1
|
Konen FF, Gingele S, Hümmert MW, Möhn N, Streichert AL, Kretschmer JR, Grote-Levi L, Nay S, Seeliger T, Ratuszny D, Jendretzky KF, Tkachenko D, Jacobs R, Skripuletz T, Schwenkenbecher P. Rapid depletion of CD20 + B and T cells following ofatumumab therapy onset. Mult Scler Relat Disord 2024; 91:105886. [PMID: 39299183 DOI: 10.1016/j.msard.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The humanized monoclonal anti-CD20-antibody ofatumumab is highly effective in treating relapsing multiple sclerosis (MS). OBJECTIVE This study aimed to investigate the immanent effect of ofatumumab on the peripheral immune system, particularly targeting B and T cells expressing CD20. METHODS Blood samples of 53 MS patients receiving ofatumumab were collected prior to first application and after one week, two weeks and three months. Multicolor flow cytometry was used to phenotype peripheral blood mononuclear cells, and immunoglobulin (Ig) concentrations were measured by nephelometry. RESULTS Among CD20+ lymphocytes, 13 % co-expressed CD3 (identifying them as CD3+CD20+ T lymphocytes), with a noticeable shift in the CD4/CD8-ratio towards CD8+ T cells. One week after administering ofatumumab, a significant reduction of CD20+ lymphocytes with complete depletion of CD3+CD20+ T lymphocytes was observed, persisting during the investigation period. During the treatment, IgM levels showed a slight but significant decrease, whereas IgA and IgG levels remained stable. CONCLUSION Ofatumumab effectively depletes CD20+ lymphocytes already after the first administration. This depletion affects not only B cells, but also a small proportion of T cells (CD3+CD20+), affirming the hypothesis that the anti-inflammatory effects of CD20+ cell depletion might extend to the reduction of CD3+CD20+ T lymphocytes.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Lena Streichert
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julian Reza Kretschmer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sandra Nay
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dominica Ratuszny
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | - Daria Tkachenko
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Philipp Schwenkenbecher
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
2
|
Roe K. Immunoregulatory natural killer cells. Clin Chim Acta 2024; 558:117896. [PMID: 38583553 DOI: 10.1016/j.cca.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
This review discusses a broader scope of functional roles for NK cells. Despite the well-known cytolytic and inflammatory roles of NK cells against tumors and pathogenic diseases, extensive evidence demonstrates certain subsets of NK cells have defacto immunoregulatory effects and have a role in inducing anergy or lysis of antigen-activated T cells and regulating several autoimmune diseases. Furthermore, recent evidence suggests certain subsets of immunoregulatory NK cells can cause anergy or lysis of antigen-activated T cells to regulate hyperinflammatory diseases, including multisystem inflammatory syndrome. Several pathogens induce T cell and NK cell exhaustion and/or suppression, which impair the immune system's control of the replication speed of virulent pathogens and tumors and result in extensive antigens and antigen-antibody immune complexes, potentially inducing to some extent a Type III hypersensitivity immune reaction. The Type III hypersensitivity immune reaction induces immune cell secretion of proteinases, which can cleave specific proteins to create autoantigens which activate T cells to initiate autoimmune and/or hyperinflammatory diseases. Furthermore, pathogen induced NK cell exhaustion and/or suppression will inhibit NK cells which would have induced the anergy or lysis of activated T cells to regulate autoimmune and hyperinflammatory diseases. Autoimmune and hyperinflammatory diseases can be consequences of the dual lymphocyte exhaustion and/or suppression effects during infections, by creating autoimmune and/or hyperinflammatory diseases, while also impairing immunoregulatory lymphocytes which otherwise would have regulated these diseases.
Collapse
Affiliation(s)
- Kevin Roe
- Retired USPTO, San Jose, CA, United States of America.
| |
Collapse
|
3
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
4
|
Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The Innate Immune System and Cardiovascular Disease in ESKD: Monocytes and Natural Killer Cells. Curr Vasc Pharmacol 2021; 19:63-76. [PMID: 32600233 DOI: 10.2174/1570161118666200628024027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Adverse innate immune responses have been implicated in several disease processes, including cardiovascular disease (CVD) and chronic kidney disease (CKD). The monocyte subsets natural killer (NK) cells and natural killer T (NKT) cells are involved in innate immunity. Monocytes subsets are key in atherogenesis and the inflammatory cascade occurring in heart failure. Upregulated activity and counts of proinflammatory CD16+ monocyte subsets are associated with clinical indices of atherosclerosis, heart failure syndromes and CKD. Advanced CKD is a complex state of persistent systemic inflammation characterized by elevated expression of proinflammatory and pro-atherogenic CD14++CD16+ monocytes, which are associated with cardiovascular events and death both in the general population and among patients with CKD. Diminished NK cells and NKT cells counts and aberrant activity are observed in both coronary artery disease and end-stage kidney disease. However, evidence of the roles of NK cells and NKT cells in atherogenesis in advanced CKD is circumstantial and remains to be clarified. This review describes the available evidence regarding the roles of specific immune cell subsets in the pathogenesis of CVD in patients with CKD. Future research is expected to further uncover the links between CKD associated innate immune system dysregulation and accelerated CVD and will ideally be translated into therapeutic targets.
