10
|
Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, Lu Y, Liu B, Qin S. Radiation-induced intestinal damage: latest molecular and clinical developments. Future Oncol 2019; 15:4105-4118. [PMID: 31746639 DOI: 10.2217/fon-2019-0416] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To systematically review the prophylactic and therapeutic interventions for reducing the incidence or severity of intestinal symptoms among cancer patients receiving radiotherapy. Materials & methods: A literature search was conducted in the PubMed database using various search terms, including 'radiation enteritis', 'radiation enteropathy', 'radiation-induced intestinal disease', 'radiation-induced intestinal damage' and 'radiation mucositis'. The search was limited to in vivo studies, clinical trials and meta-analyses published in English with no limitation on publication date. Other relevant literature was identified based on the reference lists of selected studies. Results: The pathogenesis of acute and chronic radiation-induced intestinal damage as well as the prevention and treatment approaches were reviewed. Conclusion: There is inadequate evidence to strongly support the use of a particular strategy to reduce radiation-induced intestinal damage. More high-quality randomized controlled trials are required for interventions with limited evidence suggestive of potential benefits.
Collapse
Affiliation(s)
- Lina Lu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Wenjun Li
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Lihua Chen
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Qiong Su
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yanbin Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yongjuan Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Bin Liu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
11
|
Pathak R, Kumar VP, Hauer-Jensen M, Ghosh SP. Enhanced Survival in Mice Exposed to Ionizing Radiation by Combination of Gamma-Tocotrienol and Simvastatin. Mil Med 2019; 184:644-651. [PMID: 30901461 DOI: 10.1093/milmed/usy408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation exposure is a major concern for active military service members, as well as civilian population. Considering that the exposure is not predictable, it is imperative that strategies to counteract radiation damage must be discovered. Recent in vitro studies performed in our laboratory demonstrated that the vitamin E analog gamma-tocotrienol (GT3) in combination with cholesterol-lowering drugs (Statins), synergistically induced endothelial thrombomodulin, an anticoagulant with radio-protective efficacy. It was hypothesized that the combination of treatment with both GT3 along with Statins would provide better radiation protection in vivo than each drug individually. CD2F1 mice were injected subcutaneously with either vehicle or single dose of GT3 (200 mg/kg body weight) 24 hours before irradiation followed by oral or subcutaneous administration of various doses of simvastatin (25, 50, and 100 mg/kg body weight) before exposure to lethal doses (11.5 and 12 Gy) of Cobalt-60 (60Co) gamma-irradiation. The combined treatment group exhibited enhanced radiation lethality protection substantially, accelerated white blood cell recovery, and augmented restoration of bone marrow cellularity when compared to the animals treated with either drug exclusively. This information clearly suggests that combined treatment could be used as a safeguard for military personnel from exposure to harmful ionizing radiation.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR
| | - Vidya Prasanna Kumar
- Armed Forces Radiobiology Research Institute, USUHS, 4555 South Palmer Road Bldg 42, Bethesda, MD
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR
| | - Sanchita Purohit Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, 4555 South Palmer Road Bldg 42, Bethesda, MD
| |
Collapse
|
12
|
Impact of Unilateral Orbital Radiotherapy on the Structure and Function of Bilateral Human Meibomian Gland. J Ophthalmol 2018; 2018:9308649. [PMID: 30498598 PMCID: PMC6222211 DOI: 10.1155/2018/9308649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background Radiotherapy (RT) has widely been used to treat ocular tumors, yet the impact of orbital radiation to the meibomian gland has rarely been studied. Our study aims at evaluating the bilateral meibomian gland structure and function 12 months after unilateral orbital RT in patients with ocular tumors. Methods An observational case-control study. A total of 10 eyes 12 months after unilateral orbital RT, 10 contralateral eyes, and 10 normal controls were enrolled. Meibomian gland loss (MGL), lipid layer thickness (LLT), tear film breakup time (TBUT), Schirmer I test, and cornea fluorescein staining were measured. Ocular Surface Disease Index (OSDI) of the RT patients was assessed and compared with normal controls. Results The cumulative median radiotherapy dosage for the patients was 45 (range: 30, 70) Gy. The OSDI score of the patients was significantly greater than the normal controls (22.92 (range: 10.42, 37.50) vs 6.25 (range: 2.08, 10.42), p ≤ 0.001). Significant differences of upper MGL, lower MGL, LLT, and TBUT were found between the diseased eyes and normal controls (37.79% (range: 12.87, 92.41) vs 12.63% (range: 6.13, 42.34), p=0.007; 61.31% (range: 44.67, 87.98) vs 15.53% (range: 7.65, 45.13), p ≤ 0.001; 40 ICU (range: 23, 100) vs 81.5 ICU (range: 54, 100), p=0.007; 3.5 s (range: 2, 8) vs 6.5 s (range: 5, 10), p=0.002). The upper MGL and TBUT of the contralateral eyes were also considerably damaged compared with normal controls. Lower eyelid MGL and cornea staining score of the diseased eye were significantly correlated with radiation dosage (r = 0.913 and 0.680; p=0.001 and 0.044, respectively). Conclusion Orbital radiotherapy could cause significant damage to the meibomian gland structure and function, not only the diseased eyes but also the contralateral eyes.
