1
|
Hu Y, Li Z, Zhu Y, Xing M, Xie X, Zhao P, Cheng X, Xiao C, Xia Y, Wu J, Luo Y, Ko H, Tang Y, Ye X, Lin WJ. Microglial repopulation reverses radiation-induced cognitive dysfunction by restoring medial prefrontal cortex activity and modulating leukotriene-C4 synthesis. Acta Neuropathol Commun 2025; 13:105. [PMID: 40390112 PMCID: PMC12087111 DOI: 10.1186/s40478-025-02026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Cranial radiotherapy and environmental radiation exposure are associated with increased risk of cognitive dysfunction, including memory deficits and mood disorders, yet the underlying mechanisms remain poorly understood. In this study, we demonstrate that cranial irradiation induces hypoactivity in the medial prefrontal cortex (mPFC) of mice, leading to anxiety-like behaviors and memory impairments, which can be prevented by optogenetic activation of mPFC excitatory neurons. Radiaiton exposure also causes a significant reduction in microglial density within the mPFC, accompanied by morphological and transcriptional alterations in the remaining microglia. Notably, microglial repopulation, achieved through CSF1R antagonist-mediated depletion prior to irradiation and subsequent repopulation, restores mPFC neuronal acitivity and reverses cognitive and behavioral deficits. Integrated bulk RNA sequencing and microglial proteomic analysis of the mPFC reveal that microglial repopulation specifically modulates the leukotriene-C4 biosynthesis pathway, without significant changes in canonical pro-inflammatory cytokines or chemokines. Importantly, pharmacological inhibition of leukotriene-C4 synthase ameliorates radiation-induced anxiety and memory impairments. These findings identify leukotriene-C4 signaling as a critical mechanism underlying radiation-induced cognitive dysfunction and suggest that microglial repopulation and targted inhibition of leukotriene-C4 represent potential therapeutic strategies for mitigating radiation-associated cognitive disorders.
Collapse
Affiliation(s)
- Yubo Hu
- Medical College of Jiaying University, Meizhou, Guangdong, 514031, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhe Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yafeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Mengdan Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Xiaoru Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Panwu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chuan Xiao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Wu
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuan Luo
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Gerald Choa Neuroscience Center, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, SAR, Hong Kong, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Wei-Jye Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
2
|
Drabek-Maunder ER, Gains J, Hargrave DR, Mankad K, Aquilina K, Dean JA, Nisbet A, Clark CA. Evidence of supratentorial white matter injury prior to treatment in children with posterior fossa tumors using diffusion MRI. Neurooncol Adv 2025; 7:vdaf053. [PMID: 40376680 PMCID: PMC12080551 DOI: 10.1093/noajnl/vdaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Background Pediatric brain tumor survivors can have neurocognitive deficits that negatively impact their quality of life, but it is unclear if deficits are primarily caused by treatments, such as radiotherapy, or manifest earlier due to the tumor and related complications. The aim of this work is to characterize white matter injury caused by brain tumors, unrelated to treatment effects, and explore heterogeneity in these white matter abnormalities between individual patients. Methods We used diffusion tensor imaging and neurite orientation dispersion diffusion imaging to assess white matter injury in 8 posterior fossa tumor patients. A novel one-against-many approach was used by comparing an individual patient to 20 age- and sex-matched healthy controls to assess variability in white matter abnormalities between the posterior fossa tumor patients. White matter was analyzed at presentation (prior to treatment), postsurgery (24-72 hours after surgery), and at follow-up (3-18 months after surgery). Results We demonstrate white matter abnormalities in 5 posterior fossa tumor patients before treatment, likely related to tumor-induced hydrocephalus, which persisted after treatment. White matter changes were complex and patient-specific, and group-based comparisons with control subjects may fail to detect these individual abnormalities. Conclusions Identifying pretreatment white matter injury in posterior fossa tumor patients highlights the importance of personalized assessment of brain microstructure, which should be considered in minimizing neurocognitive deficits to improve patient quality of life.
Collapse
Affiliation(s)
- Emily R Drabek-Maunder
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Jenny Gains
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Darren R Hargrave
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Kshitij Mankad
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Kristian Aquilina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Jamie A Dean
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Chris A Clark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
3
|
Tensaouti F, Arribarat G, Cabarrou B, Pollidoro L, Courbière N, Sévely A, Roques M, Chaix Y, Péran P, Baudou E, Laprie A. Measuring the impact of treatment on memory functions in pediatric posterior fossa tumor survivors using diffusion tensor imaging. Radiother Oncol 2025; 202:110599. [PMID: 39490416 DOI: 10.1016/j.radonc.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND PURPOSE The aim of the present prospective exploratory study was to investigate the long-term impact of treatment on brain structure integrity and memory functions in pediatric posterior fossa tumor (PFT) survivors using diffusion tensor imaging (DTI), to determine whether the latter could provide useful biomarkers of memory impairment. MATERIAL AND METHODS Sixty participants were included in this study, divided into three groups: 22 irradiated PFT, 17 non-irradiated PFT, and 21 healthy controls. All underwent memory tests and multimodal MRI, including a DTI sequence. Mean diffusivity and fractional anisotropy values were extracted for bilateral brain structures involved in memory, in order to carry out between-group comparisons and calculate correlations with memory test scores and radiotherapy doses. Statistical tests were two-sided, and p values < 0.05 were considered statistically significant. RESULTS DTI metrics were significantly higher for irradiated PFT survivors than in non-irradiated PFT survivors and controls (p < 0.05). Memory test scores were significantly lower for PFT survivors, particularly irradiated patients (p < 0.02), and were correlated with DTI metrics. (-0.27 < r < -0.62, p < 0.04). DTI metrics were correlated with either total or maximum dose for some structures. CONCLUSION Preliminary results of this study point to microstructural damage in memory-related brain areas in PFT survivors, particularly in irradiated patients, and identify DTI metrics as potential biomarkers of memory deficit.
Collapse
Affiliation(s)
- Fatima Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Bastien Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - Lisa Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Annick Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - Margaux Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Eloïse Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Anne Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
4
|
Drabek-Maunder ER, Mankad K, Aquilina K, Dean JA, Nisbet A, Clark CA. Using diffusion MRI to understand white matter damage and the link between brain microstructure and cognitive deficits in paediatric medulloblastoma patients. Eur J Radiol 2024; 177:111562. [PMID: 38901074 DOI: 10.1016/j.ejrad.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Survivors of medulloblastoma face a range of challenges after treatment, involving behavioural, cognitive, language and motor skills. Post-treatment outcomes are associated with structural changes within the brain resulting from both the tumour and the treatment. Diffusion magnetic resonance imaging (MRI) has been used to investigate the microstructure of the brain. In this review, we aim to summarise the literature on diffusion MRI in patients treated for medulloblastoma and discuss future directions on how diffusion imaging can be used to improve patient quality. METHOD This review summarises the current literature on medulloblastoma in children, focusing on the impact of both the tumour and its treatment on brain microstructure. We review studies where diffusion MRI has been correlated with either treatment characteristics or cognitive outcomes. We discuss the role diffusion MRI has taken in understanding the relationship between microstructural damage and cognitive and behavioural deficits. RESULTS We identified 35 studies that analysed diffusion MRI changes in patients treated for medulloblastoma. The majority of these studies found significant group differences in measures of brain microstructure between patients and controls, and some of these studies showed associations between microstructure and neurocognitive outcomes, which could be influenced by patient characteristics (e.g. age), treatment, radiation dose and treatment type. CONCLUSIONS In future, studies would benefit from being able to separate microstructural white matter damage caused by the tumour, tumour-related complications and treatment. Additionally, advanced diffusion modelling methods can be explored to understand and describe microstructural changes to white matter.
Collapse
Affiliation(s)
- Emily R Drabek-Maunder
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK.
| | - Kshitij Mankad
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Kristian Aquilina
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Jamie A Dean
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Andrew Nisbet
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Chris A Clark
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| |
Collapse
|
5
|
Mahajan A, Stavinoha PL, Rongthong W, Brodin NP, McGovern SL, El Naqa I, Palmer JD, Vennarini S, Indelicato DJ, Aridgides P, Bowers DC, Kremer L, Ronckers C, Constine L, Avanzo M. Neurocognitive Effects and Necrosis in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:401-416. [PMID: 33810950 DOI: 10.1016/j.ijrobp.2020.11.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE A PENTEC review of childhood cancer survivors who received brain radiation therapy (RT) was performed to develop models that aid in developing dose constraints for RT-associated central nervous system (CNS) morbidities. METHODS AND MATERIALS A comprehensive literature search, through the PENTEC initiative, was performed to identify published data pertaining to 6 specific CNS toxicities in children treated with brain RT. Treatment and outcome data on survivors were extracted and used to generate normal tissue complication probability (NTCP) models. RESULTS The search identified investigations pertaining to 2 of the 6 predefined CNS outcomes: neurocognition and brain necrosis. For neurocognition, models for 2 post-RT outcomes were developed to (1) calculate the risk for a below-average intelligence quotient (IQ) (IQ <85) and (2) estimate the expected IQ value. The models suggest that there is a 5% risk of a subsequent IQ <85 when 10%, 20%, 50%, or 100% of the brain is irradiated to 35.7, 29.1, 22.2, or 18.1 Gy, respectively (all at 2 Gy/fraction and without methotrexate). Methotrexate (MTX) increased the risk for an IQ <85 similar to a generalized uniform brain dose of 5.9 Gy. The model for predicting expected IQ also includes the effect of dose, age, and MTX. Each of these factors has an independent, but probably cumulative effect on IQ. The necrosis model estimates a 5% risk of necrosis for children after 59.8 Gy or 63.6 Gy (2 Gy/fraction) to any part of the brain if delivered as primary RT or reirradiation, respectively. CONCLUSIONS This PENTEC comprehensive review establishes objective relationships between patient age, RT dose, RT volume, and MTX to subsequent risks of neurocognitive injury and necrosis. A lack of consistent RT data and outcome reporting in the published literature hindered investigation of the other predefined CNS morbidity endpoints.