Collapse
Affiliation(s)
- Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Haematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Carmine Zoccali
- Institute of Clinical Physiology-Reggio Cal Unit, National Research Council, Reggio Calabria, Italy
| |
Collapse
|
5
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
6
|
Jung JY, Kim HA. The Role of Natural Killer Cells in Inflammation in Active Adult-onset Still Disease. J Rheumatol 2020; 46:1253-1255. [PMID: 31575733 DOI: 10.3899/jrheum.190369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University Medical School
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University Medical School, Suwon, Korea.
| |
Collapse
|
7
|
Phenotypic and Functional Changes in Peripheral Blood Natural Killer Cells in Crohn Disease Patients. Mediators Inflamm 2020; 2020:6401969. [PMID: 32148442 PMCID: PMC7049869 DOI: 10.1155/2020/6401969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Collapse
|
8
|
Human signal transducer and activator of transcription 5b (STAT5b) mutation causes dysregulated human natural killer cell maturation and impaired lytic function. J Allergy Clin Immunol 2019; 145:345-357.e9. [PMID: 31600547 DOI: 10.1016/j.jaci.2019.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with signal transducer and activator of transcription 5b (STAT5b) deficiency have impairment in T-cell homeostasis and natural killer (NK) cells which leads to autoimmunity, recurrent infections, and combined immune deficiency. OBJECTIVE In this study we characterized the NK cell defect in STAT5b-deficient human NK cells, as well as Stat5b-/- mice. METHODS We used multiparametric flow cytometry, functional NK cell assays, microscopy, and a Stat5b-/- mouse model to elucidate the effect of impaired and/or absent STAT5b on NK cell development and function. RESULTS This alteration generated a nonfunctional CD56bright NK cell subset characterized by low cytokine production. The CD56dim NK cell subset had decreased expression of perforin and CD16 and a greater frequency of cells expressing markers of immature NK cells. We observed low NK cell numbers and impaired NK cell maturation, suggesting that STAT5b is involved in terminal NK cell maturation in Stat5b-/- mice. Furthermore, human STAT5b-deficient NK cells had low cytolytic capacity, and fixed-cell microscopy showed poor convergence of lytic granules. This was accompanied by decreased expression of costimulatory and activating receptors. Interestingly, granule convergence and cytolytic function were restored after IL-2 stimulation. CONCLUSIONS Our results show that in addition to the impaired terminal maturation of NK cells, human STAT5b mutation leads to impairments in early activation events in NK cell lytic synapse formation. Our data provide further insight into NK cell defects caused by STAT5b deficiency.
Collapse
|
9
|
Disturbances in NK Cells in Various Types of Hemophagocytic Lymphohistiocytosis in a Population of Polish Children. J Pediatr Hematol Oncol 2019; 41:e277-e283. [PMID: 31107368 DOI: 10.1097/mph.0000000000001514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disease associated with immune system hyperactivation and the appearance of serious systemic disturbances. The purpose of this study was an assessment of natural killer (NK) cell disturbances in a group of children with clinical signs of HLH. A total of 43 children with HLH and 17 healthy children were enrolled in the study. NK phenotyping, intracellular perforin staining, and cytotoxicity tests were performed by using the flow cytometry method. HLH patients were divided into 6 HLH types: 9% infection-related HLH; 7% malignancy-related HLH; 21% macrophage activating syndrome; 12% familial hemophagocytic lymphohistiocytosis; 2% X-linked lymphoproliferative syndrome; and 49% as HLH of unknown background. A positive correlation was observed between cytotoxicity and NK cells in children with HLH (P=0.01). In all HLH groups, the percentage of NK cells was significantly lower than in the control population. The spontaneous cytotoxicity was significantly lower in HLH patients. The results presented in this study indicate the importance of impaired function and the number of NK cells in the pathogenesis of HLH. Nonetheless, the background of disturbances seems to be different in various cases.
Collapse
|
10
|
Chen T, Liu C, Li L, Liu H, Wang T, Shao Z, Fu R. CD56 bright natural killer cells exhibit abnormal phenotype and function in severe aplastic anemia. Int J Lab Hematol 2019; 41:353-363. [PMID: 30779419 DOI: 10.1111/ijlh.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION CD56bright NK cells have been highlighted to serve immunoregulatory functions. However, their roles in severe aplastic anemia (SAA) have not been elucidated. METHODS Here, we investigated the quantities, phenotypes, cytokine secretion abilities, and the cytotoxicities of peripheral CD56bright NK cells along with CD56dim NK cells obtained from patients with SAA, SAA in remission (R-SAA), and healthy controls (HC). RESULTS We observed the decreased quantities of CD56bright NK cells in SAA compared with in R-SAA and HC. In SAA, the quantities of CD56bright NK cells correlated with the disease severity. Activating receptors NKp46 and NKp44 on CD56bright NK cells were upregulated while inhibiting receptor NKG2A was downregulated in SAA. CD56bright NK cells obtained from SAA patients produced increased IL-10 and decreased IFN-γ in vitro compared with cells obtained from HC, while TNF-α and IL-13 productions were not different between two groups. Under a 7-day prestimulation with IL-2 and IL-12, the serum concentrations of which were higher in SAA patients, CD56bright NK obtained from HC also produced increased IL-10 mRNAs. There were no differences of cytotoxicites between CD56bright NK cells in SAA and in HC. CONCLUSION We discovered that CD56bright NK cells exhibited abnormal receptor expressions and cytokine production in SAA, and they were related with the severity of illness.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - ChunYan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - LiJuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - ZongHong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, Leiding JW, Torgerson T, Altman MC, Schussler E, Cunningham-Rundles C, Chinn IK, Carisey AF, Hanson IC, Rider NL, Holland SM, Orange JS, Forbes LR. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 141:2142-2155.e5. [PMID: 29111217 DOI: 10.1016/j.jaci.2017.08.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/09/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility. OBJECTIVE We sought to investigate NK cell function in patients with STAT1 GOF mutations. METHODS NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib. RESULTS Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. CONCLUSIONS Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.
