1
|
Papadopoulos S, Hardy D, Vernel-Pauillac F, Tichit M, Boneca IG, Werts C. Myocarditis and neutrophil-mediated vascular leakage but not cytokine storm associated with fatal murine leptospirosis. EBioMedicine 2025; 112:105571. [PMID: 39889371 PMCID: PMC11830356 DOI: 10.1016/j.ebiom.2025.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Leptospirosis is a globally neglected re-emerging zoonosis affecting all mammals, albeit with variable outcomes. Humans are susceptible to leptospirosis; infection with Leptospira interrogans species can cause severe disease in humans, with multi-organ failure, mainly affecting kidney, lung and liver function, leading to death in 10% of cases. Mice and rats are more resistant to acute disease and can carry leptospires asymptomatically in the kidneys and act as reservoirs, shedding leptospires into the environment. The incidence of leptospirosis is higher in tropical countries, and countries with poor sanitation, where heavy rainfall and flooding favour infection. Diagnosis of leptospirosis is difficult because of the many different serovars and the variety of clinical symptoms that can be confused with viral infections. The physiopathology is poorly understood, and leptospirosis is often regarded as an inflammatory disease, like sepsis. METHODS To investigate the causes of death in lethal leptospirosis, we compared intraperitoneal infection of male and female C57BL6/J mice with 108Leptospira of two strains of pathogenic L. interrogans. One strain, L. interrogans Manilae L495, killed the mice 4 days after infection, whereas the other strain, L. interrogans Icterohaemorrhagiae Verdun, did not induce any major symptoms in the mice. On day 3 post infection, the mice were humanely euthanised and blood and organs were collected. Bacterial load, biochemical parameters, cytokine production and leucocyte population were assessed by qPCR, ELISA, cytometry and immunohistochemistry. FINDINGS Neither lung, liver, pancreas or kidney damage nor massive necroptosis or cytokine storm could explain the lethality. Although we did not find pro-inflammatory cytokines, we did find elevated levels of the anti-inflammatory cytokine IL-10 and the chemokine RANTES in the serum and organs of Leptospira-infected mice. In contrast, severe leptospirosis was associated with neutrophilia and vascular permeability, unexpectedly due to neutrophils and not only due to Leptospira infection. Strikingly, the main cause of death was myocarditis, an overlooked complication of human leptospirosis. INTERPRETATION Despite clinical similarities between bacterial sepsis and leptospirosis, striking differences were observed, in particular a lack of cytokine storm in acute leptospirosis. The fact that IL-10 was increased in infected mice may explain the lack of pro-inflammatory cytokines, emphasising the covert nature of Leptospira infections. Neutrophilia is a hallmark of human leptospirosis. Our findings confirm the ineffective control of infection by neutrophils and highlight their deleterious role in vascular permeability, previously only attributed to the ability of leptospires to damage and cross endothelial junctions. Finally, the identification of death due to myocarditis rather than kidney, liver or liver failure may reflect an overlooked but common symptom associated with poor prognosis in human leptospirosis. These features of neutrophilia and myocarditis are also seen in patients, making this mouse model a paradigm for better understanding human leptospirosis and designing new therapeutic strategies. FUNDING The Boneca laboratory was supported by the following programmes: Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and by R&D grants from Danone and MEIJI. CW received an ICRAD/ANR grant (S-CR23012-ANR 22 ICRD 0004 01). SP received a scholarship by Université Paris Cité (formerly Université Paris V - Descartes) through Doctoral School BioSPC (ED562, BioSPC). SP has additionally received a scholarship "Fin de Thèse de Science" number FDT202404018322 granted by "Fondation pour la Recherche Médicale (FRM)". The funders had no implication in the design, analysis and reporting of the study.