Collapse
Affiliation(s)
- Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Peter L Stavinoha
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Warissara Rongthong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Palmer
- Department of Radiation Oncology, James Cancer Hospital at Ohio State University, Nationwide Children's Hospital, Columbus, Ohio
| | - Sabina Vennarini
- Proton Therapy Center, Azienda Provinciale per I Servizi Sanitari, Trento, Italy
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Paul Aridgides
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Leontien Kremer
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Cecile Ronckers
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands; Institute of Biostatistics and Registry Research, Medical University Brandenburg-Theodor Fontane, Neuruppin, Germany
| | - Louis Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
6
|
Mohammadi M, Banisharif S, Moradi F, Zamanian M, Tanzifi G, Ghaderi S. Brain diffusion MRI biomarkers after oncology treatments. Rep Pract Oncol Radiother 2024; 28:823-834. [PMID: 38515826 PMCID: PMC10954263 DOI: 10.5603/rpor.98728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/04/2023] [Indexed: 03/23/2024] Open
Abstract
In addition to providing a measurement of the tumor's size and dimensions, magnetic resonance imaging (MRI) provides excellent noninvasive radiographic detection of tumor location. The MRI technique is an important modality that has been shown to be useful in the prognosis, diagnosis, treatment planning, and evaluation of response and recurrence in solid cancers. Diffusion-weighted imaging (DWI) is an imaging technique that quantifies water mobility. This imaging approach is good for identifying sub-voxel microstructure of tissues, correlates with tumor cellularity, and has been proven to be valuable in the early assessment of cytotoxic treatment for a variety of malignancies. Diffusion tensor imaging (DTI) is an MRI method that assesses the preferred amount of water transport inside tissues. This enables precise measurements of water diffusion, which changes according to the direction of white matter fibers, their density, and myelination. This measurement corresponds to some related variables: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and others. DTI biomarkers can detect subtle changes in white matter microstructure and integrity following radiation therapy (RT) or chemoradiotherapy, which may have implications for cognitive function and quality of life. In our study, these indices were evaluated after brain chemoradiotherapy.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Moradi
- Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ghazal Tanzifi
- Department of Nuclear Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Glazer S, Kim YJ, Fecher M, Billetdeaux KA, Gilliland EB, Wilde EA, Olshefski R, Yeates KO, Vannatta K, Hoskinson KR. Higher order neurocognition in pediatric brain tumor survivors: What can we learn from white matter microstructure? Pediatr Blood Cancer 2024; 71:e30787. [PMID: 38014868 DOI: 10.1002/pbc.30787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Pediatric brain tumor survivors (PBTS) experience neurocognitive late effects, including problems with working memory, processing speed, and other higher order skills. These skill domains are subserved by various white matter (WM) pathways, but not much is known about these brain-behavior links in PBTS. This study examined the anterior corona radiata (ACR), inferior fronto-occipital fasciculi (IFOF), and superior longitudinal fasciculi (SLF) by analyzing associations among diffusion metrics and neurocognition. PROCEDURE Thirteen PBTS and 10 healthy controls (HC), aged 9-14 years, completed performance-based measures of processing speed and executive function, and parents rated their child's day-to-day executive skills. Children underwent magnetic resonance imaging (MRI) with diffusion weighted imaging that yielded fractional anisotropy (FA) and mean diffusivity (MD) values. Independent samples t-tests assessed group differences on neurocognitive and imaging measures, and pooled within-group correlations examined relationships among measures across groups. RESULTS PBTS performed more poorly than HC on measures of processing speed, divided attention, and shifting (d = -1.08 to -1.44). WM microstructure differences were significant in MD values for the bilateral SLF and ACR, with PBTS showing higher diffusivity (d = 0.75 to 1.21). Better processing speed, divided attention, and shifting were associated with lower diffusivity in the IFOF, SLF, and ACR, but were not strongly correlated with FA. CONCLUSIONS PBTS demonstrate poorer neurocognitive functioning that is linked to differences in WM microstructure, as evidenced by higher diffusivity in the ACR, SLF, and IFOF. These findings support the use of MD in understanding alterations in WM microstructure in PTBS and shed light on potential functions of these pathways.
Collapse
Affiliation(s)
- Sandra Glazer
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Young Jin Kim
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Educational Psychology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Madison Fecher
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Katherine A Billetdeaux
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Erin B Gilliland
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Randal Olshefski
- Section of Hematology/Oncology/Bone Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Keith Owen Yeates
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Kathryn Vannatta
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
8
|
Rhodes A, Martin S, Toledo-Tamula MA, Loucas C, Glod J, Warren KE, Wolters PL. The neuropsychological profile of children with Diffuse Intrinsic Pontine Glioma (DIPG) before and after radiation therapy: A prospective longitudinal study. Child Neuropsychol 2023; 29:934-958. [PMID: 36369715 DOI: 10.1080/09297049.2022.2144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
Children with Diffuse Intrinsic Pontine Gliomas (DIPG), a malignant brainstem tumor, experience poor prognosis. Because of the disease's rarity and highly aggressive course, there is a dearth of research on cognitive and psychosocial outcomes in this underserved, vulnerable population. However, evaluating effects of the disease and treatment on the cognitive and daily functioning of these patients is important to better understand their specific needs and improve their quality of life. The current longitudinal study administered prospective neuropsychological assessments to children diagnosed with CNS malignancies, including the largest sample of children with DIPG to date (n = 21, mean age = 7.86 years, range = 3-16) in neurocognitive, behavioral, social-emotional, and adaptive functioning at baseline, two weeks post-radiation, and six months later. The results describe population-based, cross-sectional characteristics and within-patient longitudinal changes. Prior to radiation, children with DIPG exhibited significant weaknesses compared to normative samples in both parent-report and performance-based measures of attention, and tests of processing speed and verbal learning/memory. Younger children demonstrated poorer inhibitory control on performance tests and worse parent-reported behavioral regulation, depression, and social withdrawal compared to older children. Six-months post-radiation, older children exhibited poorer socialization than younger children. Longitudinally, children with DIPG exhibited short-term improvements immediately post-radiation in performance-based attention tests and parent-reported behavior, including attention, hyperactivity, behavioral regulation, and executive function. However, these improvements did not persist and significant decline was documented on tests of attention by six months. Clinical implications for professionals working with children with DIPG and recommendations for cognitive remediation and quality of life interventions are provided.
Collapse
Affiliation(s)
- Amanda Rhodes
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Anne Toledo-Tamula
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caitlyn Loucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katherine E Warren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatric Neuro-Oncology, Dana Farber Cancer Institute/Boston Children's Hospital, Boston, MA, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Peterson RK, Ng R, Ludwig NN, Jacobson LA. Tumor region associated with specific processing speed outcomes. Pediatr Blood Cancer 2023; 70:e30167. [PMID: 36625401 PMCID: PMC10101562 DOI: 10.1002/pbc.30167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Processing speed (PS) is a vulnerable cognitive skill in pediatric cancer survivors as a consequence of treatments and, less consistently, tumor region. Studies conventionally examine graphomotor PS; emerging research suggests other aspects of PS may be impacted. This study examined types of PS in pediatric brain tumor survivors to determine which aspects are impaired. Given discordance across studies, we additionally investigated the relationship between brain region and PS. METHODS The sample consisted of 167 pediatric brain tumor patients (100 supratentorial). PS (oral naming, semantic fluency, phonemic fluency, motor speed, graphomotor speed, visual scanning) was gathered via clinical neuropsychological assessment. To examine PS by region, infratentorial and supratentorial groups were matched on age at diagnosis and neuropsychological assessment, and time since diagnosis. RESULTS The whole sample performed below normative means on measures of oral naming (p < .001), phonemic fluency (p < .001), motor speed (p = .03), visual scanning (p < .001), and graphomotor speed (p < .001). Only oral naming differed by region (p = .03), with infratentorial tumors associated with slower performance. After controlling for known medical and demographic risk factors, brain region remained a significant predictor of performance (p = .04). Among the whole sample, greater than expected proportions of patients with impairment (i.e., >1 standard deviation below the normative mean) were seen across all PS measures. Infratentorial tumors had higher rates of impairments across all PS measures except phonemic fluency. CONCLUSIONS Results indicate pediatric brain tumor survivors demonstrate weaknesses in multiple aspects of PS, suggesting impairments are not secondary to peripheral motor slowing alone. Additionally, tumor region may predict some but not all neuropsychological outcomes in this population.