Collapse
Affiliation(s)
- Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Ofer Zimmerman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Christa S Zerbe
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Sergio Rosenzweig
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Troy Torgerson
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Matthew C Altman
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Edith Schussler
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Imelda C Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex.
| |
Collapse
|
12
|
Delso-Vallejo M, Kollet J, Koehl U, Huppert V. Influence of Irradiated Peripheral Blood Mononuclear Cells on Both Ex Vivo Proliferation of Human Natural Killer Cells and Change in Cellular Property. Front Immunol 2017; 8:854. [PMID: 28791015 PMCID: PMC5522833 DOI: 10.3389/fimmu.2017.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Clinical studies with adoptive immunotherapy using allogeneic natural killer (NK) cells showed feasibility, but also limitation regarding the transfused absolute cell numbers. First promising results with peripheral blood mononuclear cells (PBMCs) as feeder cells to improve the final cell number need further optimization and investigation of the unknown controlling mechanism in the cross-talk to NK cells. We investigated the influence of irradiated autologous PBMCs to boost NK cell proliferation in the presence of OKT3 and IL-2. Our findings demonstrate a requirement for receptor-ligand interactions between feeders and NK cells to produce soluble factors that can sustain NK cell proliferation. Thus, both physical contact between feeder and NK cells, and soluble factors produced in consequence, are required to fully enhance NK cell ex vivo proliferation. This occurred with an indispensable role of the cross-talk between T cells, monocytes, and NK cells, while B cells had no further influence in supporting NK cell proliferation under these co-culture conditions. Moreover, gene expression analysis of highly proliferating and non-proliferating NK cells revealed important phenotypic changes on 5-day cultured NK cells. Actively proliferating NK cells have reduced Siglec-7 and -9 expression compared with non-proliferating and resting NK cells (day 0), independently of the presence of feeder cells. Interestingly, proliferating NK cells cultured with feeder cells contained increased frequencies of cells expressing RANKL, B7-H3, and HLA class II molecules, particularly HLA-DR, compared with resting NK cells or expanded with IL-2 only. A subset of HLA-DR expressing NK cells, co-expressing RANKL, and B7-H3 corresponded to the most proliferative population under the established co-culture conditions. Our results highlight the importance of the crosstalk between T cells, monocytes, and NK cells in autologous feeder cell-based ex vivo NK cell expansion protocols, and reveal the appearance of a highly proliferative subpopulation of NK cells (HLA-DR+RANKL+B7-H3+) with promising characteristics to extend the therapeutic potential of NK cells.
Collapse
Affiliation(s)
| | - Jutta Kollet
- Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany
| | - Ulrike Koehl
- Hannover Medical School, Institute for Cellular Therapeutics, IFB-Tx, Hannover, Germany
| | | |
Collapse
|
13
|
Seledtsov VI, Goncharov AG, Seledtsova GV. Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother 2016; 11:851-69. [PMID: 25933181 DOI: 10.1080/21645515.2015.1009814] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The immune system exerts both tumor-destructive and tumor-protective functions. Mature dendritic cells (DCs), classically activated macrophages (M1), granulocytes, B lymphocytes, aβ and ɣδ T lymphocytes, natural killer T (NKT) cells, and natural killer (NK) cells may be implicated in antitumor immunoprotection. Conversely, tolerogenic DCs, alternatively activated macrophages (M2), myeloid-derived suppressor cells (MDSCs), and regulatory T (Tregs) and B cells (Bregs) are capable of suppressing antitumor immune responses. Anti-cancer vaccination is a useful strategy to elicit antitumor immune responses, while overcoming immunosuppressive mechanisms. Whole tumor cells or lysates derived thereof hold more promise as cancer vaccines than individual tumor-associated antigens (TAAs), because vaccinal cells can elicit immune responses to multiple TAAs. Cancer cell-based vaccines can be autologous, allogeneic or xenogeneic. Clinical use of xenogeneic vaccines is advantageous in that they can be most effective in breaking the preexisting immune tolerance to TAAs. To potentiate immunotherapy, vaccinations can be combined with other modalities that target different immune pathways. These modalities include 1) genetic or chemical modification of cell-based vaccines; 2) cross-priming TAAs to T cells by engaging dendritic cells; 3) T-cell adoptive therapy; 4) stimulation of cytotoxic inflammation by non-specific immunomodulators, toll-like receptor (TLR) agonists, cytokines, chemokines or hormones; 5) reduction of immunosuppression and/or stimulation of antitumor effector cells using antibodies, small molecules; and 6) various cytoreductive modalities. The authors envisage that combined immunotherapeutic strategies will allow for substantial improvements in clinical outcomes in the near future.
Collapse
Key Words
- ADCC, antibody-dependent cell cytotoxicity
- APC, antigen-presenting cell
- Ab, antibodies
- BCG, Bacillus Calmette-Guérin
- Breg, regulatory B cell
- CAR, chimeric antigen receptor
- COX, cyclooxygenase
- CTA, cancer/testis antigen
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte antigen-4
- DC, dendritic cell
- DTH, delayed-type hypersensitivity
- GITR, glucocorticoid-induced tumor necrosis factor receptor
- GM-CSF, granulocyte-macrophage colony stimulating factor
- HIFU, high-intensity focused ultrasound
- IDO, indoleamine-2, 3-dioxygenase
- IFN, interferon
- IL, interleukin
- LAK, lymphokine-activated killer
- M, macrophage
- M1, classically activated macrophage
- M2, alternatively activated macrophage, MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- NK, natural killer (cell)
- PD-1, programmed death-1
- PGE2, prostaglandin E2
- RFA, radiofrequency ablation
- RNS, reactive nitrogen species
- ROS
- TAA, tumor-associated antigen
- TGF, transforming growth factor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T-helper cell
- Treg, regulatory T cell
- VEGF, vascular endothelial growth factor
- antitumor immunoprotection
- cancer cell-based vaccines
- combined immunotherapy
- immunosuppression
- reactive oxygen species
Collapse
Affiliation(s)
- V I Seledtsov
- a lmmanuel Kant Baltic Federal University ; Kaliningrad , Russia
| | | | | |
Collapse
|
14
|
Popko K, Górska E. The role of natural killer cells in pathogenesis of autoimmune diseases. Cent Eur J Immunol 2016; 40:470-6. [PMID: 26862312 PMCID: PMC4737744 DOI: 10.5114/ceji.2015.56971] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
There is growing evidence that NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. NK cells are a subset of lymphocytes that generally contribute to innate immunity but have also a great impact on the function of T and B lymphocytes. The major role of NK cells is cytotoxic reaction against neoplastic, infected and autoreactive cells, but they regulatory function seems to play more important role in the pathogenesis of autoimmune diseases. Numerous studies suggested the involvement of NK cells in pathogenesis of such a common autoimmune diseases as juvenile rheumatoid arthritis, type I diabetes and autoimmune thyroid diseases. The defects of NK cells regulatory function as well as cytotoxic abilities are common in patients with autoimmune diseases with serious consequences including HLH hemophagocytic lymphocytosis (HLH) and macrophage activation syndrome (MAS). The early diagnosis of NK cells defect responsible for the loss of the protective abilities is crucial for the prevention of life-threatening complications and implementation of necessary treatment.