Collapse
|
13
|
Lawrie TA, Green JT, Beresford M, Wedlake L, Burden S, Davidson SE, Lal S, Henson CC, Andreyev HJN. Interventions to reduce acute and late adverse gastrointestinal effects of pelvic radiotherapy for primary pelvic cancers. Cochrane Database Syst Rev 2018; 1:CD012529. [PMID: 29360138 PMCID: PMC6491191 DOI: 10.1002/14651858.cd012529.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND An increasing number of people survive cancer but a significant proportion have gastrointestinal side effects as a result of radiotherapy (RT), which impairs their quality of life (QoL). OBJECTIVES To determine which prophylactic interventions reduce the incidence, severity or both of adverse gastrointestinal effects among adults receiving radiotherapy to treat primary pelvic cancers. SEARCH METHODS We conducted searches of CENTRAL, MEDLINE, and Embase in September 2016 and updated them on 2 November 2017. We also searched clinical trial registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions to prevent adverse gastrointestinal effects of pelvic radiotherapy among adults receiving radiotherapy to treat primary pelvic cancers, including radiotherapy techniques, other aspects of radiotherapy delivery, pharmacological interventions and non-pharmacological interventions. Studies needed a sample size of 20 or more participants and needed to evaluate gastrointestinal toxicity outcomes. We excluded studies that evaluated dosimetric parameters only. We also excluded trials of interventions to treat acute gastrointestinal symptoms, trials of altered fractionation and dose escalation schedules, and trials of pre- versus postoperative radiotherapy regimens, to restrict the vast scope of the review. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodology. We used the random-effects statistical model for all meta-analyses, and the GRADE system to rate the certainty of the evidence. MAIN RESULTS We included 92 RCTs involving more than 10,000 men and women undergoing pelvic radiotherapy. Trials involved 44 different interventions, including radiotherapy techniques (11 trials, 4 interventions/comparisons), other aspects of radiotherapy delivery (14 trials, 10 interventions), pharmacological interventions (38 trials, 16 interventions), and non-pharmacological interventions (29 trials, 13 interventions). Most studies (79/92) had design limitations. Thirteen studies had a low risk of bias, 50 studies had an unclear risk of bias and 29 studies had a high risk of bias. Main findings include the following:Radiotherapy techniques: Intensity-modulated radiotherapy (IMRT) versus 3D conformal RT (3DCRT) may reduce acute (risk ratio (RR) 0.48, 95% confidence interval (CI) 0.26 to 0.88; participants = 444; studies = 4; I2 = 77%; low-certainty evidence) and late gastrointestinal (GI) toxicity grade 2+ (RR 0.37, 95% CI 0.21 to 0.65; participants = 332; studies = 2; I2 = 0%; low-certainty evidence). Conformal RT (3DCRT or IMRT) versus conventional RT reduces acute GI toxicity grade 2+ (RR 0.57, 95% CI 0.40 to 0.82; participants = 307; studies = 2; I2 = 0%; high-certainty evidence) and probably leads to less late GI toxicity grade 2+ (RR 0.49, 95% CI 0.22 to 1.09; participants = 517; studies = 3; I2 = 44%; moderate-certainty evidence). When brachytherapy (BT) is used instead of external beam radiotherapy (EBRT) in early endometrial cancer, evidence indicates that it reduces acute GI toxicity (grade 2+) (RR 0.02, 95% CI 0.00 to 0.18; participants = 423; studies = 1; high-certainty evidence).Other aspects of radiotherapy delivery: There is probably little or no difference in acute GI toxicity grade 2+ with reduced radiation dose volume (RR 1.21, 95% CI 0.81 to 1.81; participants = 211; studies = 1; moderate-certainty evidence) and maybe no difference in late GI toxicity grade 2+ (RR 1.02, 95% CI 0.15 to 6.97; participants = 107; studies = 1; low-certainty evidence). Evening delivery of RT may reduce acute GI toxicity (diarrhoea) grade 2+ during RT compared with morning delivery of RT (RR 0.51, 95% CI 0.34 to 0.76; participants = 294; studies = 2; I2 = 0%; low-certainty evidence). There may be no difference in acute (RR 2.22, 95% CI 0.62 to 7.93, participants = 110; studies = 1) and late GI toxicity grade 2+ (RR 0.44, 95% CI 0.12 to 1.65; participants = 81; studies = 1) between a bladder volume preparation of 1080 mls and that of 540 mls (low-certainty evidence). Low-certainty evidence on balloon and hydrogel spacers suggests that these interventions for prostate cancer RT may make little or no difference to GI outcomes.Pharmacological interventions: Evidence for any beneficial effects of aminosalicylates, sucralfate, amifostine, corticosteroid enemas, bile acid sequestrants, famotidine and selenium is of a low or very low certainty. However, evidence on certain aminosalicylates (mesalazine, olsalazine), misoprostol suppositories, oral magnesium oxide and octreotide injections suggests that these agents may worsen GI symptoms, such as diarrhoea or rectal bleeding.Non-pharmacological interventions: Low-certainty evidence suggests that protein supplements (RR 0.23, 95% CI 0.07 to 0.74; participants = 74; studies = 1), dietary counselling (RR 0.04, 95% CI 0.00 to 0.60; participants = 74; studies = 1) and probiotics (RR 0.43, 95% CI 0.22 to 0.82; participants = 923; studies = 5; I2 = 91%) may reduce acute RT-related diarrhoea (grade 2+). Dietary counselling may also reduce diarrhoeal symptoms in the long term (at five years, RR 0.05, 95% CI 0.00 to 0.78; participants = 61; studies = 1). Low-certainty evidence from one study (108 participants) suggests that a high-fibre diet may have a beneficial effect on GI symptoms (mean difference (MD) 6.10, 95% CI 1.71 to 10.49) and quality of life (MD 20.50, 95% CI 9.97 to 31.03) at one year. High-certainty evidence indicates that glutamine supplements do not prevent RT-induced diarrhoea. Evidence on various other non-pharmacological interventions, such as green tea tablets, is lacking.Quality of life was rarely and inconsistently reported across included studies, and the available data were seldom adequate for meta-analysis. AUTHORS' CONCLUSIONS Conformal radiotherapy techniques are an improvement on older radiotherapy techniques. IMRT may be better than 3DCRT in terms of GI toxicity, but the evidence to support this is uncertain. There is no high-quality evidence to support the use of any other prophylactic intervention evaluated. However, evidence on some potential interventions shows that they probably have no role to play in reducing RT-related GI toxicity. More RCTs are needed for interventions with limited evidence suggesting potential benefits.
Collapse
Affiliation(s)
- Theresa A Lawrie
- Cochrane Gynaecological, Neuro-oncology and Orphan Cancer Group, 1st Floor Education Centre, Royal United Hospital, Combe Park, Bath, UK, BA1 3NG
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patyar RR, Patyar S. Role of drugs in the prevention and amelioration of radiation induced toxic effects. Eur J Pharmacol 2017; 819:207-216. [PMID: 29221951 DOI: 10.1016/j.ejphar.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches.
Collapse
Affiliation(s)
| | - Sazal Patyar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
15
|
Van Wyhe RD, Rahal OM, Woodward WA. Effect of statins on breast cancer recurrence and mortality: a review. BREAST CANCER-TARGETS AND THERAPY 2017; 9:559-565. [PMID: 29238220 PMCID: PMC5716320 DOI: 10.2147/bctt.s148080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, are medications that have been used for decades to lower cholesterol and to prevent or treat cardiovascular diseases. Since their approval by the US Food and Drug Administration in the 1980s, other potential uses for statins have been speculated on and explored. Basic science and clinical research suggest that statins are also effective in the management of breast cancer. Specifically, in various breast cancer cell lines, statins increase apoptosis and radiosensitivity, inhibit proliferation and invasion, and decrease the metastatic dissemination of tumors. Clinical trials in breast cancer patients support these laboratory findings by demonstrating improved local control and a mortality benefit for statin users. A role for statins in the management of aggressive breast cancers with poor outcomes – namely, inflammatory breast cancer and triple-negative breast cancer – is particularly implicated. However, data exist showing that statins may actually promote invasive breast disease after long-term use and thus should be prescribed cautiously. Furthermore, a general consensus on the type of statin that should be administered, for how long, and when in relation to time of diagnosis is lacking. Given their low toxicity profile, affordability, and ease of use, consideration of statins as a therapy for breast cancer patients is imminent. In this review, we summarize current evidence regarding statins and clinical breast cancer outcomes, as well as discuss potential future studies that could shed light on this increasingly relevant topic.