Collapse
Affiliation(s)
- Rachel K Peterson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rowena Ng
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha N Ludwig
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa A Jacobson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Nabavizadeh A, Barkovich MJ, Mian A, Ngo V, Kazerooni AF, Villanueva-Meyer JE. Current state of pediatric neuro-oncology imaging, challenges and future directions. Neoplasia 2023; 37:100886. [PMID: 36774835 PMCID: PMC9945752 DOI: 10.1016/j.neo.2023.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Imaging plays a central role in neuro-oncology including primary diagnosis, treatment planning, and surveillance of tumors. The emergence of quantitative imaging and radiomics provided an uprecedented opportunity to compile mineable databases that can be utilized in a variety of applications. In this review, we aim to summarize the current state of conventional and advanced imaging techniques, standardization efforts, fast protocols, contrast and sedation in pediatric neuro-oncologic imaging, radiomics-radiogenomics, multi-omics and molecular imaging approaches. We will also address the existing challenges and discuss future directions.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Matthew J Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ali Mian
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA
| | - Van Ngo
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
12
|
Roberts H, Ford TJ, Karl A, Reynolds S, Limond J, Adlam ALR. Mood Disorders in Young People With Acquired Brain Injury: An Integrated Model. Front Hum Neurosci 2022; 16:835897. [PMID: 35754774 PMCID: PMC9218558 DOI: 10.3389/fnhum.2022.835897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose/Objective Young people with paediatric acquired brain injury (pABI) are twice as likely to develop a mood disorder as their peers, frequently have significant unmet socio-emotional needs, and are at over double the risk of going on to use adult mental health services. Recent years have seen significant advances in the development of interventions for young people with mood disorders. However, evidence-based approaches to mood disorders in pABI are lacking and surprisingly little work has evaluated clinical and neuro-developmental models of mood disorders in this population. Method We review the literature regarding key mechanisms hypothesised to account for the increased vulnerability to mood disorders in pABI: First, we summarise the direct neurocognitive consequences of pABI, considering the key areas of the brain implicated in vulnerability to mood disorders within a neurodevelopmental framework. Second, we outline five key factors that contribute to the heightened prevalence of mood disorders in young people following ABI. Finally, we synthesise these, integrating neuro-cognitive, developmental and systemic factors to guide clinical formulation. Results and Implications We present a framework that synthesises the key mechanisms identified in our review, namely the direct effects of pABI, neurocognitive and neuroendocrine factors implicated in mood and anxiety disorders, maladaptive neuroplasticity and trauma, structural and systemic factors, and psychological adjustment and developmental context. This framework is the first attempt to provide integrated guidance on the multiple factors that contribute to elevated life-long risk of mood disorders following pABI.
Collapse
Affiliation(s)
| | - Tamsin J Ford
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anke Karl
- Psychology, University of Exeter, Exeter, United Kingdom
| | - Shirley Reynolds
- Department of Psychology, University of Reading, Reading, United Kingdom
| | - Jenny Limond
- Psychology, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
13
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Sleurs C, Jacobs S, Counsell SJ, Christiaens D, Tournier JD, Sunaert S, Van Beek K, Uyttebroeck A, Deprez S, Batalle D, Lemiere J. Brain network hubs and cognitive performance of survivors of childhood infratentorial tumors. Radiother Oncol 2021; 161:118-125. [PMID: 34102233 DOI: 10.1016/j.radonc.2021.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Childhood infratentorial tumor patients frequently suffer from long-term cognitive deficits. As each constituent of their treatment can lead to neurotoxicity, cascade effects can lead to profound reorganization of the underlying brain network, the so-called 'connectome'. However, to date, few studies have assessed the relationship between brain network topology, the functional role of network hubs (i.e. highly connected regions), and neurocognitive outcomes in adult survivors of childhood infratentorial tumors. METHODS In this cross-sectional study, childhood infratentorial tumor survivors (n = 21: pilocytic astrocytoma (n = 8), ependymoma (n = 1) and medulloblastoma (n = 12)) and healthy controls (n = 21) were recruited. Using multishell diffusion-weighted MRI, microstructural organization and topology of supratentorial white matter was investigated; using a voxel-based approach, a fixel-based analysis, and a graph theoretical approach. In addition, neurocognitive subscales of the WAIS-IV intelligence test, and their relationship with nodal strength and network efficiency metrics were assessed. RESULTS Similar to earlier studies, we observed widespread decreases in fractional anisotropy (FA) in patients compared to controls, based on voxel-based analyses. In addition, the fixel-based analyses dissociated macro- from microstructural changes, which were encountered in in infratentorial versus supratentorial brain areas, respectively. Finally, regional reorganization (i.e. differences in local efficiency) occurred mainly in hubs, which suggests a specific vulnerability of these areas. These hubs were not only mostly affected, but also most strongly correlated with the intelligence subscales. CONCLUSION This study suggests that network hubs are functionally important for intellectual outcomes in infratentorial tumor survivors. Furthermore, these regions could be the primary targets of treatment toxicity. Validation of this specific hypothesis in larger samples is required.
Collapse
Affiliation(s)
| | - Sandra Jacobs
- Department of Oncology, KU Leuven, Belgium; Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; Department of Imaging and Pathology, KU Leuven, Belgium
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Belgium
| | - Karen Van Beek
- Department of Radiotherapy, University Hospitals Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Oncology, KU Leuven, Belgium; Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Belgium
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jurgen Lemiere
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| |
Collapse
|
15
|
Tso WWY, Hui ESK, Lee TMC, Liu APY, Ip P, Vardhanabhuti V, Cheng KKF, Fong DYT, Chang DHF, Ho FKW, Yip KM, Ku DTL, Cheuk DKL, Luk CW, Shing MK, Leung LK, Khong PL, Chan GCF. Brain Microstructural Changes Associated With Neurocognitive Outcome in Intracranial Germ Cell Tumor Survivors. Front Oncol 2021; 11:573798. [PMID: 34164332 PMCID: PMC8216078 DOI: 10.3389/fonc.2021.573798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Childhood intracranial germ cell tumor (GCT) survivors are prone to radiotherapy-related neurotoxicity, which can lead to neurocognitive dysfunctions. Diffusion kurtosis imaging (DKI) is a diffusion MRI technique that is sensitive to brain microstructural changes. This study aimed to investigate the association between DKI metrics versus cognitive and functional outcomes of childhood intracranial GCT survivors. Methods DKI was performed on childhood intracranial GCT survivors (n = 20) who had received cranial radiotherapy, and age and gender-matched healthy control subjects (n = 14). Neurocognitive assessment was performed using the Hong Kong Wechsler Intelligence Scales, and functional assessment was performed using the Lansky/Karnofsky performance scales (KPS). Survivors and healthy controls were compared using mixed effects model. Multiple regression analyses were performed to determine the effects of microstructural brain changes of the whole brain as well as the association between IQ and Karnofsky scores and the thereof. Results The mean Intelligence Quotient (IQ) of GCT survivors was 91.7 (95% CI 84.5 – 98.8), which was below the age-specific normative expected mean IQ (P = 0.013). The mean KPS score of GCT survivors was 85.5, which was significantly lower than that of controls (P < 0.001). Cognitive impairments were significantly associated with the presence of microstructural changes in white and grey matter, whereas functional impairments were mostly associated with microstructural changes in white matter. There were significant correlations between IQ versus the mean diffusivity (MD) and mean kurtosis (MK) of specific white matter regions. The IQ scores were negatively correlated with the MD of extensive grey matter regions. Conclusion Our study identified vulnerable brain regions whose microstructural changes in white and grey matter were significantly associated with impaired cognitive and physical functioning in survivors of pediatric intracranial GCT.
Collapse
Affiliation(s)
- Winnie Wan Yee Tso
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Edward Sai Kam Hui
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tatia Mei Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Anthony Pak Yin Liu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vince Vardhanabhuti
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | | | - Dorita Hue Fung Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Psychology, The University of Hong Kong, Hong, Kong, Hong Kong
| | - Frederick Ka Wing Ho
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Ka Man Yip
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dennis Tak Loi Ku
- Department of Oncology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Daniel Ka Leung Cheuk
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Chung Wing Luk
- Department of Oncology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Ming Kong Shing
- Department of Oncology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Lok Kan Leung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pek Lan Khong
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
16
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
17
|
Cavatorta C, Meroni S, Montin E, Oprandi MC, Pecori E, Lecchi M, Diletto B, Alessandro O, Peruzzo D, Biassoni V, Schiavello E, Bologna M, Massimino M, Poggi G, Mainardi L, Arrigoni F, Spreafico F, Verderio P, Pignoli E, Gandola L. Retrospective study of late radiation-induced damages after focal radiotherapy for childhood brain tumors. PLoS One 2021; 16:e0247748. [PMID: 33635906 PMCID: PMC7909688 DOI: 10.1371/journal.pone.0247748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/15/2021] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To study a robust and reproducible procedure to investigate a relation between focal brain radiotherapy (RT) low doses, neurocognitive impairment and late White Matter and Gray Matter alterations, as shown by Diffusion Tensor Imaging (DTI), in children. METHODS AND MATERIALS Forty-five patients (23 males and 22 females, median age at RT 6.2 years, median age at evaluations 11.1 years) who had received focal RT for brain tumors were recruited for DTI exams and neurocognitive tests. Patients' brains were parceled in 116 regions of interest (ROIs) using an available segmented atlas. After the development of an ad hoc, home-made, multimodal and highly deformable registration framework, we collected mean RT doses and DTI metrics values for each ROI. The pattern of association between cognitive scores or domains and dose or DTI values was assessed in each ROI through both considering and excluding ROIs with mean doses higher than 75% of the prescription. Subsequently, a preliminary threshold value of dose discriminating patients with and without neurocognitive impairment was selected for the most relevant associations. RESULTS The workflow allowed us to identify 10 ROIs where RT dose and DTI metrics were significantly associated with cognitive tests results (p<0.05). In 5/10 ROIs, RT dose and cognitive tests were associated with p<0.01 and preliminary RT threshold dose values, implying a possible cognitive or neuropsychological damage, were calculated. The analysis of domains showed that the most involved one was the "school-related activities". CONCLUSION This analysis, despite being conducted on a retrospective cohort of children, shows that the identification of critical brain structures and respective radiation dose thresholds is achievable by combining, with appropriate methodological tools, the large amount of data arising from different sources. This supported the design of a prospective study to gain stronger evidence.