Collapse
Affiliation(s)
- Stylianos Papadopoulos
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Magali Tichit
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Catherine Werts
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France.
| |
Collapse
|
2
|
Bunde TT, de Oliveira NR, Santos FDS, Pedra ACK, Maia MAC, Dellagostin OA, Oliveira Bohn TL. Characterization of cellular immune response in hamsters immunized with recombinant vaccines against leptospirosis based on LipL32:LemA:LigAni chimeric protein. Microb Pathog 2023; 184:106378. [PMID: 37802158 DOI: 10.1016/j.micpath.2023.106378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
In the last 20 years, various research groups have endeavored to develop recombinant vaccines against leptospirosis to overcome the limitations of commercially available bacterins. Numerous antigens and vaccine formulations have been tested thus far. However, the analysis of cellular response in these vaccine formulations is not commonly conducted, primarily due to the scarcity of supplies and kits for the hamster animal model. Our research group has already tested the Q1 antigen, a chimeric protein combining the immunogenic regions of LipL32, LemA, and LigANI, in recombinant subunit and BCG-vectored vaccines. In both strategies, 100 % of the hamsters were protected against clinical signs of leptospirosis. However, only the recombinant BCG-vectored vaccine provided protection against renal colonization. Thus, the objective of this study is to characterize the cellular immune response in hamsters immunized with different vaccine formulations based on the Q1 antigen through transcriptional analysis of cytokines. The hamsters were allocated into groups and vaccinated as follows: recombinant subunit (rQ1), recombinant BCG (rBCG:Q1), and saline and BCG Pasteur control vaccines. To assess the cellular response induced by the vaccines, we cultured and stimulated splenocytes, followed by RNA extraction from the cells and analysis of cytokines using real-time PCR. The results revealed that the recombinant subunit vaccine elicited a Th2-type response, characterized by the expression of cytokines IL-10, IL-1α, and TNF-α. This pattern closely resembles the cytokines expressed in severe cases of leptospirosis. On the other hand, the rBCG-vectored vaccine induced a Th1-type response with significant up-regulation of IFN-γ. These findings suggest the involvement of the cellular response and the IFN-γ mediated inflammatory response in the sterilizing immunity mediated by rBCG. Therefore, this study may assist future investigations in characterizing the cellular response in hamsters, aiming to elucidate the mechanisms of efficacy and establish potential correlates of protection.
Collapse
Affiliation(s)
- Tiffany Thurow Bunde
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha Rodrigues de Oliveira
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francisco Denis Souza Santos
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana Carolina Kurz Pedra
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mara Andrade Colares Maia
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira Bohn
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Cagliero J, Vernel-Pauillac F, Murray G, Adler B, Matsui M, Werts C. Pathogenic Leptospires Limit Dendritic Cell Activation Through Avoidance of TLR4 and TRIF Signaling. Front Immunol 2022; 13:911778. [PMID: 35812397 PMCID: PMC9258186 DOI: 10.3389/fimmu.2022.911778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospira interrogans is a bacterial species responsible for leptospirosis, a neglected worldwide zoonosis. Mice and rats are resistant and can become asymptomatic carriers, whereas humans and some other mammals may develop severe forms of leptospirosis. Uncommon among spirochetes, leptospires contain lipopolysaccharide (LPS) in their outer membrane. LPS is highly immunogenic and forms the basis for a large number of serovars. Vaccination with inactivated leptospires elicits a protective immunity, restricted to serovars with related LPS. This protection that lasts in mice, is not long lasting in humans and requires annual boosts. Leptospires are stealth pathogens that evade the complement system and some pattern recognition receptors from the Toll-like (TLR) and Nod-Like families, therefore limiting antibacterial defense. In macrophages, leptospires totally escape recognition by human TLR4, and escape the TRIF arm of the mouse TLR4 pathway. However, very little is known about the recognition and processing of leptospires by dendritic cells (DCs), although they are crucial cells linking innate and adaptive immunity. Here we tested the activation of primary DCs derived from human monocytes (MO-DCs) and mouse bone marrow (BM-DCs) 24h after stimulation with saprophytic or different pathogenic virulent or avirulent L. interrogans. We measured by flow cytometry the expression of DC-SIGN, a lectin involved in T-cell activation, co-stimulation molecules and MHC-II markers, and pro- and anti-inflammatory cytokines by ELISA. We found that exposure to leptospires, live or heat-killed, activated dendritic cells. However, pathogenic L. interrogans, especially from the Icterohaemorraghiae Verdun strain, triggered less marker upregulation and less cytokine production than the saprophytic Leptospira biflexa. In addition, we showed a better activation with avirulent leptospires, when compared to the virulent parental strains in murine BM-DCs. We did not observe this difference in human MO-DCs, suggesting a role for TLR4 in DC stimulation. Accordingly, using BM-DCs from transgenic deficient mice, we showed that virulent Icterohaemorraghiae and Manilae serovars dampened DC activation, at least partly, through the TLR4 and TRIF pathways. This work shows a novel bacterial immune evasion mechanism to limit DC activation and further illustrates the role of the leptospiral LPS as a virulence factor.