Collapse
|
15
|
Campbell AR, Regan K, Bhave N, Pattanayak A, Parihar R, Stiff AR, Trikha P, Scoville SD, Liyanarachchi S, Kondadasula SV, Lele O, Davuluri R, Payne PRO, Carson WE. Gene expression profiling of the human natural killer cell response to Fc receptor activation: unique enhancement in the presence of interleukin-12. BMC Med Genomics 2015; 8:66. [PMID: 26470881 PMCID: PMC4608307 DOI: 10.1186/s12920-015-0142-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/07/2015] [Indexed: 01/23/2023] Open
Abstract
Background Traditionally, the CD56dimCD16+ subset of Natural Killer (NK) cells has been thought to mediate cellular cytotoxicity with modest cytokine secretion capacity. However, studies have suggested that this subset may exert a more diverse array of immunological functions. There exists a lack of well-developed functional models to describe the behavior of activated NK cells, and the interactions between signaling pathways that facilitate effector functions are not well understood. In the present study, a combination of genome-wide microarray analyses and systems-level bioinformatics approaches were utilized to elucidate the transcriptional landscape of NK cells activated via interactions with antibody-coated targets in the presence of interleukin-12 (IL-12). Methods We conducted differential gene expression analysis of CD56dimCD16+ NK cells following FcR stimulation in the presence or absence of IL-12. Next, we functionally characterized gene sets according to patterns of gene expression and validated representative genes using RT-PCR. IPA was utilized for biological pathway analysis, and an enriched network of interacting genes was generated using GeneMANIA. Furthermore, PAJEK and the HITS algorithm were employed to identify important genes in the network according to betweeness centrality, hub, and authority node metrics. Results Analyses revealed that CD56dimCD16+ NK cells co-stimulated via the Fc receptor (FcR) and IL-12R led to the expression of a unique set of genes, including genes encoding cytotoxicity receptors, apoptotic proteins, intracellular signaling molecules, and cytokines that may mediate enhanced cytotoxicity and interactions with other immune cells within inflammatory tissues. Network analyses identified a novel set of connected key players, BATF, IRF4, TBX21, and IFNG, within an integrated network composed of differentially expressed genes in NK cells stimulated by various conditions (immobilized IgG, IL-12, or the combination of IgG and IL-12). Conclusions These results are the first to address the global mechanisms by which NK cells mediate their biological functions when encountering antibody-coated targets within inflammatory sites. Moreover, this study has identified a set of high-priority targets for subsequent investigation into strategies to combat cancer by enhancing the anti-tumor activity of CD56dimCD16+ NK cells. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0142-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda R Campbell
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| | - Kelly Regan
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Neela Bhave
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Arka Pattanayak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Robin Parihar
- Department of Pediatrics, The Cleveland Clinic, Cleveland, OH, 44106, USA.
| | - Andrew R Stiff
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| | - Prashant Trikha
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Steven D Scoville
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sandya Liyanarachchi
- Division of Human Cancer Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sri Vidya Kondadasula
- Departments of Oncology and Medicine, Wayne State University and Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Omkar Lele
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Ramana Davuluri
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Philip R O Payne
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| | - William E Carson
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA. .,The Ohio State University College of Medicine, N924 Doan Hall, 410 West 10th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM. Characterization and comparison of 'standard' and 'young' tumour-infiltrating lymphocytes for adoptive cell therapy at a Danish translational research institution. Scand J Immunol 2015; 75:157-67. [PMID: 21955245 DOI: 10.1111/j.1365-3083.2011.02640.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adoptive cell therapy (ACT) with ex vivo expanded tumour-infiltrating lymphocytes (TILs) in combination with IL-2 is an effective treatment for metastatic melanoma. Modified protocols of cell expansion may allow the treatment of most enrolled patients and improve the efficacy of adoptively transferred cells. The aims of this study were to establish and validate the novel 'Young TIL' method at our institution and perform a head-to-head comparison of clinical-grade products generated with this protocol opposed to the conventional 'Standard TIL', which we are currently using in a pilot ACT trial for patients with melanoma. Our results confirm that 'Young TILs' display an earlier differentiation state, with higher CD27 and lower CD56 expression. In addition, CD8(+) TILs expressing CD27 had longer telomeres compared with the CD27(-). A recently described subset of NK cells, endowed with a high expression of CD56 (CD56(bright)), was detected for the first time in both types of cultures but at a higher frequency on Young TILs. Young and Standard TILs' reactivity against autologous tumours was similar, with significant expression of TNF-α/IFN-γ/CD107a by CD8(+) TILs detected in all cultures analysed. However, either slow expansion with high-dose IL-2 only or large numerical expansion with a rapid expansion protocol, which is required for current therapeutic protocols, significantly modified TIL phenotype by reducing the frequency of less differentiated, cancer-specific TILs. These studies further support the adoption of the Young TIL method in our current ACT trial and highlight the importance of continuous quality control of expansion protocols.
Collapse
Affiliation(s)
- M Donia
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - N Junker
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - E Ellebaek
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - M H Andersen
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - P T Straten
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - I M Svane
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital at Herlev, Herlev, DenmarkDepartment of Biomedical Sciences, University of Catania, Catania, ItalyDepartment of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| |
Collapse
|
17
|
Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer. J Immunol Methods 2015. [PMID: 26215372 DOI: 10.1016/j.jim.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines.