Collapse
Affiliation(s)
- Renae D Van Wyhe
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center.,Baylor College of Medicine, Houston, TX, USA
| | - Omar M Rahal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
16
|
Silibinin attenuates radiation-induced intestinal fibrosis and reverses epithelial-to-mesenchymal transition. Oncotarget 2017; 8:69386-69397. [PMID: 29050211 PMCID: PMC5642486 DOI: 10.18632/oncotarget.20624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy is a common treatment for cancer patients, but its use is often restricted by the tolerance of normal tissue. As cancer patients live longer, delayed radiation effects on normal tissue have become a concern. Radiation-induced enteropathy, including inflammatory bowel disease and fibrosis, are major issues for long-term cancer survivors. To investigate whether silibinin attenuates delayed radiation-induced intestinal injury in mice, we focused on intestinal fibrotic changes. Silibinin improved delayed radiation injuries in mice in association with decreased collagen deposition within the intestines and deceased transforming growth factor (TGF)-β1 levels in the intestine and plasma. Treating mice bearing CT26 mouse colon cancer tumors with both silibinin and radiation stimulated tumor regression more than radiation alone. We also investigated the effect of silibinin on the radiation-induced epithelial-to-mesenchymal transition (EMT), the primary mechanism of fibrosis. We assessed changes in E-cadherin, N-cadherin, and α-smooth muscle actin expression, and demonstrated that silibinin attenuates radiation-induced EMT. Irradiating intestinal epithelial cells increased TGF-β1 levels, but silibinin suppressed TGF-β1 expression by inhibiting Smad2/3 phosphorylation. These results suggest silibinin has the potential to serve as a useful therapeutic agent in patients with radiation-induced intestinal fibrosis.
Collapse
|
17
|
Miller AC, Rivas R, McMahon R, Miller K, Tesoro L, Villa V, Yanushkevich D, Lison P. Radiation protection and mitigation potential of phenylbutyrate: delivered via oral administration. Int J Radiat Biol 2017; 93:907-919. [DOI: 10.1080/09553002.2017.1350301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexandra C. Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
- Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Rafael Rivas
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Robert McMahon
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Karvelisse Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Leonard Tesoro
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Vilmar Villa
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Daminik Yanushkevich
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Paul Lison
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| |
Collapse
|
18
|
Yang H, Huang F, Tao Y, Zhao X, Liao L, Tao X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int J Mol Med 2017; 40:762-770. [PMID: 28677744 PMCID: PMC5547942 DOI: 10.3892/ijmm.2017.3047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Simvastatin is a HMG-CoA reductase inhibitor widely used to lower plasma cholesterol and to protect against cardiovascular risk factors. The aim of this study was to investigate whether simvastatin attenuates ionizing radiation-induced damage in the mouse thymus and to elucidate the possible mechanisms invovled. For this purpose, male C57BL/6J mice aged 6 weeks were used and exposed to 4 Gy 60Co γ-radiation with or without simvastatin (20 mg/kg/day, for 14 days). Apoptosis was determined by terminal deoxynucle-otidyltransferase-mediated dUTP nick-end labeling (TUNEL) assay or transmission electron microscopy (TEM) examination. Thymocytes were also isolated and incubated in DMEM supplemented with 10% FBS at 37°C and exposed to 8 Gy 60Co γ-radiation with or without simvastatin (20 µM). The expression levels of Bcl-2, p53, p-p53, AKT, sirtuin 1 and poly(ADP-ribose) polymerase (PARP) were determined by western blot analysis. TUNEL and TEM examination revealed that simvastatin treatment significantly mitigated ionizing radiation-induced apoptosis in the mouse thymus. It was also found that simvastatin treatment increased AKT/sirtuin 1 expression following exposure to ionizing radiation in vivo and in vitro. In the in vivo model, but not in the in vitro model, Bcl-2 and PARP expression was augmented and that of p53/p-p53 decreased following treatment with simvastatin. On the whole, our findings indicate that simvastatin exerts a protective effect against ionizing radiation-induced damage in the mouse thymus, which may be partially attributed to the activation of the AKT/sirtuin 1 pathway.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fei Huang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yulong Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xinbin Zhao
- School of Pharmaceutical Sciences Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Lina Liao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
19
|
McLaughlin MF, Donoviel DB, Jones JA. Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight. Aerosp Med Hum Perform 2017. [PMID: 28641684 DOI: 10.3357/amhp.4735.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the space environment, the traditional radioprotective principles of time, distance, and shielding become difficult to implement. Additionally, the complex radiation environment inherent in space, the chronic exposure timeframe, and the presence of numerous confounding variables complicate the process of creating appropriate risk models for astronaut exposure. Pharmaceutical options hold tremendous promise to attenuate acute and late effects of radiation exposure in the astronaut population. Pharmaceuticals currently approved for other indications may also offer radiation protection, modulation, or mitigation properties along with a well-established safety profile. Currently there are only three agents which have been clinically approved to be employed for radiation exposure, and these only for very narrow indications. This review identifies a number of agents currently approved by the U.S. Food and Drug Administration (FDA) which could warrant further investigation for use in astronauts. Specifically, we examine preclinical and clinical evidence for statins, nonsteroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), metformin, calcium channel blockers, β adrenergic receptor blockers, fingolimod, N-acetylcysteine, and pentoxifylline as potential radiation countermeasures.McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017; 88(7):665-676.
Collapse
|
20
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
21
|
The Vitamin E Analog Gamma-Tocotrienol (GT3) and Statins Synergistically Up-Regulate Endothelial Thrombomodulin (TM). Int J Mol Sci 2016; 17:ijms17111937. [PMID: 27869747 PMCID: PMC5133932 DOI: 10.3390/ijms17111937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 01/02/2023] Open
Abstract
Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR) and strongly induce endothelial thrombomodulin (TM); which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3) also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC) generation assay. Expression of Kruppel-like factor 2 (KLF2), one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.