Collapse
Affiliation(s)
- Julie Cagliero
- Institut Pasteur de Nouvelle-Calédonie, member of the Pasteur Network, Immunity and Inflammation Group (GIMIN), Noumea, New Caledonia
- Institut Pasteur, Université de Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi bactérienne, F-75015 Paris, France
- Institut Pasteur de Nouvelle-Calédonie, member of the Pasteur Network, Leptospirosis Research and Expertise Unit, Noumea, New Caledonia
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université de Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi bactérienne, F-75015 Paris, France
| | - Gerald Murray
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Ben Adler
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Mariko Matsui
- Institut Pasteur de Nouvelle-Calédonie, member of the Pasteur Network, Immunity and Inflammation Group (GIMIN), Noumea, New Caledonia
| | - Catherine Werts
- Institut Pasteur, Université de Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi bactérienne, F-75015 Paris, France
- *Correspondence: Catherine Werts,
| |
Collapse
|
4
|
Harper J, Ribeiro SP, Chan CN, Aid M, Deleage C, Micci L, Pino M, Cervasi B, Raghunathan G, Rimmer E, Ayanoglu G, Wu G, Shenvi N, Barnard RJ, Del Prete GQ, Busman-Sahay K, Silvestri G, Kulpa DA, Bosinger SE, Easley KA, Howell BJ, Gorman D, Hazuda DJ, Estes JD, Sekaly RP, Paiardini M. Interleukin-10 contributes to reservoir establishment and persistence in SIV-infected macaques treated with antiretroviral therapy. J Clin Invest 2022; 132:e155251. [PMID: 35230978 PMCID: PMC9012284 DOI: 10.1172/jci155251] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Susan P. Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Gulesi Ayanoglu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Richard J.O. Barnard
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Daria J. Hazuda
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Xie X, Lv T, Wu D, Shi H, Zhang S, Xian X, Liu G, Zhang W, Cao Y. IL-10 Deficiency Protects Hamsters from Leptospira Infection. Infect Immun 2022; 90:e0058421. [PMID: 34898251 PMCID: PMC8852706 DOI: 10.1128/iai.00584-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a global zoonotic disease with outcomes ranging from subclinical infection to fatal Weil's syndrome. In addition to antibiotics, some immune activators have shown protective effects against leptospirosis. However, the unclear relationship between Leptospira and cytokines has limited the development of antileptospiral immunomodulators. In this study, the particular role of interleukin-10 (IL-10) in leptospirosis was explored by using IL-10-defective (IL-10-/-) hamsters. After Leptospira infection, an improved survival rate, reduced leptospiral burden, and alleviation of organ lesions were found in IL-10-/- hamsters compared with wild-type (WT) hamsters. In addition, the levels of expression of the IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α) genes and the level of nitric oxide (NO) were higher in IL-10-/- hamsters than in WT hamsters. Our results indicate that IL-10 deficiency protects hamsters from Leptospira infection.