Collapse
|
18
|
Krylova NV, Smolina TP, Leonova GN. Molecular Mechanisms of Interaction Between Human Immune Cells and Far Eastern Tick-Borne Encephalitis Virus Strains. Viral Immunol 2015; 28:272-81. [PMID: 25695407 PMCID: PMC4486442 DOI: 10.1089/vim.2014.0083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although studies have established that immune mechanisms are important in controlling tick-borne encephalitis virus (TBEV) infection, the interactions of different TBEV strains with cells of innate and adaptive immunity are not well understood. In this study, the ability of two Far Eastern subtype TBEV strains (Dal'negorsk and Primorye-183) with various degrees of pathogenicity for humans to modulate the expression of membrane molecules differently on human immune cells were investigated using a whole-blood flow cytometry-based assay. The whole-blood samples (from 10 healthy donors) were infected with TBEV strains and analyzed for the virus binding to the blood cells, as well as expression of adhesion (CD11b and ICAM-1) and activation (CD69, CD25, CD95) molecules on the surfaces of monocytes, granulocytes, natural killer (NK) cells, and T-lymphocytes (CD4+, CD8+) at selected times (3, 6, and 24 h post-infection). It was found that the highly pathogenic Dal'negorsk strain penetrated rapidly and was actively replicated in the blood cells, inducing downregulation of CD11b, ICAM-1, and CD69 on monocytes and a significant decrease of NK cells expressing CD69, CD25, CD95, and CD8 T-lymphocytes expressing CD69 compared with the mock-infected cells. The nonpathogenic Primorye-183 strain penetrated slowly and was replicated in the blood cells, but caused a significant increase in the adhesion and activation of molecule expression to trigger innate defense mechanisms and enable the rapid elimination of the virus from the organism. Thus, TBEV-induced activation or suppression of adhesion and activation receptors expression form an essential part of fundamental virus properties, that is, virulence and pathogenicity.
Collapse
Affiliation(s)
- Natalya V Krylova
- Laboratory of Flaviviral Infections, Institute of Epidemiology and Microbiology, Siberian Branch of Russian Academy of Medical Sciences, Vladivostok, Russian Federation
| | - Tatiana P Smolina
- Laboratory of Flaviviral Infections, Institute of Epidemiology and Microbiology, Siberian Branch of Russian Academy of Medical Sciences, Vladivostok, Russian Federation
| | - Galina N Leonova
- Laboratory of Flaviviral Infections, Institute of Epidemiology and Microbiology, Siberian Branch of Russian Academy of Medical Sciences, Vladivostok, Russian Federation
| |
Collapse
|
19
|
Soumelis V, Pattarini L, Michea P, Cappuccio A. Systems approaches to unravel innate immune cell diversity, environmental plasticity and functional specialization. Curr Opin Immunol 2015; 32:42-7. [PMID: 25588554 DOI: 10.1016/j.coi.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Innate immune cells are generated through central and peripheral differentiation pathways, and receive multiple signals from tissue microenvironment. The complex interplay between immune cell state and environmental signals is crucial for the adaptation and efficient response to pathogenic threats. Here, we discuss how systems biology approaches have brought global view and high resolution to the characterization of (1) immune cell diversity, (2) phenotypic, transcriptional and functional changes in response to environmental signals, (3) integration of multiple stimuli. We will mostly focus on systems level studies in dendritic cells and macrophages. Generalization of these approaches should elucidate innate immune cell diversity and plasticity, and may be used in the human to generate hypothesis on cell filiation and novel strategies for immunotherapy.
Collapse
Affiliation(s)
- Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France.
| | - Lucia Pattarini
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Paula Michea
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Antonio Cappuccio
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|
20
|
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia. .,School of Medicine, University of Queensland, Herston, QLD, Australia.
| |
Collapse
|
21
|
Hayashi K, Kusakabe KT, Sugimoto S, Wakitani S, Sugi S, Kuniyoshi N, Hiyama M, Takeshita A, Kano K, Kiso Y. Influence of atopic dermatitis on reproduction and uterine natural killer cells. J Vet Med Sci 2014; 76:913-6. [PMID: 24572632 PMCID: PMC4108779 DOI: 10.1292/jvms.13-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The causal relationship between severe allergic conditions and successful
pregnancy remains unclear. We aimed to evaluate reproductive performance in an
experimental mouse model of atopic disease (AD), and the appearance of uterine natural
killer (uNK) cells that have crucial roles in placental formation was examined. In the
NC/Nga pregnant mice with moderate skin allergic lesions and an 8.6-fold elevation of
plasma IgE, significant differences were not detected in the reproductive indices of the
number of normal fetuses, abortion rate and placental size. There were few uNK cells in
the placenta of AD mice, and they showed a significant decrease regarding the immature
subtype as compared with controls. These findings revealed that AD disturbs uNK cell
differentiation and provides disadvantageous effects on placental formation, although it
does not arrest the pregnancy process. It may be possible that specific immunological
conditions behind AD operate favorably to recover the reproductive performance.
Collapse
Affiliation(s)
- Kazuhiko Hayashi
- Laboratory of Basic Veterinary Science, the United Graduate School of Veterinary Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Della Chiesa M, Marcenaro E, Sivori S, Carlomagno S, Pesce S, Moretta A. Human NK cell response to pathogens. Semin Immunol 2014; 26:152-60. [PMID: 24582551 DOI: 10.1016/j.smim.2014.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
NK cells represent important effectors of the innate immunity in the protection of an individual from microbes. During an NK-mediated anti-microbial response, the final fate (survival or death) of a potential infected target cell depends primarily on the type and the number of receptor/ligand interactions occurring at the effector/target immune synapse. The identification of an array of receptors involved in NK cell triggering has been crucial for a better understanding of the NK cell biology. In this context, NCR play a predominant role in NK cell activation during the process of natural cytotoxicity. Regarding the NK-mediated pathogen recognition and NK cell activation, an emerging concept is represented by the involvement of TLRs and activating KIRs. NK cells express certain TLRs in common with other innate cell types. This would mean that specific TLR ligands are able to promote the simultaneous and synergistic stimulation of these innate cells, providing a coordinated mechanism for regulating the initiation and amplification of immune responses. Evidences have been accumulated indicating that viral infections may have a significant impact on NK cell maturation, promoting the expansion of phenotypically and functionally aberrant NK cell subpopulations. For example, during chronic HIV-infection, an abnormal expansion of a dysfunctional CD56neg NK cell subset has been detected that may explain, at least in part, the defective NK cell-mediated antiviral activity. An analogous imbalance of NK cell subsets has been detected in patients receiving HSCT to cure high risk leukemias and experiencing HCMV infection/reactivation. Remarkably, NK cells developing after CMV reactivation may contain "memory-like" or "long-lived" NK cells that could exert a potent anti-leukemia effect.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Emanuela Marcenaro
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Sivori
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Carlomagno
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Silvia Pesce
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Alessandro Moretta
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy.