Collapse
Affiliation(s)
- Claudia Cavatorta
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Silvia Meroni
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- * E-mail:
| | - Eros Montin
- Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Maria C. Oprandi
- Neuro-oncological and Neuropsychological Rehabilitation Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Emilia Pecori
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Diletto
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ombretta Alessandro
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marco Bologna
- Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Geraldina Poggi
- Neuro-oncological and Neuropsychological Rehabilitation Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luca Mainardi
- Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Emanuele Pignoli
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Lorenza Gandola
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
18
|
Werk RS, Steinhorn DM, Newberg A. The Relationship Between Spirituality and the Developing Brain: A Framework for Pediatric Oncology. JOURNAL OF RELIGION AND HEALTH 2021; 60:389-405. [PMID: 32270366 DOI: 10.1007/s10943-020-01014-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development, whether motor, language, social, or spiritual, is the functional expression of complex brain processes throughout one's life span, the foundations of which are laid in childhood. The effects of cancer, chemotherapy, radiation, and surgical procedures on early brain development have been measured using neuroimaging and developmental assessment tools. We propose that spiritual development may be substantially affected in children with oncological diseases that impact underlying brain processes. By drawing connections between science, spirituality, and medicine, we can better address the spiritual needs of children as they cope with oncological diseases, by mitigating emotional, cognitive, and physical symptoms and improving outcomes.
Collapse
Affiliation(s)
- Rachel S Werk
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN, 8161 DOT37232-9760, USA.
| | - David M Steinhorn
- Divisions of Pediatric Critical Care and Pediatric Palliative Care, Children's National Medical Center, Washington, DC, USA
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers (Basel) 2021; 13:cancers13030367. [PMID: 33498403 PMCID: PMC7864176 DOI: 10.3390/cancers13030367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.
Collapse
Affiliation(s)
- Daniëlle C. Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| |
Collapse
|
20
|
Neuroimaging Biomarkers and Neurocognitive Outcomes in Pediatric Medulloblastoma Patients: a Systematic Review. THE CEREBELLUM 2021; 20:462-480. [PMID: 33417160 DOI: 10.1007/s12311-020-01225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Medulloblastoma is a malign posterior fossa brain tumor, mostly occurring in childhood. The CNS-directed chemoradiotherapy treatment can be very harmful to the developing brain and functional outcomes of these patients. However, what the underlying neurotoxic mechanisms are remain inconclusive. Hence, this review summarizes the existing literature on the association between advanced neuroimaging and neurocognitive changes in patients that were treated for pediatric medulloblastoma. The PubMed/Medline database was extensively screened for studies investigating the link between cognitive outcomes and multimodal magnetic resonance (MR) imaging in childhood medulloblastoma survivors. A behavioral meta-analysis was performed on the available IQ scores. A total of 649 studies were screened, of which 22 studies were included. Based on this literature review, we conclude medulloblastoma patients to be at risk for white matter volume loss, more frequent white matter lesions, and changes in white matter microstructure. Such microstructural alterations were associated with lower IQ, which reached the clinical cut-off in survivors across studies. Using functional MR scans, changes in activity were observed in cerebellar areas, associated with working memory and processing speed. Finally, cerebral microbleeds were encountered more often, but these were not associated with cognitive outcomes. Regarding intervention studies, computerized cognitive training was associated with changes in prefrontal and cerebellar activation and physical training might result in microstructural and cortical alterations. Hence, to better define the neural targets for interventions in pediatric medulloblastoma patients, this review suggests working towards neuroimaging-based predictions of cognitive outcomes. To reach this goal, large multimodal prospective imaging studies are highly recommended.
Collapse
|
21
|
The Neurological Predictor Scale Predicts Adaptive Functioning via Executive Dysfunction in Young Adult Survivors of Childhood Brain Tumor. J Int Neuropsychol Soc 2021; 27:1-11. [PMID: 32641194 DOI: 10.1017/s1355617720000624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Survivors of childhood brain tumors experience neurological sequelae that disrupt everyday adaptive functioning (AF) skills. The Neurological Predictor Scale (NPS), a cumulative measure of tumor treatments and sequelae, predicts cognitive outcomes, but findings on its relation to informant-reported executive dysfunction (ED) and AF are mixed. Given known effects of frontal-subcortical system disruptions on AF, this study assessed the NPS' relationship with AF as mediated by frontal systems dysfunction, measured by the Frontal Systems Behavior Scale (FrSBe). METHODS 75 participants (Mage = 23.5, SDage = 4.5) were young adult survivors of childhood brain tumors at least 5 years past diagnosis. FrSBe and Scales of Independent Behavior-Revised (SIB-R), a measure of AF, were administered to informants. Parallel multiple mediator models included Apathy and ED as mediators, and age at diagnosis and time between diagnosis and assessment as covariates. RESULTS More complex treatment and sequelae were correlated with poorer functioning. Mediation models were significant for all subscales: Motor Skills (MS), p = .0001; Social Communication (SC), p = .002; Personal Living (PL), p = .004; Community Living (CL), p = .007. The indirect effect of ED on SC and CL was significant; the indirect effect of Apathy was not significant for any subscales. CONCLUSIONS More complex tumor treatment and sequelae were associated with poorer long-term AF via increased ED. Cognitive rehabilitation programs may focus on the role of executive function and initiation that contribute to AF, particularly SC and CL skills, to help survivors achieve comparable levels of independence in everyday function as their peers.
Collapse
|
22
|
A Review of Chronic Leukoencephalopathy among Survivors of Childhood Cancer. Pediatr Neurol 2019; 101:2-10. [PMID: 31047756 DOI: 10.1016/j.pediatrneurol.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/11/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
Currently, there are an estimated 400,000 long-term survivors of childhood cancer in the United States. Chronic leukoencephalopathy is a potential devastating late effect that can manifest as a range of neurological and neurocognitive sequelae. Survivors of the acute lymphocytic leukemia, central nervous system tumors, and stem cell transplant have frequently been exposed to cranial radiation, systemic and intrathecal chemotherapy, which places them at risk of developing chronic leukoencephalopathy. Defining leukoencephalopathy and its neuroimaging characteristics, the population of survivors at risk, its long-term consequences, and identifying prevention and intervention strategies can potentially mitigate the morbidity of these survivors. Better understanding of those at risk of leukoencephalopathy and its symptoms can lead to an improved quality of life for these cancer survivors.
Collapse
|
23
|
Tang TT, Zawaski JA, Kesler SR, Beamish CA, Reddick WE, Glass JO, Carney DH, Sabek OM, Grosshans DR, Gaber MW. A comprehensive preclinical assessment of late-term imaging markers of radiation-induced brain injury. Neurooncol Adv 2019; 1:vdz012. [PMID: 31608330 PMCID: PMC6777502 DOI: 10.1093/noajnl/vdz012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Cranial radiotherapy (CRT) is an important part of brain tumor treatment, and although highly effective, survivors suffer from long-term cognitive side effects. In this study we aim to establish late-term imaging markers of CRT-induced brain injury and identify functional markers indicative of cognitive performance. Specifically, we aim to identify changes in executive function, brain metabolism, and neuronal organization. Methods Male Sprague Dawley rats were fractionally irradiated at 28 days of age to a total dose of 30 Gy to establish a radiation-induced brain injury model. Animals were trained at 3 months after CRT using the 5-choice serial reaction time task. At 12 months after CRT, animals were evaluated for cognitive and imaging changes, which included positron emission tomography (PET) and magnetic resonance imaging (MRI). Results Cognitive deficit with signs of neuroinflammation were found at 12 months after CRT in irradiated animals. CRT resulted in significant volumetric changes in 38% of brain regions as well as overall decrease in brain volume and reduced gray matter volume. PET imaging showed higher brain glucose uptake in CRT animals. Using MRI, irradiated brains had an overall decrease in fractional anisotropy, lower global efficiency, increased transitivity, and altered regional connectivity. Cognitive measurements were found to be significantly correlated with six image features that included myelin integrity and local organization of the neural network. Conclusions These results demonstrate that CRT leads to late-term morphological changes, reorganization of neural connections, and metabolic dysfunction. The correlation between imaging markers and cognitive deficits can be used to assess late-term side effects of brain tumor treatment and evaluate efficacy of new interventions.