Collapse
Affiliation(s)
- Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Dianjun Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Haozhe Shi
- Institute of Cardiovascular Sciences, Peking University, Beijing, People’s Republic of China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, People’s Republic of China
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, Peking University, Beijing, People’s Republic of China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, People’s Republic of China
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University, Beijing, People’s Republic of China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, People’s Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
6
|
Correlation between renal distribution of leptospires during the acute phase and chronic renal dysfunction in a hamster model of infection with Leptospira interrogans. PLoS Negl Trop Dis 2021; 15:e0009410. [PMID: 34143778 PMCID: PMC8213162 DOI: 10.1371/journal.pntd.0009410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leptospirosis has been described as a biphasic disease consisting of hematogenous dissemination to major organs in the acute phase and asymptomatic renal colonization in the chronic phase. Several observational studies have suggested an association between leptospirosis and chronic kidney disease (CKD). We investigated the dynamics of leptospires and histopathological changes in the kidney to understand the relationship between them, and also investigated the extent of renal dysfunction in the acute and chronic phases of leptospirosis using a hamster model. FINDINGS Hamsters (n = 68) were subcutaneously infected with 1 × 104 cells of the Leptospira interrogans serovar Manilae strain UP-MMC-SM. A total of 53 infected hamsters developed fatal acute leptospirosis, and the remaining 15 hamsters recovered from the acute phase, 13 of which showed Leptospira colonization in the kidneys in the chronic phase. Five asymptomatic hamsters also had renal colonization in the chronic phase. Immunofluorescence staining showed that leptospires were locally distributed in the renal interstitium in the early acute phase and then spread continuously into the surrounding interstitium. The kidneys of the surviving hamsters in the chronic phase showed patchy lesions of atrophic tubules, a finding of chronic tubulointerstitial nephritis, which were substantially consistent with the distribution of leptospires in the renal interstitium. The degree of atrophic tubules in kidney sections correlated statistically with the serum creatinine level in the chronic phase (rs = 0.78, p = 0.01). CONCLUSION Subcutaneous infection with pathogenic leptospires could cause acute death or chronic leptospirosis in hamsters after surviving the acute phase. We suggest that the renal distribution of leptospires during the acute phase probably affected the extent of tubular atrophy, leading to CKD.
Collapse
|
7
|
Liu J, Xie X, Zhang W, Cao Y. Immune-enhanced effect of Iris polysaccharide is protective against leptospirosis. Microb Pathog 2021; 154:104855. [PMID: 33757897 DOI: 10.1016/j.micpath.2021.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Leptospirosis, caused by pathogenic Leptospira species, is an essential but neglected zoonosis. There are more than 300 serovars of pathogenic Leptospira, while inactivated bacteria offers only short-term serovar-specific protection. Leptospirosis treatment is mainly dependent on the use of antibiotics. However, the side effects of antibiotics and the risk of antibiotic resistance remain major problems. Thus, alternative agents which are fewer side effects on humans and efficient in leptospirosis would be welcome. Many studies have reported that polysaccharides could be used as immunostimulants in treating infection and cancer. In this study, we examined the protective effect of polysaccharides isolated from Iris against leptospirosis. To our knowledge, it is the first time to report Iris polysaccharides (IP) as an immunostimulant in treating infection. The results showed that IP treatment significantly increased the survival rate of hamsters challenged by a lethal dose of leptospires. Besides, the tissue injury and leptospiral load were reduced in IP-treated infection group compared with the untreated infection group at 4 days post-infection (p.i.). Intriguingly, IP treatment sustained intense immune response at 4 days p.i. analyzed by qPCR. The results exhibited that the gene expression of TLR2 and TLR4 was significantly increased in the group coinjected with IP and leptospires than in the infected controls. And the expression of IL-1β and TNF-α were also up-regulated after IP treatment, except the expression of IL-1β in the kidney. Our results not only broaden the medicinal value of Iris, but also provide a competent candidate for the control of Leptospira infection.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
8
|
Haake DA, Matsunaga J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front Immunol 2021; 11:579907. [PMID: 33488581 PMCID: PMC7821625 DOI: 10.3389/fimmu.2020.579907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 02/03/2023] Open
Abstract
The virulence mechanisms required for infection and evasion of immunity by pathogenic Leptospira species remain poorly understood. A number of L. interrogans surface proteins have been discovered, lying at the interface between the pathogen and host. Among these proteins, the functional properties of the Lig (leptospiral immunoglobulin-like domain) proteins have been examined most thoroughly. LigA, LigB, and LigC contain a series of, 13, 12, and 12 closely related domains, respectively, each containing a bacterial immunoglobulin (Big) -like fold. The multidomain region forms a mostly elongated structure that exposes a large surface area. Leptospires wield the Lig proteins to promote interactions with a range of specific host proteins, including those that aid evasion of innate immune mechanisms. These diverse binding events mediate adhesion of L. interrogans to the extracellular matrix, inhibit hemostasis, and inactivate key complement proteins. These interactions may help L. interrogans overcome the physical, hematological, and immunological barriers that would otherwise prevent the spirochete from establishing a systemic infection. Despite significant differences in the affinities of the LigA and LigB proteins for host targets, their functions overlap during lethal infection of hamsters; virulence is lost only when both ligA and ligB transcription is knocked down simultaneously. Lig proteins have been shown to be promising vaccine antigens through evaluation of a variety of different adjuvant strategies. This review serves to summarize current knowledge of Lig protein roles in virulence and immunity and to identify directions needed to better understand the precise functions of the Lig proteins during infection.