Collapse
|
22
|
Pathak R, Wang J, Garg S, Aykin-Burns N, Petersen KU, Hauer-Jensen M. Recombinant Thrombomodulin (Solulin) Ameliorates Early Intestinal Radiation Toxicity in a Preclinical Rat Model. Radiat Res 2016; 186:112-20. [PMID: 27459702 DOI: 10.1667/rr14408.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal radiation toxicity occurs during and after abdominopelvic radiotherapy. Endothelial cells play a significant role in modulating radiation-induced intestinal damage. We demonstrated that the endothelial cell surface receptor thrombomodulin (TM), a protein with anticoagulant, anti-inflammatory and antioxidant properties, mitigates radiation-induced lethality in mice. The goal of this study was to determine whether recombinant TM (Solulin) can protect the intestine from toxicity in a clinically relevant rat model. A 4 cm loop of rat small bowel was exposed to fractionated 5 Gy X radiation for 9 consecutive days. The animals were randomly assigned to receive daily subcutaneous injections of vehicle or Solulin (3 mg/kg/day or 10 mg/kg/day) for 27 days starting 4 days before irradiation. Early intestinal injury was assessed two weeks after irradiation by quantitative histology, morphometry, immunohistochemistry and luminol bioluminescence imaging. Solulin treatment significantly ameliorated intestinal radiation injury, made evident by a decrease in myeloperoxidase (MPO) activity, transforming growth factor beta (TGF-β) immunoreactivity, collagen-I deposition, radiation injury score (RIS) and intestinal serosal thickening. These findings indicate the need for further development of Solulin as a prophylactic and/or therapeutic agent to mitigate radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junru Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas;,c Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
23
|
Xu L, Yang X, Chen J, Ge X, Qin Q, Zhu H, Zhang C, Sun X. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice. Drug Des Devel Ther 2016; 10:2271-8. [PMID: 27471375 PMCID: PMC4948692 DOI: 10.2147/dddt.s105809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective Statins are widely used lipid-lowering drugs, which have pleiotropic effects, such as anti-inflammation, and vascular protection. In our study, we investigated the radioprotective potential of simvastatin (SIM) in a murine model of radiation-induced salivary gland dysfunction. Design Ninety-six Institute of Cancer Research mice were randomly divided into four groups: solvent + sham irradiation (IR) (Group I), SIM + sham IR (Group II), IR + solvent (Group III), and IR + SIM (Group IV). SIM (10 mg/kg body weight, three times per week) was administered intraperitoneally 1 week prior to IR through to the end of the experiment. Saliva and submandibular gland tissues were obtained for biochemical, morphological (hematoxylin and eosin staining and Masson’s trichrome), and Western blot analysis at 8 hours, 24 hours, and 4 weeks after head and neck IR. Results IR caused a significant reduction of salivary secretion and amylase activity but elevation of malondialdehyde. SIM remitted the reduction of saliva secretion and restored salivary amylase activity. The protective benefits of SIM may be attributed to scavenging malondialdehyde, remitting collagen deposition, and reducing and delaying the elevation of transforming growth factor β1 expression induced by radiation. Conclusion SIM may be clinically useful to alleviate side effects of radiotherapy on salivary gland.
Collapse
Affiliation(s)
- Liping Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xi Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiayan Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaolin Ge
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongcheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS, Chiu JF, Ch'ang HJ. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother Oncol 2016; 119:250-8. [PMID: 26900094 DOI: 10.1016/j.radonc.2016.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Bone marrow-derived cells (BMDC) have been demonstrated to play a critical role in intestine regeneration. However, organ fibrosis was one of the major side effects of bone marrow (BM) transplantation. It warrants further investigation on the mechanisms of BM cell therapy in radiation induced intestine damage. MATERIALS AND METHODS We established three murine models to evaluate BMDC within intestines after radiation, including cre-loxP system of transgenic mice. In vitro co-culture between murine BM with human intestine stromal cells was also performed to measure the level of fusion and fibrosis after treatment with anti-fibrotic agents or after macrophage depletion. RESULTS Despite complete recovery of epithelial mucosa from radiation damage, we found persistent proliferation and repopulation of BMDC within the lamina propria. Fusion between BM derived monocytic and intestine stromal cells correlated with the level of fibrosis and proliferation index. Depleting macrophages genetically using CD11b-DTR mouse model or pharmacologically using clodronate liposome reduced the level of cell fusion and intestine fibrosis. CONCLUSIONS Fibrotic cues from intestine enhance fusion between BM-derived monocytes/macrophages with intestine stromal cells. The fusion hybrids promote cell cycle re-entry, proliferation and reinforce fibrosis signal. Depleting macrophages interferes with cell fusion and ameliorates radiation-induced intestine fibrosis.
Collapse
Affiliation(s)
- Ming-Han Yeh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Chih Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Liang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jeng-Fong Chiu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Hui-Ju Ch'ang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Radiation Oncology, Taipei Medical University Hospital, Taiwan.
| |
Collapse
|
25
|
Chang PY, Qu YQ, Wang J, Dong LH. The potential of mesenchymal stem cells in the management of radiation enteropathy. Cell Death Dis 2015; 6:e1840. [PMID: 26247725 PMCID: PMC4558492 DOI: 10.1038/cddis.2015.189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies.
Collapse
Affiliation(s)
- P-Y Chang
- 1] Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China [2] Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - Y-Q Qu
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - J Wang
- Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - L-H Dong
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
26
|
Chronic heart damage following doxorubicin treatment is alleviated by lovastatin. Pharmacol Res 2014; 91:47-56. [PMID: 25462173 DOI: 10.1016/j.phrs.2014.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 01/26/2023]
Abstract
The anticancer efficacy of anthracyclines is limited by cumulative dose-dependent early and delayed cardiotoxicity resulting in congestive heart failure. Mechanisms responsible for anthracycline-induced heart damage are controversially discussed and effective preventive measures are preferable. Here, we analyzed the influence of the lipid lowering drug lovastatin on anthracycline-induced late cardiotoxicity three month after treatment of C57BL/6 mice with five low doses of doxorubicin (5×3mg/kg BW; i.p.). Doxorubicin increased the cardiac mRNA levels of BNP, IL-6 and CTGF, while the expression of ANP remained unchanged. Lovastatin counteracted these persisting cardiac stress responses evoked by the anthracycline. Doxorubicin-induced fibrotic alterations were neither detected by histochemical collagen staining of heart sections nor by analysis of the mRNA expression of collagens. Extensive qRT-PCR-array based analyses revealed a large increase in the mRNA level of heat shock protein Hspa1b in doxorubicin-treated mice, which was mitigated by lovastatin co-treatment. Electron microscopy together with qPCR-based analysis of mitochondrial DNA content indicate that lovastatin attenuates doxorubicin-stimulated hyperproliferation of mitochondria. This was not paralleled by increased expression of oxidative stress responsive genes or senescence-associated proteins. Echocardiographic analyses disclosed that lovastatin protects from the doxorubicin-induced decrease in the left ventricular posterior wall diameter (LVPWD), while constrictions in fractional shortening (FS) and ejection fraction (EF) evoked by doxorubicin were not amended by the statin. Taken together, the data suggest beneficial effects of lovastatin against doxorubicin-induced delayed cardiotoxicity. Clinical studies are preferable to scrutinize the usefulness of statins for the prevention of anthracycline-induced late cardiotoxicity.