Collapse
Affiliation(s)
- Tien T Tang
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Janice A Zawaski
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shelli R Kesler
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Darrell H Carney
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and Chrysalis BioTherapeutics, Inc., Galveston, Texas
| | - Omaima M Sabek
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M Waleed Gaber
- Department of Pediatrics, Hematology-Oncology Section, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
24
|
Ailion AS, Roberts SR, Crosson B, King TZ. Neuroimaging of the component white matter connections and structures within the cerebellar-frontal pathway in posterior fossa tumor survivors. NEUROIMAGE-CLINICAL 2019; 23:101894. [PMID: 31229941 PMCID: PMC6593203 DOI: 10.1016/j.nicl.2019.101894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Introduction In posterior fossa tumor survivors, lower white matter integrity (WMI) in the right cerebellar-left frontal pathway has been well documented and appears to be related to proximity to the cerebellum, radiation treatment, as well as time since treatment in both cranial radiation and surgery-only treatment groups. The current study investigated theories of transneural degeneration following cerebellar tumor resection that may underlie or relate to reductions in WMI and regional brain volumes using correlations. We hypothesized a positive relationship between the volume of the right cerebellum and known white matter output pathways, as well as with the volume of structures that receive cerebellar projections along the pathway. Methods Adult survivors of childhood brain tumors were recruited (n = 29; age, M = 22 years, SD = 5; 45% female). Age- and gender-matched controls were also included (n = 29). Participants completed 3 T diffusion-weighted and T1 MPRAGE MRI scans. Brain structure volume relative to intracranial vault served as regional volumetric measures. Fractional anisotropy (FA) and radial diffusivity (RD) served as WMI measures. In the survivor group, partial correlations between WMI and regional volume included controlling for disease severity. Results In posterior fossa tumor survivors, the volumes of the cerebellum, thalamus, and frontal lobe were correlated with WMI of the thalamic-frontal segment of the cerebellar-frontal pathway (r = 0.41–0.49, p < .05). Cerebellar atrophy was correlated with reduced WMI in the cerebellar-rubral segment (FA, r = −0.32 p > .05; RD, r = 0.53, p < .01). In the no-radiation survivor group, the regional volume of each structure along the pathway was associated with WMI in the cerebellar-rubral segment. In the radiation survivor group, significant correlations were found between the regional brain volume of each structure and the thalamic-frontal segment of the pathway. Discussion The results of this multimodal neuroimaging study provide correlational evidence that the mechanism of injury subsequent to brain tumor treatment may be different depending on type of treatment(s). Without radiation, the primary mechanism of injury is cerebellar tumor growth, resection, and hydrocephalus. Therefore, the most proximal connection to that injury (cerebellar-rubral pathway) was correlated with reductions in volume along the pathway. In contrast, the survivor group treated with radiation may have had possible radiation-induced demyelination of the thalamic-frontal portion of the pathway, based on a strong correlation with volume loss in the cerebellum, red nucleus, thalamus, and frontal lobe. Cerebellar atrophy predicted lower white matter integrity (WMI) in the cerebellar-rubral segment. The no-radiation group showed a correlational pattern that is consistent with possible transneural degeneration. The radiation group showed a correlational pattern consistent with theories of neurodevelopmental vulnerability to radiation-induced demyelination.
Collapse
Affiliation(s)
- Alyssa S Ailion
- Department of Psychology, the Neuroscience Institute, Georgia State University, United States of America
| | - Simone Renée Roberts
- Department of Psychology, the Neuroscience Institute, Georgia State University, United States of America; Department of Neurology, Emory University School of Medicine, United States of America; Atlanta VA Center of Excellence for Visual and Neurocognitive Rehabilitation, United States of America
| | - Bruce Crosson
- Department of Psychology, the Neuroscience Institute, Georgia State University, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, United States of America; Department of Neurology, Emory University School of Medicine, United States of America; Atlanta VA Center of Excellence for Visual and Neurocognitive Rehabilitation, United States of America
| | - Tricia Z King
- Department of Psychology, the Neuroscience Institute, Georgia State University, United States of America.
| |
Collapse
|
25
|
Glass JO, Ogg RJ, Hyun JW, Harreld JH, Schreiber JE, Palmer SL, Li Y, Gajjar AJ, Reddick WE. Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro Oncol 2018; 19:1408-1418. [PMID: 28541578 DOI: 10.1093/neuonc/nox062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Treatment of pediatric medulloblastoma is associated with known neurocognitive deficits that we hypothesize are caused by microstructural damage to frontal white matter (WM). Methods Longitudinal MRI examinations were collected from baseline (after surgery but before therapy) to 36 months in 146 patients and at 3 time points in 72 controls. Regional analyses of frontal WM volume and diffusion tensor imaging metrics were performed and verified with tract-based spatial statistics. Age-adjusted, linear mixed-effects models were used to compare patient and control images and to associate imaging changes with Woodcock-Johnson Tests of Cognitive Abilities. Results At baseline, WM volumes in patients were similar to those in controls; fractional anisotropy (FA) was lower bilaterally (P < 0.001) and was associated with decreased Processing Speed (P = 0.014) and Broad Attention (P = 0.025) performance at 36 months. During follow-up, WM volumes increased in controls but decreased in patients (P < 0.001) bilaterally. Smaller WM volumes in patients at 36 months were associated with concurrent decreased Working Memory (P = 0.026) performance. Conclusions Lower FA in patients with pediatric medulloblastoma compared with age-similar controls indicated that patients suffer substantial acute microstructural damage to supratentorial frontal WM following surgery but before radiation therapy or chemotherapy. Additionally, this damage to the frontal WM was associated with decreased cognitive performance in executive function 36 months later. This early damage also likely contributed to posttherapeutic failure of age-appropriate WM development and to the known association between decreased WM volumes and decreased cognitive performance.
Collapse
Affiliation(s)
- John O Glass
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert J Ogg
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jung W Hyun
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Julie H Harreld
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane E Schreiber
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Shawna L Palmer
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar J Gajjar
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Wilburn E Reddick
- Departments of Diagnostic Imaging, Biostatistics, Psychology, and Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
26
|
Marusak HA, Iadipaolo AS, Harper FW, Elrahal F, Taub JW, Goldberg E, Rabinak CA. Neurodevelopmental consequences of pediatric cancer and its treatment: applying an early adversity framework to understanding cognitive, behavioral, and emotional outcomes. Neuropsychol Rev 2018; 28:123-175. [PMID: 29270773 PMCID: PMC6639713 DOI: 10.1007/s11065-017-9365-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023]
Abstract
Today, children are surviving pediatric cancer at unprecedented rates, making it one of modern medicine's true success stories. However, we are increasingly becoming aware of several deleterious effects of cancer and the subsequent "cure" that extend beyond physical sequelae. Indeed, survivors of childhood cancer commonly report cognitive, emotional, and psychological difficulties, including attentional difficulties, anxiety, and posttraumatic stress symptoms (PTSS). Cognitive late- and long-term effects have been largely attributed to neurotoxic effects of cancer treatments (e.g., chemotherapy, cranial irradiation, surgery) on brain development. The role of childhood adversity in pediatric cancer - namely, the presence of a life-threatening disease and endurance of invasive medical procedures - has been largely ignored in the existing neuroscientific literature, despite compelling research by our group and others showing that exposure to more commonly studied adverse childhood experiences (i.e., domestic and community violence, physical, sexual, and emotional abuse) strongly imprints on neural development. While these adverse childhood experiences are different in many ways from the experience of childhood cancer (e.g., context, nature, source), they do share a common element of exposure to threat (i.e., threat to life or physical integrity). Therefore, we argue that the double hit of early threat and cancer treatments likely alters neural development, and ultimately, cognitive, behavioral, and emotional outcomes. In this paper, we (1) review the existing neuroimaging research on child, adolescent, and adult survivors of childhood cancer, (2) summarize gaps in our current understanding, (3) propose a novel neurobiological framework that characterizes childhood cancer as a type of childhood adversity, particularly a form of early threat, focusing on development of the hippocampus and the salience and emotion network (SEN), and (4) outline future directions for research.
Collapse
Affiliation(s)
- Hilary A Marusak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA.
| | - Allesandra S Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Felicity W Harper
- Population Studies and Disparities Research Program, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Farrah Elrahal
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Jeffrey W Taub
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Elimelech Goldberg
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Kids Kicking Cancer, Southfield, MI, USA
| | - Christine A Rabinak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
27
|
Makola M, Douglas Ris M, Mahone EM, Yeates KO, Cecil KM. Long-term effects of radiation therapy on white matter of the corpus callosum: a diffusion tensor imaging study in children. Pediatr Radiol 2017; 47:1809-1816. [PMID: 28844078 PMCID: PMC5693613 DOI: 10.1007/s00247-017-3955-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite improving survival rates, children are at risk for long-term cognitive and behavioral difficulties following the diagnosis and treatment of a brain tumor. Surgery, chemotherapy and radiation therapy have all been shown to impact the developing brain, especially the white matter. OBJECTIVE The purpose of this study was to determine the long-term effects of radiation therapy on white matter integrity, as measured by diffusion tensor imaging, in pediatric brain tumor patients 2 years after the end of radiation treatment, while controlling for surgical interventions. MATERIALS AND METHODS We evaluated diffusion tensor imaging performed at two time points: a baseline 3 to 12 months after surgery and a follow-up approximately 2 years later in pediatric brain tumor patients. A region of interest analysis was performed within three regions of the corpus callosum. Diffusion tensor metrics were determined for participants (n=22) who underwent surgical tumor resection and radiation therapy and demographically matched with participants (n=22) who received surgical tumor resection only. RESULTS Analysis revealed that 2 years after treatment, the radiation treated group exhibited significantly lower fractional anisotropy and significantly higher radial diffusivity within the body of the corpus callosum compared to the group that did not receive radiation. CONCLUSION The findings indicate that pediatric brain tumor patients treated with radiation therapy may be at greater risk of experiencing long-term damage to the body of the corpus callosum than those treated with surgery alone.
Collapse
Affiliation(s)
- Monwabisi Makola
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - M Douglas Ris
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - E Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kim M Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, MLC 5033, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
28
|
King TZ, Ailion AS, Fox ME, Hufstetler SM. Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumors. Child Neuropsychol 2017; 25:1-21. [DOI: 10.1080/09297049.2017.1380178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tricia Z. King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Alyssa S. Ailion
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michelle E. Fox
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Schell M. Hufstetler
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
29
|
Doger de Speville E, Robert C, Perez-Guevara M, Grigis A, Bolle S, Pinaud C, Dufour C, Beaudré A, Kieffer V, Longaud A, Grill J, Valteau-Couanet D, Deutsch E, Lefkopoulos D, Chiron C, Hertz-Pannier L, Noulhiane M. Relationships between Regional Radiation Doses and Cognitive Decline in Children Treated with Cranio-Spinal Irradiation for Posterior Fossa Tumors. Front Oncol 2017; 7:166. [PMID: 28868253 PMCID: PMC5563322 DOI: 10.3389/fonc.2017.00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Pediatric posterior fossa tumor (PFT) survivors who have been treated with cranial radiation therapy often suffer from cognitive impairments that might relate to IQ decline. Radiotherapy (RT) distinctly affects brain regions involved in different cognitive functions. However, the relative contribution of regional irradiation to the different cognitive impairments still remains unclear. We investigated the relationships between the changes in different cognitive scores and radiation dose distribution in 30 children treated for a PFT. Our exploratory analysis was based on a principal component analysis (PCA) and an ordinary least square regression approach. The use of a PCA was an innovative way to cluster correlated irradiated regions due to similar radiation therapy protocols across patients. Our results suggest an association between working memory decline and a high dose (equivalent uniform dose, EUD) delivered to the orbitofrontal regions, whereas the decline of processing speed seemed more related to EUD in the temporal lobes and posterior fossa. To identify regional effects of RT on cognitive functions may help to propose a rehabilitation program adapted to the risk of cognitive impairment.