Collapse
Affiliation(s)
- David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Departments of Medicine, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Xu Y, Su M, Wang Z, Liu Q, Xu X, Gu S, Pan W, Ge W. Dysfunction of Tregs contributes to FGR pathogenesis via regulating Smads signalling pathway. J Cell Mol Med 2020; 24:3647-3655. [PMID: 32057179 PMCID: PMC7131912 DOI: 10.1111/jcmm.15059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Fetal growth restriction (FGR) is ranked number two of most common complication of abnormal pregnancy worldwide. The pathogenesis of FGR is complicated due to multiple aetiologies and the exact mechanism for FGR development is currently unknown. T regulatory cells (Tregs) are proven to play central roles in the maintenance of normal pregnancy. Peripheral blood samples of 102 pregnant human were collected analysed using flow cytometry to identify Tregs. We found that reduced Tregs and down-regulation of Foxp3 were observed in peripheral blood of FGR patients. In FGR mouse model, we have found that Tregs were not only reduced in spleen but also in placenta. In vitro, Foxp3 and its transcription regulatory signalling molecules, including P-Smad2, P-Smad3 and Smad4, were diminished as well. Inhibition on Foxp3 expression was partially reversed by overexpression of Smad2 and Smad4. In FGR patients, Western blot results revealed that Foxp3, P-Smad2, P-Smad3 and Smad4 expression was inhibited in placenta. Our preliminary result suggests that maternal-foetal immune tolerance mediated by Tregs plays an essential role in the development of FGR. The inhibited expression of Foxp3 and down-regulated Smad2/Smad3/Smad4 signalling pathway were involved in the FGR pathogenesis. Targeting maternal-foetal immune tolerance through Tregs might represent a novel therapeutic option for FGR.
Collapse
Affiliation(s)
- Yunzhao Xu
- Department of ObstetricsAffiliated Hospital of Nantong UniversityNantongJiangsuChina
- Department of Obstetrics and GynecologyNantong UniversityNantongJiangsuChina
| | - Min Su
- Department of ObstetricsAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Ziheng Wang
- Department of Clinical BiobankAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Qinqin Liu
- Department of Obstetrics and GynecologyNantong UniversityNantongJiangsuChina
| | - Xiangyu Xu
- Department of Obstetrics and GynecologyNantong UniversityNantongJiangsuChina
| | - Shuting Gu
- Department of Obstetrics and GynecologyNantong UniversityNantongJiangsuChina
| | - Weidong Pan
- Department of Obstetrics and GynecologyNantong UniversityNantongJiangsuChina
| | - Wenliang Ge
- Department of Pediatric SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| |
Collapse
|
10
|
Santecchia I, Vernel-Pauillac F, Rasid O, Quintin J, Gomes-Solecki M, Boneca IG, Werts C. Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Pathog 2019; 15:e1007811. [PMID: 31107928 PMCID: PMC6544334 DOI: 10.1371/journal.ppat.1007811] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/31/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Leptospira interrogans are pathogenic spirochetes responsible for leptospirosis, a worldwide reemerging zoonosis. Many Leptospira serovars have been described, and prophylaxis using inactivated bacteria provides only short-term serovar-specific protection. Therefore, alternative approaches to limit severe leptospirosis in humans and morbidity in cattle would be welcome. Innate immune cells, including macrophages, play a key role in fighting infection and pathogen clearance. Recently, it has been shown that functional reprograming of innate immune cells through the activation of pattern recognition receptors leads to enhanced nonspecific antimicrobial responses upon a subsequent microbial encounter. This mechanism is known as trained immunity or innate immune memory. We have previously shown that oral treatment with Lactobacillus plantarum confers a beneficial effect against acute leptospirosis. Here, using a macrophage depletion protocol and live imaging in mice, we established the role of peritoneal macrophages in limiting the initial dissemination of leptospires. We further showed that intraperitoneal priming of mice with CL429, a TLR2 and NOD2 agonist known to mimic the modulatory effect of Lactobacillus, alleviated acute leptospiral infection. The CL429 treatment was characterized as a training effect since i.) it was linked to peritoneal macrophages that produced