| |
Collapse
|
23
|
Romee R, Leong JW, Fehniger TA. Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer. SCIENTIFICA 2014; 2014:205796. [PMID: 25054077 PMCID: PMC4099226 DOI: 10.1155/2014/205796] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 05/11/2023]
Abstract
Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity. Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions. Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2, IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to comprehensively enhance NK cells for immunotherapy.
Collapse
Affiliation(s)
- Rizwan Romee
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W. Leong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- *Todd A. Fehniger:
| |
Collapse
|
24
|
Kim EK, Ahn YO, Kim S, Kim TM, Keam B, Heo DS. Ex vivo activation and expansion of natural killer cells from patients with advanced cancer with feeder cells from healthy volunteers. Cytotherapy 2013; 15:231-241.e1. [PMID: 23321334 DOI: 10.1016/j.jcyt.2012.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/03/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Culturing natural killer (NK) cells from patients with advanced cancer is difficult and has restricted the generation of sufficient cell numbers for autologous adoptive NK-cell therapy. The aim of this study was to establish a novel method for ex vivo NK-cell expansion from patients with cancer. METHODS NK cells (CD3(-)CD56(+)) were isolated from peripheral blood mononuclear cells from healthy volunteers and cancer patients, and NK(-) fractions were used as feeder cells. Purified NK cells were co-cultured with feeder cells in AIM-V medium (Invitrogen, Carlsbad, CA, USA) supplemented with 5% human serum and 1000 units/mL human interleukin-2. RESULTS NK cells co-cultured with feeder cells from healthy volunteers (feeder-HV) expanded more than NK cells co-cultured with feeder cells from cancer patients (feeder-CP). During the 14-day culture period, NK cells from patients with advanced cancer co-cultivated with feeder-HV expanded on average 300-fold. NK cells co-cultivated with feeder-CP expanded on average 169.4-fold. Cultures grown in the presence of feeder-HV contained 93.8 ± 7.0% (mean ± standard deviation; n = 6) CD3(-)CD56(+) NK cells, and cultures grown in the presence of feeder-CP contained 83.6 ± 15.9% CD3(-)CD56(+) NK cells. Feeder-HV caused a relative increase in CD3(+)CD4(+) T cells, whereas feeder-CP did not induce changes. Interleukin-15, a cytokine that induces NK-cell proliferation, was detected in the culture supernatants of feeder-HV but not in those of feeder-CP. CONCLUSIONS Feeder cells obtained from healthy volunteers have the potential to expand and activate NK cells from patients with advanced cancer. The novel NK-cell expansion method described here provides a technique for acquiring the large numbers of highly active NK cells from patients with cancer for autologous adoptive immunotherapy.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Rudnicka K, Matusiak A, Miszczyk E, Rudnicka W, Tenderenda M, Chmiela M. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS 2013; 121:806-13. [PMID: 23758061 DOI: 10.1111/apm.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Recent findings suggest that NK (Natural Killer) cells may directly modulate the antimicrobial immune responses. In this study, we performed immunophenotypic analysis of peripheral blood NK cells with regard to CD56, CD16, Nkp46, and CD25 markers, as well as IL-10 levels quantification in the sera samples of asymptomatic, H. pylori (Hp)-infected or uninfected individuals, and combined these results with our previous findings on lymphocyte cytotoxic activity. Twenty healthy volunteers [10 Hp(-);10 Hp(+)] were included in the study. The percentages of classic lymphocytes (CD3(+) ) and NK cells (CD3(-) CD56(+) , CD3(-) Nkp46(+) , CD3(-) CD16(+) ) with or without CD25 receptor were evaluated by fluorochrome-conjugated monoclonal antibody staining and flow cytometry analysis. IL-10 quantification was performed by enzyme-linked immunosorbent assay-ELISA. Our study showed elevated levels of IL-10 and higher NK cell numbers of both CD3(-) CD56(+) CD25(+) and CD3(-) Nkp46(+) CD25(+) phenotypes, as well as CD3(+) CD25(+) classic lymphocytes in Hp(+) compared with Hp(-) individuals. No differences between Hp(-) and Hp(+) individuals were found either in total number of classic lymphocytes or NK cell subtypes. Our data suggest that in Hp(+) donors, there is a domination of lymphocytes and NK cells co-expressing CD25 marker, which might be influenced by the regulatory IL-10. This phenomenon may be a result of H. pylori adaptation to a changing environment in vivo leading to a chronic infection and lack of severe gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Popko K, Malinowska I, Gorska E, Stelmaszczyk-Emmel A, Demkow U. Flow Cytometry in Detection of Abnormalities of Natural Killer Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 756:303-11. [DOI: 10.1007/978-94-007-4549-0_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Clinthorne JF, Beli E, Duriancik DM, Gardner EM. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. THE JOURNAL OF IMMUNOLOGY 2012; 190:712-22. [PMID: 23241894 DOI: 10.4049/jimmunol.1201837] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are a heterogenous population of innate lymphocytes with diverse functional attributes critical for early protection from viral infections. We have previously reported a decrease in influenza-induced NK cell cytotoxicity in 6-mo-old C57BL/6 calorically restricted (CR) mice. In the current study, we extend our findings on the influence of CR on NK cell phenotype and function in the absence of infection. We demonstrate that reduced mature NK cell subsets result in increased frequencies of CD127(+) NK cells in CR mice, skewing the function of the total NK cell pool. NK cells from CR mice produced TNF-α and GM-CSF at a higher level, whereas IFN-γ production was impaired following IL-2 plus IL-12 or anti-NK1.1 stimulation. NK cells from CR mice were highly responsive to stimulation with YAC-1 cells such that CD27(-)CD11b(+) NK cells from CR mice produced granzyme B and degranulated at a higher frequency than CD27(-)CD11b(+) NK cells from ad libitum fed mice. CR has been shown to be a potent dietary intervention, yet the mechanisms by which the CR increases life span have yet to be fully understood. To our knowledge, these findings are the first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and provide important implications regarding potential ways in which CR alters NK cell function prior to infection or cancer.