Collapse
Affiliation(s)
- Elodie Doger de Speville
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France.,Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1030, Villejuif, France.,Paris Sud University, Paris-Saclay University, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | | | - Antoine Grigis
- Institut Joliot, Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Stephanie Bolle
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Clemence Pinaud
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Anne Beaudré
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Virginie Kieffer
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,CSI Department for Children with Acquired Brain Injury, Hopitaux de Saint Maurice, Saint-Maurice, France
| | - Audrey Longaud
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France.,Paris Sud University, Orsay, France
| | - Eric Deutsch
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1030, Villejuif, France.,Paris Sud University, Paris-Saclay University, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Dimitri Lefkopoulos
- Radiation Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy, Paris-Saclay University, Department of Medical Physics, Villejuif, France
| | - Catherine Chiron
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Lucie Hertz-Pannier
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Marion Noulhiane
- INSERM U1129, CEA, Paris Descartes University, Paris, France.,UNIACT, Institut Joliot, DRF, Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Ailion AS, Hortman K, King TZ. Childhood Brain Tumors: a Systematic Review of the Structural Neuroimaging Literature. Neuropsychol Rev 2017. [DOI: 10.1007/s11065-017-9352-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Connor M, Karunamuni R, McDonald C, Seibert T, White N, Moiseenko V, Bartsch H, Farid N, Kuperman J, Krishnan A, Dale A, Hattangadi-Gluth JA. Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 2017; 123:209-217. [PMID: 28460824 PMCID: PMC5518466 DOI: 10.1016/j.radonc.2017.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Regional differences in sensitivity to white matter damage after brain radiotherapy (RT) are not well-described. We characterized the spatial heterogeneity of dose-response across white matter tracts using diffusion tensor imaging (DTI). MATERIALS AND METHODS Forty-nine patients with primary brain tumors underwent MRI with DTI before and 9-12months after partial-brain RT. Maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated. Atlas-based white matter tracts were identified. A secondary analysis using skeletonized tracts was also performed. Linear mixed-model analysis of the relationship between mean and max dose and percent change in DTI metrics was performed. RESULTS Tracts with the strongest correlation of FA change with mean dose were the fornix (-0.46 percent/Gy), cingulum bundle (-0.44 percent/Gy), and body of corpus callosum (-0.23 percent/Gy), p<.001. These tracts also showed dose-sensitive changes in MD and RD. In the skeletonized analysis, the fornix and cingulum bundle remained highly dose-sensitive. Maximum and mean dose were similarly predictive of DTI change. CONCLUSIONS The corpus callosum, cingulum bundle, and fornix show the most prominent dose-dependent changes following RT. Future studies examining correlation with cognitive functioning and potential avoidance of critical white matter regions are warranted.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Tyler Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Nathan White
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States
| | - Hauke Bartsch
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Anitha Krishnan
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, California, United States; Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Department of Neurosciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States; Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, United States.
| |
Collapse
|
32
|
Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017; 18:e91-e100. [DOI: 10.1016/s1470-2045(17)30030-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
|
33
|
Hou P, Zhu KH, Park PC, Li H, Mahajan A, Grosshans DR. Proton Therapy for Juvenile Pilocytic Astrocytoma: Quantifying Treatment Responses by Magnetic Resonance Diffusion Tensor Imaging. Int J Part Ther 2017; 3:414-420. [PMID: 31772991 DOI: 10.14338/ijpt-16-00024.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022] Open
Abstract
Purpose Proton therapy is increasingly used to treat pediatric brain tumors. However, the response of both tumors and healthy tissues to proton therapy is currently under investigation. One way of assessing this response is magnetic resonance (MR) diffusion tensor imaging (DTI), which can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). In addition, DTI may reveal axonal fiber directional information in white matter, quantified by fractional anisotropy (FA). Here we report use of DTI to assess tumor and unexposed healthy brain tissue responses in a child who received proton therapy for juvenile pilocytic astrocytoma. Materials and Methods A 10-year-old boy with recurrent juvenile pilocytic astrocytoma of the left thalamus received proton therapy to a dose of 50.4Gy (RBE) in 28 fractions. Functional magnetic resonance imaging was used to select beam angles for treatment planning. Over the course of the 7-year follow-up period, magnetic resonance imaging including DTI was done to assess response. The MR images were registered to the treatment-planning computed tomography scan, and the gross tumor volume (GTV) was mapped onto the MR images at each follow-up. The GTV contour was then mirrored to the right side of brain through the midline to represent unexposed healthy brain tissue. Results Proton therapy delivered the full prescribed dose to the target while completely sparing the contralateral brain. The MR ADC images obtained before and after proton therapy showed that enhancement corresponding to the GTV had nearly disappeared by 25 months. The ADC and FA measurements confirmed that contralateral healthy brain tissue was not affected, and the GTV reverted to clinically normal ADC and FA values. Conclusion Use of DTI allowed quantitative evaluation of tumor and healthy brain tissue responses to proton therapy.
Collapse
Affiliation(s)
- Ping Hou
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine H Zhu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Peter C Park
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng Li
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Mahajan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 2016; 13:52-64. [PMID: 27982041 DOI: 10.1038/nrneurol.2016.185] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Standard treatment of primary and metastatic brain tumours includes high-dose megavoltage-range radiation to the cranial vault. About half of patients survive >6 months, and many attain long-term control or cure. However, 50-90% of survivors exhibit disabling cognitive dysfunction. The radiation-associated cognitive syndrome is poorly understood and has no effective prevention or long-term treatment. Attention has primarily focused on mechanisms of disability that appear at 6 months to 1 year after radiotherapy. However, recent studies show that CNS alterations and dysfunction develop much earlier following radiation exposure. This finding has prompted the hypothesis that subtle early forms of radiation-induced CNS damage could drive chronic pathophysiological processes that lead to permanent cognitive decline. This Review presents evidence of acute radiation-triggered CNS inflammation, injury to neuronal lineages, accessory cells and their progenitors, and loss of supporting structure integrity. Moreover, injury-related processes initiated soon after irradiation could synergistically alter the signalling microenvironment in progenitor cell niches in the brain and the hippocampus, which is a structure critical to memory and cognition. Progenitor cell niche degradation could cause progressive neuronal loss and cognitive disability. The concluding discussion addresses future directions and potential early treatments that might reverse degenerative processes before they can cause permanent cognitive disability.
Collapse
|
35
|
Moxon-Emre I, Bouffet E, Taylor MD, Laperriere N, Sharpe MB, Laughlin S, Bartels U, Scantlebury N, Law N, Malkin D, Skocic J, Richard L, Mabbott DJ. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J Neurosurg Pediatr 2016; 18:29-40. [PMID: 27015518 DOI: 10.3171/2016.1.peds15580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Craniospinal irradiation damages the white matter in children treated for medulloblastoma, but the treatment-intensity effects are unclear. In a cross-sectional retrospective study, the effects of treatment with the least intensive radiation protocol versus protocols that delivered more radiation to the brain, in addition to the effects of continuous radiation dose, on white matter architecture were evaluated. METHODS Diffusion tensor imaging was used to assess fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity. First, regional white matter analyses and tract-based spatial statistics were conducted in 34 medulloblastoma patients and 38 healthy controls. Patients were stratified according to those treated with 1) the least intensive radiation protocol, specifically reduced-dose craniospinal irradiation plus a boost to the tumor bed only (n = 17), or 2) any other dose and boost combination that delivered more radiation to the brain, which was also termed the "all-other-treatments" group (n = 17), and comprised patients treated with standard-dose craniospinal irradiation plus a posterior fossa boost, standard-dose craniospinal irradiation plus a tumor bed boost, or reduced-dose craniospinal irradiation plus a posterior fossa boost. Second, voxel-wise dose-distribution analyses were conducted on a separate cohort of medulloblastoma patients (n = 15). RESULTS The all-other-treatments group, but not the reduced-dose craniospinal irradiation plus tumor bed group, had lower fractional anisotropy and higher radial diffusivity than controls in all brain regions (all p < 0.05). The reduced-dose craniospinal irradiation plus tumor bed boost group had higher fractional anisotropy (p = 0.05) and lower radial diffusivity (p = 0.04) in the temporal region, and higher fractional anisotropy in the frontal region (p = 0.04), than the all-other-treatments group. Linear mixed-effects modeling revealed that the dose and age at diagnosis together 1) better predicted fractional anisotropy in the temporal region than models with either alone (p < 0.005), but 2) did not better predict fractional anisotropy in comparison with dose alone in the occipital region (p > 0.05). CONCLUSIONS Together, the results show that white matter damage has a clear association with increasing radiation dose, and that treatment with reduced-dose craniospinal irradiation plus tumor bed boost appears to preserve white matter in some brain regions.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology.,Pediatric Oncology Group of Ontario, Toronto; and
| | | | | | - Normand Laperriere
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Michael B Sharpe
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | - Nicole Law
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - David Malkin
- Divisions of 4 Hematology/Oncology.,Paediatrics, University of Toronto;,Pediatric Oncology Group of Ontario, Toronto; and
| | | | - Logan Richard
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - Donald J Mabbott
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| |
Collapse
|
36
|
Roddy E, Mueller S. Late Effects of Treatment of Pediatric Central Nervous System Tumors. J Child Neurol 2016; 31:237-54. [PMID: 26045296 DOI: 10.1177/0883073815587944] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Central nervous system tumors represent the most common solid malignancy in childhood. Improvement in treatment approaches have led to a significant increase in survival rates, with over 70% of children now surviving beyond 5 years. As more and more children with CNS tumors have longer survival times, it is important to be aware of the long-term morbidities caused not only by the tumor itself but also by tumor treatment. The most common side effects including poor neurocognition, endocrine dysfunction, neurological and vascular late effects, as well as secondary malignancies, are discussed within this article.