Collapse
|
27
|
Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J 2014; 32:103-15. [PMID: 25324981 PMCID: PMC4194292 DOI: 10.3857/roj.2014.32.3.103] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Kenneth A. Jenrow
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
28
|
Zhao X, Yang H, Jiang G, Ni M, Deng Y, Cai J, Li Z, Shen F, Tao X. Simvastatin attenuates radiation-induced tissue damage in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:257-64. [PMID: 24105712 PMCID: PMC3951077 DOI: 10.1093/jrr/rrt115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 05/18/2023]
Abstract
The aim of this study was to investigate the protective effect of simvastatin against radiation-induced tissue injury in mice. Mice were radiated with 4 Gy or 8 Gy after 20 mg/kg/d simvastatin treatment over 2 weeks. Morphological changes were observed in the jejunum and bone marrow, and apoptotic cells were determined in both tissues. Peripheral blood cells were counted, and the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) level in tissues of both thymus and spleen were measured. Compared with the radiation-only group, 20 mg/kg/d simvastatin administration significantly increased the mean villi height and decreased apoptotic cells in jejunum tissue, and stimulated regeneration and reduced apoptotic cells in bone marrow. Peripheral blood cell analysis revealed that simvastatin treatment induced a larger number of red blood cells and increased the hemoglobin level present after 4 Gy of radiation. Interestingly, it was also found that the number of peripheral endothelial progenitor cells was markedly increased following simvastatin administration. Antioxidant determination for tissues displayed that simvastatin therapy increased the SOD activity after both 4 and 8 Gy of radiation, but only decreased the MDA level after 4 Gy. Simvastatin ameliorated radiation-induced tissue damage in mice. The radioprotective effect of simvastatin was possibly related to inhibition of apoptosis and improvement of oxygen-carrying and antioxidant activities.
Collapse
Affiliation(s)
- Xinbin Zhao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Feng-Yang Road, Shanghai 200003, China
| | - Hong Yang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Feng-Yang Road, Shanghai 200003, China
| | - Guojun Jiang
- Department of Pharmacy, Xiaoshan Hospital, 728 Yu-Cai-Bei Road, Hangzhou, Zhejiang 311202, China
| | - Min Ni
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Feng-Yang Road, Shanghai 200003, China
| | - Yaping Deng
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, China
| | - Jian Cai
- Department of Pharmacy, Xiaoshan Hospital, 728 Yu-Cai-Bei Road, Hangzhou, Zhejiang 311202, China
| | - Zhangpeng Li
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, China
| | - Fuming Shen
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, 301 Yan-Chang-Zhong Road, Shanghai 200072, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Feng-Yang Road, Shanghai 200003, China
- Corresponding author. Tel: +86-21-8188-6182; Fax: +86-21-6549-3951;
| |
Collapse
|
29
|
Corcos L, Le Jossic-Corcos C. Statins: perspectives in cancer therapeutics. Dig Liver Dis 2013; 45:795-802. [PMID: 23490341 DOI: 10.1016/j.dld.2013.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Virtually any cell type in a mammalian organism uses Acetyl CoA to yield mevalonate, through the activity of the 3-hydroxy-3-methyl-glutaryl-CoA reductase enzyme and, ultimately, cholesterol. Statins have long and quite successfully been used as cholesterol lowering drugs. They reversibly inhibit the 3-hydroxy-3-methyl-glutaryl-CoA reductase activity, which is rate limiting in the early steps of the cholesterol synthesis pathway. In addition to these effects, it has also been amply shown that statins may efficiently trigger cancer cell apoptosis, making them a plausible therapeutic option for the treatment of cancer. Whether statins may prevent cancer occurrence is a matter of debate and an unanswered question; undoubtedly experimental models have clearly demonstrated the potential of statins as direct cytotoxic agents, which can reduce tumour development or metastasis spread, even more so when combined with cytotoxic drugs. Until now, however, only few data in humans support the idea that statins could rightfully belong to the group of anticancer drugs. Nevertheless, as cancer cell metabolism is being thoroughly revisited, the mevalonate pathway has recently been reported as truly oncogenic, presenting the attractive possibility that mevalonate pathway inhibitors, such as statins, may join the ranks of anticancer drugs.
Collapse
Affiliation(s)
- Laurent Corcos
- INSERM U1078-ECLA and SFR-ScInBioS, European University, Bretagne, France.
| | | |
Collapse
|
30
|
Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013; 12:526-42. [PMID: 23812271 DOI: 10.1038/nrd4003] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity.
Collapse
|
31
|
Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: Prevention and treatment. World J Gastroenterol 2013; 19:199-208. [PMID: 23345942 PMCID: PMC3547575 DOI: 10.3748/wjg.v19.i2.199] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 02/06/2023] Open
Abstract
With the recent advances in detection and treatment of cancer, there is an increasing emphasis on the efficacy and safety aspects of cancer therapy. Radiation therapy is a common treatment for a wide variety of cancers, either alone or in combination with other treatments. Ionising radiation injury to the gastrointestinal tract is a frequent side effect of radiation therapy and a considerable proportion of patients suffer acute or chronic gastrointestinal symptoms as a result. These side effects often cause morbidity and may in some cases lower the efficacy of radiotherapy treatment. Radiation injury to the gastrointestinal tract can be minimised by either of two strategies: technical strategies which aim to physically shift radiation dose away from the normal intestinal tissues, and biological strategies which aim to modulate the normal tissue response to ionising radiation or to increase its resistance to it. Although considerable improvement in the safety of radiotherapy treatment has been achieved through the use of modern optimised planning and delivery techniques, biological techniques may offer additional further promise. Different agents have been used to prevent or minimize the severity of gastrointestinal injury induced by ionising radiation exposure, including biological, chemical and pharmacological agents. In this review we aim to discuss various technical strategies to prevent gastrointestinal injury during cancer radiotherapy, examine the different therapeutic options for acute and chronic gastrointestinal radiation injury and outline some examples of research directions and considerations for prevention at a pre-clinical level.