Collapse
Affiliation(s)
- Jonathan F Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
28
|
Yamada Y, Okubo Y, Shimada A, Oikawa Y, Yamada S, Narumi S, Matsushima K, Itoh H. Acceleration of diabetes development in CXC chemokine receptor 3 (CXCR3)-deficient NOD mice. Diabetologia 2012; 55:2238-45. [PMID: 22487925 DOI: 10.1007/s00125-012-2547-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to understand the role of CXC chemokine receptor 3 (CXCR3), a T-helper 1(Th1) type chemokine receptor, in the pathogenesis of type 1 diabetes. METHODS We observed the incidence of diabetes in Cxcr3 homozygous knockout mice. We compared the expression pattern of various cytokines and chemokines and the frequency of FOXP3(+) cells in the pancreas and pancreatic lymph nodes from Cxcr3 ( -/- ) NOD mice and wild-type NOD mice. In addition, we observed the migration ability of CXCR3(+)CD4(+) cells to pancreatic islets upon adoptive transfer. Finally, we examined whether Cxcr3 (+) regulatory T cells (Tregs) actually suppressed the onset of diabetes in vivo. RESULTS Cxcr3 ( -/- ) NOD mice developed spontaneous diabetes earlier than did wild-type NOD mice. In Cxcr3 ( -/- ) NOD mice, Tregs were more frequent in pancreatic lymph nodes and less frequent in pancreatic islets than in wild-type NOD mice. While transferred CXCR3(-)CD4(+) cells from wild-type NOD mice did not infiltrate pancreatic islets of NOD-severe combined immunodeficiency (SCID) mice, CXCR3(+)CD4(+) cells from the same mice migrated into the recipient islets and contained Forkhead box P3 (FOXP3) upon adoptive transfer. Moreover, CD4(+)CD25(+) cells from wild-type NOD mice suppressed and delayed the onset of diabetes compared with those from Cxcr3 ( -/- ) NOD mice in a cyclophosphamide-induced diabetes model system. CONCLUSIONS/INTERPRETATION The mechanism of accelerated diabetes onset in Cxcr3 ( -/- ) NOD mice was considered to be due to the lack of hybrid Tregs (CXCR3(+)FOXP3(+)CD4(+) cells), which could effectively migrate into and regulate Th1 inflammation in local lesions under Cxcr3 knockout conditions.
Collapse
Affiliation(s)
- Y Yamada
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-285. [PMID: 22105606 PMCID: PMC3324953 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
Affiliation(s)
| | - Minou Adib-Conquy
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| |
Collapse
|
30
|
Hu W, Wang J, He X, Zhang H, Yu F, Jiang L, Chen D, Chen J, Dou J. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice. Biotechnol Appl Biochem 2011; 58:397-404. [PMID: 22172102 DOI: 10.1002/bab.63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Pathogenic Biology and Immunology, Medical School, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu W, Wang J, Dou J, He X, Zhao F, Jiang C, Yu F, Hu K, Chu L, Li X, Gu N. Augmenting Therapy of Ovarian Cancer Efficacy by Secreting IL-21 Human Umbilical Cord Blood Stem Cells in Nude Mice. Cell Transplant 2011; 20:669-80. [DOI: 10.3727/096368910x536509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present study, CD34+ human umbilical cord blood stem cells (UCBSCs) were engineered to express interleukin-21 (IL-21) and then were transplanted into A2780 ovarian cancer xenograft-bearing Balb/c nude mice. The therapeutic efficacy of this procedure on ovarian cancer was evaluated. The findings from the study indicated that UCBSCs did not form gross or histological teratomas until up to 70 days postinjection. The CD34+ UCBSC-IL-21 therapy showed a consistent effect in the ovarian cancer of the treated mice, delaying the tumor appearance, reducing the tumor sizes, and extending life expectancy. The efficacy was attributable to keeping CD34+ UCBSC-IL-21 in the neoplastic tissues for more than 21 days. The secreted IL-21 not only increased the quantity of CD11a+ and CD56+ NK cells but also increased NK cell cytotoxicities to YAC-1 cells and A2780 cells, respectively. The efficacy was also associated with enhancing the levels of IFN-γ, IL-4, and TNF-α in the mice as well as the high expressions of the NKG2D and MIC A/B molecules in the tumor tissues. This study suggested that transferring CD34+ UCBSC-IL-21 into the nude mice was safe and feasible in ovarian cancer therapy, and that the method would be a promising new strategy for clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Cuilian Jiang
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fangliu Yu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Kai Hu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Lili Chu
- Paediatric Research Institute, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoli Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Tjwa ETTL, van Oord GW, Hegmans JP, Janssen HLA, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011; 54:209-18. [PMID: 21095036 DOI: 10.1016/j.jhep.2010.07.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 06/27/2010] [Accepted: 07/01/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells play a major role in anti-viral immunity as first line defense and regulation of virus-specific T cell responses. This study aimed to investigate phenotype and function of NK cells in patients with chronic hepatitis B virus (HBV) infection and to study the effect of anti-viral therapy. METHODS Peripheral blood NK cells from 40 chronic HBV patients were compared to NK cells of 25 healthy controls. The effect of entecavir-induced viral load reduction on NK cell phenotype and function was investigated in 15 chronic HBV patients. RESULTS NK cell numbers and subset distribution did not differ between HBV patients and normal subjects. In chronic HBV patients, the cytotoxic capacity was retained, but NK cell activation and subsequent IFNγ and TNFα production, especially of the CD56(dim) subset, were strongly hampered. This functional dichotomy was paralleled by an altered activation state, elevated expression of NKG2A, and downregulated expression of CD16 and NKp30, which correlated with serum HBV-DNA load. Anti-viral therapy partially restored NK cell phenotype, as shown by NKG2A downregulation. Moreover, viral replication inhibition improved IFNγ production as a result of an increased ability of CD56(dim) NK cells to become activated de novo. This improved NK cell activation and function which correlated with therapy-induced reduction in serum ALT levels, but not HBV-DNA load. CONCLUSIONS The specific defect in CD56(dim) NK cell activation and the reduced capacity to produce anti-viral and Th1-skewing cytokines may play a role in HBV persistence. Restoration of this NK cell cytokine-producing capacity, as achieved by viral load reduction, could therefore contribute to definite clearance of the virus.