Collapse
Affiliation(s)
- Erika Roddy
- School of Medicine, University of California, San Francisco, CA, USA
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, CA, USA Department of Pediatrics, University of California, San Francisco, CA, USA Department of Neurosurgery, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Conklin HM, Ogg RJ, Ashford JM, Scoggins MA, Zou P, Clark KN, Martin-Elbahesh K, Hardy KK, Merchant TE, Jeha S, Huang L, Zhang H. Computerized Cognitive Training for Amelioration of Cognitive Late Effects Among Childhood Cancer Survivors: A Randomized Controlled Trial. J Clin Oncol 2015; 33:3894-902. [PMID: 26460306 DOI: 10.1200/jco.2015.61.6672] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Children receiving CNS-directed therapy for cancer are at risk for cognitive problems, with few available empirically supported interventions. Cognitive problems indicate neurodevelopmental disruption that may be modifiable with intervention. This study evaluated short-term efficacy of a computerized cognitive training program and neural correlates of cognitive change. PATIENT AND METHODS A total of 68 survivors of childhood acute lymphoblastic leukemia (ALL) or brain tumor (BT) with identified cognitive deficits were randomly assigned to computerized cognitive intervention (male, n = 18; female, n = 16; ALL, n = 23; BT, n = 11; mean age ± standard deviation, 12.21 ± 2.47 years) or waitlist (male, n = 18; female, n = 16; ALL, n = 24; BT, n = 10; median age ± standard deviation, 11.82 ± 2.42 years). Intervention participants were asked to complete 25 training sessions at home with weekly, telephone-based coaching. Cognitive assessments and functional magnetic resonance imaging scans (intervention group) were completed pre- and postintervention, with immediate change in spatial span backward as the primary outcome. RESULTS Survivors completing the intervention (n = 30; 88%) demonstrated greater improvement than controls on measures of working memory (mean ± SEM; eg, Wechsler Intelligence Scale for Children [fourth edition; WISC-IV] spatial span backward, 3.13 ± 0.58 v 0.75 ± 0.43; P = .002; effect size [ES], 0.84), attention (eg, WISC-IV spatial span forward, 3.30 ± 0.71 v 1.25 ± 0.39; P = .01; ES, 0.65), and processing speed (eg, Conners' Continuous Performance Test hit reaction time, -2.10 ± 1.47 v 2.54 ± 1.25; P = .02; ES, .61) and showed greater reductions in reported executive dysfunction (eg, Conners' Parent Rating Scale III, -6.73 ± 1.51 v 0.41 ± 1.53; P = .002; ES, 0.84). Functional magnetic resonance imaging revealed significant pre- to post-training reduction in activation of left lateral prefrontal and bilateral medial frontal areas. CONCLUSION Study findings show computerized cognitive training is feasible and efficacious for childhood cancer survivors, with evidence for training-related neuroplasticity.
Collapse
Affiliation(s)
- Heather M Conklin
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC.
| | - Robert J Ogg
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Jason M Ashford
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Matthew A Scoggins
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Ping Zou
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Kellie N Clark
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Karen Martin-Elbahesh
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Kristina K Hardy
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Thomas E Merchant
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Sima Jeha
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Lu Huang
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| | - Hui Zhang
- Heather M. Conklin, Robert J. Ogg, Jason M. Ashford, Matthew A. Scoggins, Ping Zou, Kellie N. Clark, Karen Martin-Elbahesh, Thomas E. Merchant, Sima Jeha, Lu Huang, and Hui Zhang, St Jude Children's Research Hospital, Memphis, TN; and Kristina K. Hardy, Children's National Medical Center and George Washington University School of Medicine, Washington, DC
| |
Collapse
|
38
|
Abstract
Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics.
Collapse
|
39
|
King TZ, Wang L, Mao H. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes. PLoS One 2015; 10:e0131744. [PMID: 26147736 PMCID: PMC4492692 DOI: 10.1371/journal.pone.0131744] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
Background Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Methods Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis) and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA) differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors. Results The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors. Conclusions Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white matter integrity. Radiation and adjunct chemotherapy treatment may play a role in greater white matter disruption. The relationships between white matter integrity and IQ, as well as cumulative neurological risk factors exist in young adult survivors of childhood brain tumors.
Collapse
Affiliation(s)
- Tricia Z. King
- Department of Psychology & Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
40
|
Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients. Int J Radiat Oncol Biol Phys 2015; 93:64-71. [PMID: 26279025 DOI: 10.1016/j.ijrobp.2015.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. METHODS AND MATERIALS Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. RESULTS Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non-surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. CONCLUSIONS DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally. This study supports consideration of pre-existing surgical defects and their locations in proton therapy planning and studies of treatment effect.
Collapse
|
41
|
Law N, Greenberg M, Bouffet E, Laughlin S, Taylor MD, Malkin D, Liu F, Moxon-Emre I, Scantlebury N, Skocic J, Mabbott D. Visualization and segmentation of reciprocal cerebrocerebellar pathways in the healthy and injured brain. Hum Brain Mapp 2015; 36:2615-28. [PMID: 25877482 DOI: 10.1002/hbm.22795] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 11/09/2022] Open
Abstract
Detailed information regarding the neuroanatomy of reciprocal cerebrocerebellar pathways is based on well-documented animal models. This knowledge has not yet been fully translated to humans, in that the structure of reciprocal cerebrocerebellar pathways connecting the cerebellum with frontal lobe has not been shown in its entirety. We investigated the impact of injury and age on cerebrocerebellar pathway microstructure using diffusion tensor imaging (DTI) and probabilistic tractography. We used medulloblastoma (MB) as an injury model due to the known impact of tumor/treatment on the cerebellum, one of the main nodes of cerebrocerebellar pathways. We delineated and segmented reciprocal cerebrocerebellar pathways connecting the cerebellum with frontal lobe in 38 healthy children (HC) and 34 children treated for MB, and compared pathway segment DTI measures between HC and MB and across three age cohorts: childhood, early adolescence, and late adolescence. Pathway compromise was evident for the MB group compared to HC, particularly within posterior segments (Ps<0.01). Though we found no age effect, group differences in microstructure were driven by pathway segment (posterior) and age cohort (adolescence), which may reflect the extent of injury to the posterior fossa following treatment for MB and age cohort differences in radiation treatment protocol in our sample. We have examined the microstructure of reciprocal cerebrocerebellar connections in the pediatric brain and have found that these pathways are injured in MB, a clinical population treated with surgery, radiation, and chemotherapy. Our findings support the late effects literature describing white matter injury emergence in the years following treatment for MB.
Collapse
Affiliation(s)
- Nicole Law
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada.,Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada
| | - Mark Greenberg
- Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada.,Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Malkin
- Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada.,Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iska Moxon-Emre
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada.,Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada
| | - Nadia Scantlebury
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jovanka Skocic
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald Mabbott
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada.,Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Nelson MB, Macey PM, Harper RM, Jacob E, Patel SK, Finlay JL, Nelson MD, Compton P. Structural brain alterations in children an average of 5 years after surgery and chemotherapy for brain tumors. J Neurooncol 2014; 119:317-26. [PMID: 24830985 DOI: 10.1007/s11060-014-1480-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/05/2014] [Indexed: 12/01/2022]
Abstract
Young children with brain tumors are often treated with high-dose chemotherapy after surgery to avoid brain tissue injury associated with irradiation. The effects of systemic chemotherapy on healthy brain tissue in this population, however, are unclear. Our objective was to compare gray and white matter integrity using MRI procedures in children with brain tumors (n = 7, mean age 8.3 years), treated with surgery and high-dose chemotherapy followed by autologous hematopoietic cell rescue (AuHCR) an average of 5.4 years earlier, to age- and gender-matched healthy controls (n = 9, mean age 9.3 years). Diffusion tensor imaging data were collected to evaluate tissue integrity throughout the brain, as measured by mean diffusivity (MD), a marker of glial, neuronal, and axonal status, and fractional anisotropy (FA), an index of axonal health. Individual MD and FA maps were calculated, normalized, smoothed, and compared between groups using analysis of covariance, with age and sex as covariates. Higher MD values, indicative of injury, emerged in patients compared with controls (p < .05, corrected for multiple comparisons), and were especially apparent in the central thalamus, external capsule, putamen, globus pallidus and pons. Reduced FA values in some regions did not reach significance after correction for multiple comparisons. Children treated with surgery and high-dose chemotherapy with AuHCR for brain tumors an average of 5.4 years earlier show alterations in white and gray matter in multiple brain areas distant from the tumor site, raising the possibility for long-term consequences of the tumor or treatment.