Collapse
|
32
|
Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition. Radiother Oncol 2012; 105:305-12. [DOI: 10.1016/j.radonc.2012.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/03/2023]
|
33
|
Hamama S, Delanian S, Monceau V, Vozenin MC. Therapeutic management of intestinal fibrosis induced by radiation therapy: from molecular profiling to new intervention strategies et vice et versa. FIBROGENESIS & TISSUE REPAIR 2012; 5:S13. [PMID: 23259677 PMCID: PMC3368760 DOI: 10.1186/1755-1536-5-s1-s13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic toxicities of locoregional and systemic oncological treatments commonly develop in long-term cancer survivors. Amongst these toxicities, post-radiotherapeutic complications alter patient's quality of life. Reduction of exposure of normal tissues can be achieved by optimization of radiotherapy. Furthermore, understanding of the fibrogenic mechanisms has provided targets to prevent, mitigate, and reverse late radiation-induced damages. This mini-review shows how (i) global molecular studies using gene profiling can provide tools to develop new intervention strategies and (ii) how successful clinical trials, conducted in particular with combined pentoxifylline-vitamin E, can take benefice of biological and molecular evidences to improve our understanding of fibrogenic mechanisms, enhance the robustness of proposed treatments, and lead ultimately to better treatments for patient's benefice.
Collapse
Affiliation(s)
- Saad Hamama
- INSERM U-1030 "Molecular Radiotherapy" Institut Gustave Roussy, Villejuif, France ; "Molecular Radiotherapy", Université Paris Sud Paris XI, France
| | - Sylvie Delanian
- INSERM U-1030 "Molecular Radiotherapy" Institut Gustave Roussy, Villejuif, France ; "Molecular Radiotherapy", Université Paris Sud Paris XI, France ; Unité de Radiopathologie, Service Oncologie-Radiothérapie, Hôpital Saint-Louis, APHP, Paris, France
| | - Virginie Monceau
- INSERM U-1030 "Molecular Radiotherapy" Institut Gustave Roussy, Villejuif, France
| | - Marie-Catherine Vozenin
- INSERM U-1030 "Molecular Radiotherapy" Institut Gustave Roussy, Villejuif, France ; "Molecular Radiotherapy", Université Paris Sud Paris XI, France
| |
Collapse
|
34
|
Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur J Cancer 2012; 48:2117-24. [PMID: 22386574 DOI: 10.1016/j.ejca.2011.12.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/12/2011] [Accepted: 12/11/2011] [Indexed: 12/23/2022]
Abstract
INTRODUCTION 3-Hydroxy-methylglutaryl coenzyme-a reductase inhibitors (statins) improve survival following pelvic irradiation for cancer. Large studies suggest that patients with hypertension may have reduced gastrointestinal (GI) toxicity. Animal data suggest that statins and ACE inhibitors (ACEi) may protect against normal tissue injury. Their efficacy in humans has not been reported. AIMS/METHODS To evaluate the impact of statins and ACEi on normal tissue toxicity during radical pelvic radiotherapy. GI symptomatology was recorded prospectively before radiotherapy, weekly during treatment and 1 year later using the inflammatory bowel disease questionnaire-bowel (IBDQ-B) subset. Cumulative acute toxicity (IBDQ-B AUC) and worst score were determined. Dose, brand and duration of statin and/or ACEi usage were obtained from General Practitioners. RESULTS Of 308 patients recruited, 237 had evaluable acute drug and toxicity data and 164 had data at 1year. Acutely, 38 patients (16%) were taking statins, 39 patients (16.5%) were taking ACEi and 18 patients (7.6%) were taking statin+ACEi. Mean changes in acute scores were 7.3 points (non-statin users), 7.3 (non-ACEi users) and 7.0 (non-statin+ACEi users) compared to 4.8 points (statin users), 5.0 points (ACEi users) and 4.9 points (statin+ACEi users). Statin use (p=0.04) and combined statin+ACEi use (p=0.008) were associated with reduced acute IBDQ-B AUC after controlling for baseline scores (ANOVA). At 1 year, users maintained higher IBDQ-B scores than non-users in all user subgroups. CONCLUSION Use of statin or statin+ACEi medication during radical pelvic radiotherapy significantly reduces acute gastrointestinal symptoms scores and also appears to provide longer-term sustained protection.
Collapse
|
35
|
Berbée M, Hauer-Jensen M. Novel drugs to ameliorate gastrointestinal normal tissue radiation toxicity in clinical practice: what is emerging from the laboratory? Curr Opin Support Palliat Care 2012; 6:54-9. [PMID: 22228028 PMCID: PMC3677768 DOI: 10.1097/spc.0b013e32834e3bd7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To give an overview of promising novel agents under development for the prevention and reduction of gastrointestinal radiation injury. RECENT FINDINGS Currently, several novel agents are being tested as drugs to prevent or reduce gastrointestinal radiation injury. These drugs may not only prevent injury, but also mitigate toxicity, that is, reduce injury after radiation exposure has occurred. Promising novel agents include the somatostatin analogue SOM230, growth factors, agents acting on the toll-like receptor 5 pathway, endothelial protectants, and the vitamin E analogue γ-tocotrienol. SUMMARY Gastrointestinal radiation injury is the most important dose-limiting factor during radiotherapy of the abdomen or pelvis. It may severely affect the quality of life both during radiotherapy treatment and in cancer survivors. To date, there are no agents that can prevent or reduce intestinal radiation injury. Hence, there is an urgent need for the development of novel drugs to ameliorate intestinal toxicity during and after radiotherapy. This review summarizes the several agents that have been shown to reduce intestinal radiation injury in animals. Further research is needed to investigate their safety and efficacy in patients receiving radiotherapy for abdominal or pelvic tumours.