Collapse
Affiliation(s)
- Eric T T L Tjwa
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Marquardt N, Wilk E, Pokoyski C, Schmidt RE, Jacobs R. Murine CXCR3+CD27bright NK cells resemble the human CD56bright NK-cell population. Eur J Immunol 2010; 40:1428-39. [PMID: 20186880 DOI: 10.1002/eji.200940056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human NK cells can be subdivided into CD56(dim) and CD56(bright) NK cells, which exhibit different phenotypical and functional characteristics. As murine NK cells lack CD56 or a distinct correlate, direct comparative studies of NK cells in mice and humans are limited. Although CD27 is currently proposed as a feasible subset marker in mice, we assume that the usage of this marker alone is insufficient. We rather investigated the expression of the chemokine receptor CXCR3 for its suitability for distinguishing murine NK-cell subsets with simultaneous consideration of CD27. Compared with CXCR3(-) NK cells, exerting stronger cytotoxic capability, CXCR3+ NK cells displayed an activated phenotype with a lower expression of Ly49 receptors, corresponding to human CD56(bright) NK cells. Also in common with human CD56(bright) NK cells, murine CXCR3+ NK cells exhibit prolific expansion as well as robust IFN-gamma, TNF-alpha and MIP-1alpha production. We additionally demonstrated changes in both CXCR3 and CD27 expression upon NK-cell activation. In summary, CXCR3 serves as an additional applicable marker for improved discrimination of functionally distinct murine NK-cell subsets that comply with those in humans.
Collapse
Affiliation(s)
- Nicole Marquardt
- Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
34
|
Beldi G, Banz Y, Kroemer A, Sun X, Wu Y, Graubardt N, Rellstab A, Nowak M, Enjyoji K, Li X, Junger WG, Candinas D, Robson SC. Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology 2010; 51:1702-11. [PMID: 20146261 PMCID: PMC2903010 DOI: 10.1002/hep.23510] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion. CONCLUSION We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.
Collapse
Affiliation(s)
- Guido Beldi
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Visceral and Transplant Surgery, Inselspital, University Hospital, Bern, Switzerland
| | - Yara Banz
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Institute of Pathology, University of Bern, Switzerland
| | - Alexander Kroemer
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Xiaofeng Sun
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yan Wu
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nadine Graubardt
- Department of Visceral and Transplant Surgery, Inselspital, University Hospital, Bern, Switzerland
| | - Alyssa Rellstab
- Department of Visceral and Transplant Surgery, Inselspital, University Hospital, Bern, Switzerland
| | - Martina Nowak
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Keiichi Enjyoji
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Xian Li
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wolfgang G. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Daniel Candinas
- Department of Visceral and Transplant Surgery, Inselspital, University Hospital, Bern, Switzerland
| | - Simon C. Robson
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Márquez ME, Millet C, Stekman H, Conesa A, Deglesne PA, Toro F, Sanctis JD, Blanca I. CD16 cross-linking induces increased expression of CD56 and production of IL-12 in peripheral NK cells. Cell Immunol 2010; 264:86-92. [DOI: 10.1016/j.cellimm.2010.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/11/2022]
|
36
|
Abstract
Recent scientific advances have expanded our understanding of the immune system and its response to malignant cells. The clinical goal of tumour immunotherapy is to provide either passive or active immunity against malignancies by harnessing the immune system to target tumours. Monoclonal antibodies, cytokines, cellular immunotherapy, and vaccines have increasingly become successful therapeutic agents for the treatment of solid and haematological cancers in preclinical models, clinical trials, and practice. In this article, we review recent advances in the immunotherapy of cancer, focusing on new strategies and future perspectives as well as on clinical trials attempting to enhance the efficacy of immunotherapeutic modalities and translate this knowledge into effective cancer therapies.
Collapse
|
37
|
Dou J, Wang Y, Wang J, Zhao F, Li Y, Cao M, Hu W, Hu K, He XF, Chu L, Jiang C, Gu N. Antitumor efficacy induced by human ovarian cancer cells secreting IL-21 alone or combination with GM-CSF cytokines in nude mice model. Immunobiology 2009; 214:483-92. [DOI: 10.1016/j.imbio.2008.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
38
|
Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009; 126:458-65. [PMID: 19278419 DOI: 10.1111/j.1365-2567.2008.03027.x] [Citation(s) in RCA: 700] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human natural killer (NK) cells can be subdivided into different populations based on the relative expression of the surface markers CD16 and CD56. The two major subsets are CD56(bright) CD16(dim/) (-) and CD56(dim) CD16(+), respectively. In this review, we will focus on the CD56(bright) NK cell subset. These cells are numerically in the minority in peripheral blood but constitute the majority of NK cells in secondary lymphoid tissues. They are abundant cytokine producers but are only weakly cytotoxic before activation. Recent data suggest that under certain conditions, they have immunoregulatory properties, and that they are probably immediate precursors of CD56(dim) NK cells. CD56(bright) NK cell percentages are expanded or reduced in a certain number of diseases, but the significance of these variations is not yet clear.
Collapse
Affiliation(s)
- Aurélie Poli
- Laboratoire d'Immunogénétique-Allergologie, Centre de Recherche Public de la Santé, Luxembourg-City, Luxembourg
| | | | | | | | | | | |
Collapse
|