Collapse
Affiliation(s)
- Mary Baron Nelson
- Children's Hospital Los Angeles, 4650 Sunset Blvd. MS #54, Los Angeles, CA, 90027, USA,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hope TR, Vardal J, Bjørnerud A, Larsson C, Arnesen MR, Salo RA, Groote IR. Serial diffusion tensor imaging for early detection of radiation-induced injuries to normal-appearing white matter in high-grade glioma patients. J Magn Reson Imaging 2014; 41:414-23. [PMID: 24399480 DOI: 10.1002/jmri.24533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/18/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study the potential of diffusion tensor imaging (DTI) to serve as a biomarker for radiation-induced brain injury during chemo-radiotherapy (RT) treatment. MATERIALS AND METHODS Serial DTI data were collected from 18 high-grade glioma (HGG) patients undergoing RT and 7 healthy controls. Changes across time in mean, standard deviation (SD), skewness, and kurtosis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λa ), and transversal diffusivity (λt ) within the normal-appearing white matter (NAWM) were modeled using a linear mixed-effects model to assess dose dependent changes of five dose bins (0-60 Gy), and global changes compared with a control group. RESULTS Mean MD, λa and λt were all significantly increasing in >41 Gy dose regions (0.14%, 0.10%, and 0.18% per week) compared with <12 Gy regions. SD λt had significant dose dependent time evolution of 0.019*dose per week. Mean and SD MD, λa and λt in the global NAWM of the patient group significantly increased (mean; 0.06%, 0.03%, 0.09%, and SD; 0.57%, 0.34%, 0.51 per week) compared with the control group. The changes were significant at week 6 of, or immediately after RT. CONCLUSION DTI is not sensitive to acute global NAWM changes during the treatment of HGG, but sensitive to early posttreatment changes.
Collapse
Affiliation(s)
- Tuva R Hope
- Norwegian University of Science and Technology, Trondheim, Norway; The Intervention Centre, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
44
|
Neurogenesis, exercise, and cognitive late effects of pediatric radiotherapy. Neural Plast 2013; 2013:698528. [PMID: 23691370 PMCID: PMC3649702 DOI: 10.1155/2013/698528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/20/2013] [Indexed: 11/17/2022] Open
Abstract
Brain cancer is a common type of childhood malignancy, and radiotherapy (RT) is a mainstay of treatment. RT is effective for tumor eradication, and survival rates are high. However, RT damages the brain and disrupts ongoing developmental processes, resulting in debilitating cognitive “late” effects that may take years to fully manifest. These late effects likely derive from a long-term decrement in cell proliferation, combined with a neural environment that is hostile to plasticity, both of which are induced by RT. Long-term suppression of cell proliferation deprives the brain of the raw materials needed for optimum cognitive performance (such as new neurons in the hippocampus and new glia in frontal cortex), while chronic inflammation and dearth of trophic substances (such as growth hormone) limit neuroplastic potential in existing circuitry. Potential treatments for cognitive late effects should address both of these conditions. Exercise represents one such potential treatment, since it has the capacity to enhance cell proliferation, as well as to promote a neural milieu permissive for plasticity. Here, we review the evidence that cognitive late effects can be traced to RT-induced suppression of cell proliferation and hostile environmental conditions, as well as emerging evidence that exercise may be effective as an independent or adjuvant therapy.
Collapse
|
45
|
Uh J, Merchant TE, Li Y, Feng T, Gajjar A, Ogg RJ, Hua C. Differences in brainstem fiber tract response to radiation: a longitudinal diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 2013; 86:292-7. [PMID: 23474114 DOI: 10.1016/j.ijrobp.2013.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. METHODS AND MATERIALS We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transverse pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. RESULTS Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). CONCLUSIONS Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.
Collapse
Affiliation(s)
- Jinsoo Uh
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Regional variation in brain white matter diffusion index changes following chemoradiotherapy: a prospective study using tract-based spatial statistics. PLoS One 2013; 8:e57768. [PMID: 23469234 PMCID: PMC3587621 DOI: 10.1371/journal.pone.0057768] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/24/2013] [Indexed: 11/20/2022] Open
Abstract
Purpose There is little known about how brain white matter structures differ in their response to radiation, which may have implications for radiation-induced neurocognitive impairment. We used diffusion tensor imaging (DTI) to examine regional variation in white matter changes following chemoradiotherapy. Methods Fourteen patients receiving two or three weeks of whole-brain radiation therapy (RT) ± chemotherapy underwent DTI pre-RT, at end-RT, and one month post-RT. Three diffusion indices were measured: fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). We determined significant individual voxel changes of diffusion indices using tract-based spatial statistics, and mean changes of the indices within fourteen white matter structures of interest. Results Voxels of significant FA decreases and RD increases were seen in all structures (p<0.05), with the largest changes (20–50%) in the fornix, cingula, and corpus callosum. There were highly significant between-structure differences in pre-RT to end-RT mean FA changes (p<0.001). The inferior cingula had a mean FA decrease from pre-RT to end-RT significantly greater than 11 of the 13 other structures (p<0.00385). Conclusions Brain white matter structures varied greatly in their response to chemoradiotherapy as measured by DTI changes. Changes in FA and RD related to white matter demyelination were prominent in the cingula and fornix, structures relevant to radiation-induced neurocognitive impairment. Future research should evaluate DTI as a predictive biomarker of brain chemoradiotherapy adverse effects.
Collapse
|
47
|
Schültke E, Trippel M, Bräuer-Krisch E, Renier M, Bartzsch S, Requardt H, Döbrössy MD, Nikkhah G. Pencilbeam irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model. PLoS One 2013; 8:e54960. [PMID: 23383014 PMCID: PMC3557252 DOI: 10.1371/journal.pone.0054960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Division of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. J Neurooncol 2013; 112:9-15. [PMID: 23334608 DOI: 10.1007/s11060-012-1031-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/26/2012] [Indexed: 01/16/2023]
Abstract
We aim to study radiation induced white matter injury in a pre-clinical model using Diffusion tensor MR imaging (DTI). Nineteen 12-week old Sprague-Dawley rats were irradiated to the right hemisphere using a linear accelerator. The dose distribution map was coregistered to the DTI map to generate the actual radiation dose to each white matter tract. Rats underwent longitudinal DTI scans at five time points from 4 to 48 weeks post-radiation with histological evaluations. Fractional anisotropy (FA) of the external capsule, fornix, cerebral peduncle, anterior commissure, optic tract and optic nerve was evaluated. Radiation dose was highest at the ipsilateral external capsule and fornix (29.4 ± 1.3 and 29.8 ± 1.1 Gy, respectively). Optic nerve received 50 % dose to the external capsule and other white matter tracts received 80 % dose. Significantly lower FA was firstly found in the ipsilateral external capsule at 4 weeks post-radiation and in the ipsilateral fornix at 40 weeks post-radiation compared to the contralateral side. Significantly lower FA was found in contralateral optic nerve compared to ipsilateral optic nerve at 48 weeks post-radiation despite ipsilateral optic nerves receiving higher radiation dose than contralateral optic nerve (p = 0.021). No differences were found in other white matter regions until 48 weeks. Histology indicated demyelination, axonal degeneration and coagulative necrosis in all injured white matter. DTI can serve as a promising tool for assessment of radiation induced white matter injury and regional radiosensitivity of white matter tracts.
Collapse
|
49
|
Abstract
There is ample evidence that many children treated for brain tumors experience long-term neurocognitive deficits. The severity of those deficits is determined by a complex interaction of the child's genetic make-up and age, neuroanatomical damage caused by tumor and surgery, radiotherapy and chemotherapy, the psychosocial environment, and the intensity of targeted rehabilitation. The consequences of neurocognitive deficits are moderated by the number and severity of other deficits, including neurological and endocrine impairments, and this wider context must be considered. The impact of intellectual decline on academic functioning is evident, and underlies, for example, poor reading, writing, and mathematical skills. The effects of early brain damage on development are cumulative as more functions are expected to mature. Many survivors of CNS tumors can be expected to grow into deficits that have far-reaching consequences not only for academic achievement but also for their psychological and social development and their ability to be self-sufficient. Because the problems typically only become apparent over time, surveillance for their detection is an essential prerequisite for early educational and other interventions to support learning and successful transition to independent adult life.
Collapse
Affiliation(s)
- K S Bull
- Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
50
|
Abstract
While longitudinal studies of children treated for brain tumors have consistently revealed declines on measures of intellectual functioning, greater specification of cognitive changes following treatment is imperative for isolating vulnerable neural systems and developing targeted interventions. Accordingly, this cross-sectional study evaluated the performance of childhood brain tumor survivors (n = 50) treated with conformal radiation therapy, solid tumor survivors (n = 40) who had not received central nervous system (CNS) -directed therapy, and healthy sibling controls (n = 40) on measures of working memory [Digit Span and computerized self-ordered search (SOS) tasks]. Findings revealed childhood brain tumor survivors were impaired on both traditional [Digit Span Backward- F(2,127) = 5.98; p < .01] and experimental [SOS-Verbal- F(2,124) = 4.18; p < .05; SOS-Object- F(2,126) = 5.29; p < .01] measures of working memory, and performance on working memory measures correlated with intellectual functioning (Digit Span Backward- r = .45; p < .0001; SOS- r = -.32 to -.26; p < .01). Comparison of performance on working memory tasks to recognition memory tasks (computerized delayed match-to-sample) offered some support for greater working memory impairment. This pattern of findings is consistent with vulnerability in functional networks that include prefrontal brain regions and has implications for the clinical management of children with brain tumors.
Collapse
|