Collapse
Affiliation(s)
- Maaike Berbée
- Department of Radiation Oncology (Maastro), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | |
Collapse
|
36
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 858] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
37
|
Miller AC, Cohen S, Stewart M, Rivas R, Lison P. Radioprotection by the histone deacetylase inhibitor phenylbutyrate. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:585-596. [PMID: 21892632 DOI: 10.1007/s00411-011-0384-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/15/2011] [Indexed: 05/31/2023]
Abstract
The histone deacetylase inhibitor (HDAC), phenylbutyrate (PB), is a novel anti-tumor agent. Studies have demonstrated that HDAC inhibitors can suppress cutaneous radiation syndrome and stimulate hematopoiesis. The objective of this study was to test the ability of PB treatment to protect against acute gamma-radiation-induced lethality in the DBA/2 mouse model. A 30-day radiation lethality study was used to assess radioprotective capability of PB. Mechanisms were evaluated using western blots, flow cytometry, and the single-cell gel electrophoresis assay. Western blot studies showed that PB treatment acetylated histones in vivo. For radiation protection studies, prophylactic administration of PB (24 h preradiation; 1-50 mg/kg) provided radioprotection against gamma radiation (8-9.5 Gy) and PB demonstrated a DRF of 1.31 (P = 0.001; 95% confidence interval: 1.27, 1.36). When PB (10 mg/kg) was administered post-radiation (4 h), it also provided significant radioprotection at 8.0 Gy radiation (P = 0.022). PB treatment before radiation was associated with significant elevations in neutrophils and platelets following radiation. Results from single-cell gel electrophoresis of peripheral blood leukocytes demonstrated that PB treatment before radiation can attenuate DNA damage and inhibit radiation-induced apoptosis. These results indicate that an HDAC inhibitor like PB has potential as a radiation protector and that mechanisms of action include attenuation of DNA damage and inhibition of apoptosis.
Collapse
Affiliation(s)
- Alexandra C Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University, Bethesda, MD 20889-5603, USA.
| | | | | | | | | |
Collapse
|
38
|
Hamalukic M, Huelsenbeck J, Schad A, Wirtz S, Kaina B, Fritz G. Rac1-regulated endothelial radiation response stimulates extravasation and metastasis that can be blocked by HMG-CoA reductase inhibitors. PLoS One 2011; 6:e26413. [PMID: 22039482 PMCID: PMC3198428 DOI: 10.1371/journal.pone.0026413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
Radiotherapy (RT) plays a key role in cancer treatment. Although the benefit of ionizing radiation (IR) is well established, some findings raise the possibility that irradiation of the primary tumor not only triggers a killing response but also increases the metastatic potential of surviving tumor cells. Here we addressed the question of whether irradiation of normal cells outside of the primary tumor augments metastasis by stimulating the extravasation of circulating tumor cells. We show that IR exposure of human endothelial cells (EC), tumor cells (TC) or both increases TC-EC adhesion in vitro. IR-stimulated TC-EC adhesion was blocked by the HMG-CoA reductase inhibitor lovastatin. Glycyrrhizic acid from liquorice root, which acts as a Sialyl-Lewis X mimetic drug, and the Rac1 inhibitor NSC23766 also reduced TC-EC adhesion. To examine the in vivo relevance of these findings, tumorigenic cells were injected into the tail vein of immunodeficient mice followed by total body irradiation (TBI). The data obtained show that TBI dramatically enhances tumor cell extravasation and lung metastasis. This pro-metastatic radiation effect was blocked by pre-treating mice with lovastatin, glycyrrhizic acid or NSC23766. TBI of mice prior to tumor cell transplantation also stimulated metastasis, which was again blocked by lovastatin. The data point to a pro-metastatic trans-effect of RT, which likely rests on the endothelial radiation response promoting the extravasation of circulating tumor cells. Administration of the widely used lipid-lowering drug lovastatin prior to irradiation counteracts this process, likely by suppressing Rac1-regulated E-selectin expression following irradiation. The data support the concern that radiation exposure might increase the extravasation of circulating tumor cells and recommend co-administration of lipid-lowering drugs to avoid this adverse effect of ionizing radiation.
Collapse
Affiliation(s)
- Melanie Hamalukic
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Huelsenbeck
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arno Schad
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Wirtz
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gerhard Fritz
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
39
|
Hoving S, Heeneman S, Gijbels MJJ, te Poele JAM, Pol JFC, Gabriels K, Russell NS, Daemen MJAP, Stewart FA. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice. Radiother Oncol 2011; 101:100-8. [PMID: 22001104 DOI: 10.1016/j.radonc.2011.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/13/2011] [Accepted: 09/23/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE We previously showed that irradiating the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. MATERIAL AND METHODS ApoE(-/-) mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L(-/-)/ApoE(-/-) and ApoE(-/-) littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. RESULTS Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. CONCLUSIONS The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.
Collapse
Affiliation(s)
- Saske Hoving
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2011; 2:e190. [PMID: 21833028 PMCID: PMC3181415 DOI: 10.1038/cddis.2011.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. In mice, lovastatin mitigated acute doxorubicin-induced heart and liver damage as indicated by reduced mRNA levels of the pro-fibrotic cytokine connective tissue growth factor (CTGF) and pro-inflammatory cytokines, respectively. Lovastatin also protected from doxorubicin-provoked subacute cardiac damage as shown by lowered mRNA levels of CTGF and atrial natriuretic peptide. Increase in the serum concentration of troponin I and cardiac fibrosis following doxorubicin treatment were also reduced by lovastatin. Whereas protecting the heart from harmful doxorubicin effects, lovastatin augmented its anticancer efficacy in a mouse xenograft model with human sarcoma cells. These data show that statins lower the incidence of cardiac tissue injury after anthracycline treatment in a Rac1-dependent manner, without impairing the therapeutic efficacy.
Collapse
Affiliation(s)
- J Huelsenbeck
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Bourgier C, Monceau V, Bourhis J, Deutsch É, Vozenin MC. Modulation pharmacologique des effets tardifs de l’irradiation. Cancer Radiother 2011; 15:383-9. [DOI: 10.1016/j.canrad.2011.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
|
42
|
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Adrian C Begg
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
| | | | | |
Collapse
|
43
|
Fritz G, Henninger C, Huelsenbeck J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull 2011; 97:17-26. [PMID: 21252099 DOI: 10.1093/bmb/ldq044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.
Collapse
Affiliation(s)
- Gerhard Fritz
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Toxicology, Germany.
| | | | | |
Collapse
|
44
|
Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P. Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 2010; 17:222-8. [PMID: 21047979 DOI: 10.1158/1078-0432.ccr-10-1402] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, many agents have been identified that target molecular pathways that can mitigate radiation toxicity. To date, no drugs have been approved as radiation injury mitigators, which are defined as agents administered after irradiation but before toxicity is manifest. In order to accelerate the application of potential mitigators for cancer patients, a meeting sponsored by the National Cancer Institute (NCI) and National Institute of Allergy and Infectious Diseases (NIAID) was held in January 2010. This article presents an algorithm to guide clinical trials for such agents in patients receiving radiotherapy or radiochemotherapy. It reviews the mechanisms of radiation injury, the clinical problem, the preclinical and clinical development of candidate agents, and the design and conduct of clinical trials. The central role of patient reported outcomes is outlined, as well as key lessons learned from prior clinical trials. Ultimately, the goal is to be able to apply such promising agents to improve the quality of life for patients receiving radiotherapy or chemoradiotherapy for cancer.
Collapse
Affiliation(s)
- Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Berbée M, Fu Q, Kumar KS, Hauer-Jensen M. Novel strategies to ameliorate radiation injury: a possible role for tetrahydrobiopterin. Curr Drug Targets 2010; 11:1366-74. [PMID: 20583982 PMCID: PMC3311028 DOI: 10.2174/1389450111009011366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 04/12/2010] [Indexed: 11/22/2022]
Abstract
Novel pharmacological strategies are urgently needed to prevent or reduce radiation-induced tissue injury. Microvascular injury is a prominent feature of both early and delayed radiation injury. Radiation-induced endothelial dysfunction is believed to play a key role in the pathogenesis of post-irradiation tissue injury. Hence, strategies that could prevent or improve endothelial malfunction are expected to ameliorate the severity of radiation injury. This review focuses on the therapeutic potential of the nitric oxide synthase (NOS) cofactor 5,6,7,8-tetrahydrobiopterin (BH4) as an agent to reduce radiation toxicity. BH4 is an essential cofactor for all NOS enzymes and a critical determinant of NOS function. Inadequate availability of BH4 leads to uncoupling of the NOS enzyme. In an uncoupled state, NOS produces the highly oxidative radicals superoxide and peroxynitrite at the cost of NO. Under conditions of oxidative stress, such as after radiation exposure, BH4 availability might be reduced due to the rapid oxidation of BH4 to 7,8-dihydrobiopterin (7,8-BH2). As a result, free radical-induced BH4 insufficiency may increase the oxidative burden and hamper NO-dependent endothelial function. Given the growing evidence that BH4 depletion and subsequent endothelial NOS uncoupling play a major role in the pathogenesis of endothelial dysfunction in various diseases, there is substantial reason to believe that improving post-irradiation BH4 availability, by either supplementation with it or modulation of its metabolism, might be a novel strategy to reduce radiation-induced endothelial dysfunction and subsequent tissue injury.
Collapse
Affiliation(s)
- Maaike Berbée
- Department of Radiation Oncology (Maastro), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J Neurooncol 2010; 101:449-56. [DOI: 10.1007/s11060-010-0282-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/21/2010] [Indexed: 12/13/2022]
|
47
|
Abstract
IMPORTANCE OF THE FIELD Ionizing radiation (IR) can produce deleterious effects in living tissues, leading to significant morbidity and a potentially fatal illness affecting various organs dose-dependently. As people may be exposed to IR during cancer radiotherapy or as a result of a radiological/nuclear incident or act of terrorism, the danger of irradiation represents a serious public health problem. At present, however, this problem remains largely impervious to medical management. There is, therefore, a pressing need to develop safe and effective radiation countermeasure (RC) agents to prevent, mitigate or treat the harmful consequences of IR exposure. AREAS COVERED IN THIS REVIEW Recent advances in the search for RC agents as reflected by the relevant patent literature of the past five years along with peer-reviewed publications are surveyed. WHAT THE READER WILL GAIN A total of 43 patents, describing approximately 38 chemically diverse compounds with RC potential are analyzed. These include antioxidants capable of scavenging IR-induced free radicals, modulators of cell death signaling or cell cycle progression, cytokines or growth factors promoting tissue repair and inhibitors of inflammatory cytokines. TAKE HOME MESSAGE Several of these RC candidates appear promising, including at least two that are undergoing evaluation for fast-track clinical development.
Collapse
Affiliation(s)
- Francis Dumont
- Université de Strasbourg, Centre Régional de Lutte contre le Cancer Paul Strauss, Laboratoire de Radiobiologie EA-3430, 3 rue de la Porte de l'Hôpital, F-67065 Strasbourg, France
| | | | | |
Collapse
|
48
|
Theis V, Sripadam R, Ramani V, Lal S. Chronic Radiation Enteritis. Clin Oncol (R Coll Radiol) 2010; 22:70-83. [DOI: 10.1016/j.clon.2009.10.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/01/2009] [Accepted: 09/22/2009] [Indexed: 02/07/2023]
|
49
|
Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010; 15:360-71. [PMID: 20413641 PMCID: PMC3076305 DOI: 10.1634/theoncologist.2009-s104] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 04/05/2009] [Indexed: 11/17/2022] Open
Abstract
Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing.
Collapse
Affiliation(s)
- Deborah Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM, Su YP, Zheng HE. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro. JOURNAL OF RADIATION RESEARCH 2010; 51:527-533. [PMID: 20921821 DOI: 10.1269/jrr.09119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Vascular endothelial cells are very sensitive to ionizing radiation, and it is important to develop effective prevent agents and measures in radiation exposure protection. In the present study, the protective effects of atorvastatin on irradiated human umbilical vein endothelial cells (HUVEC) and the possible mechanisms were explored. Cultured HUVEC were treated by atorvastatin at a final concentration of 10 µ mol/ml for 10 minutes, and then irradiated at a dose of 2 Gy or 25 Gy. Twenty-four hours after irradiation, apoptosis of HUVEC was monitored by flow cytometry, and the expression of thrombomodulin (TM) and protein C activation in HUVEC was respectively assessed by flow cytometry and spectrophotometry. After treatment with atorvastatin for 24 h, the rate of cell apoptosis decreased by 6% and 16% in cells irradiated with 2 Gy and 25 Gy, respectively. TM expression increased by 77%, 59%, and 61% in untreated cells, 2 Gy irradiation-treated cells, and 25 Gy irradiation-treated cells, respectively. The protein C levels in 2 Gy and 25 Gy irradiation-treated cells were reduced by 23% and 34% when compared with untreated cells, but up-regulated by 79% and 76% when compared with cells which were irradiated and treated with atorvastatin. In conclusion, these data indicate that atorvastatin exerts protective effects on irradiated HUVEC by reducing apoptosis by up-regulating TM expression and enhancing protein C activation in irradiated HUVEC.
Collapse
Affiliation(s)
- Xin-Ze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|