ex vivo more pro-inflammatory cytokines and chemokines against 3 different pathogenic serovars of Leptospira, independently of the presence of B and T cells, ii.) it had systemic effects on splenic cells and bone marrow derived macrophages, and iii.) it was sustained for 3 months. Importantly, trained macrophages produced more nitric oxide, a potent antimicrobial compound, which has not been previously linked to trained immunity. Accordingly, trained macrophages better restrict leptospiral survival. Finally, we could use CL429 to train ex vivo human monocytes that produced more cytokines upon leptospiral stimulation. In conclusion, host-directed treatment using a TLR2/NOD2 agonist could be envisioned as a novel prophylactic strategy against acute leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frédérique Vernel-Pauillac
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
| | - Orhan Rasid
- Chromatine et Infection G5, Institut Pasteur, Paris, France
| | - Jessica Quintin
- Immunologie des infections fongiques G5, Institut Pasteur, Paris, France
| | - Maria Gomes-Solecki
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, United States of America
| | - Ivo G. Boneca
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
| | - Catherine Werts
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Cagliero J, Villanueva SYAM, Matsui M. Leptospirosis Pathophysiology: Into the Storm of Cytokines. Front Cell Infect Microbiol 2018; 8:204. [PMID: 29974037 PMCID: PMC6019470 DOI: 10.3389/fcimb.2018.00204] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a neglected tropical zoonosis caused by pathogenic spirochetes of the genus Leptospira. Infected reservoir animals, typically mice and rats, are asymptomatic, carry the pathogen in their renal tubules, and shed pathogenic spirochetes in their urine, contaminating the environment. Humans are accidental hosts of pathogenic Leptospira. Most human infections are mild or asymptomatic. However, 10% of human leptospirosis cases develop into severe forms, including high leptospiremia, multi-organ injuries, and a dramatically increased mortality rate, which can relate to a sepsis-like phenotype. During infection, the triggering of the inflammatory response, especially through the production of cytokines, is essential for the early elimination of pathogens. However, uncontrolled cytokine production can result in a cytokine storm process, followed by a state of immunoparalysis, which can lead to sepsis and associated organ failures. In this review, the involvement of cytokine storm and subsequent immunoparalysis in the development of severe leptospirosis in susceptible hosts will be discussed. The potential contribution of major pro-inflammatory cytokines in the development of tissue lesions and systemic inflammatory response, as well as the role of anti-inflammatory cytokines in contributing to the onset of a deleterious immunosuppressive cascade will also be examined. Data from studies comparing susceptible and resistant mouse models will be included. Lastly, a concise discussion on the use of cytokines for therapeutic purposes or as biomarkers of leptospirosis severity will be provided.
Collapse
Affiliation(s)
- Julie Cagliero
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| | - Sharon Y A M Villanueva
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
| | - Mariko Matsui
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| |
Collapse
|
12
|
Recent findings related to immune responses against leptospirosis and novel strategies to prevent infection. Microbes Infect 2018; 20:578-588. [PMID: 29452258 DOI: 10.1016/j.micinf.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
What are the new approaches and emerging ideas to prevent leptospirosis, a neglected bacterial re-emerging zoonotic disease? How do Leptospira interrogans escape the host defenses? We aim here to review and discuss the most recent literature that provides some answers to these questions, in particular data related to a better understanding of adaptive and innate immunity towards leptospires, and design of vaccines. This is an opinion paper, not a comprehensive review. We will try to highlight the new strategies and technologies boosting the search for drugs and vaccines. We will also address the bottlenecks and difficulties impairing the search for efficient vaccines and the many gaps in our knowledge of immunity against leptospirosis. Finally, we aim to delineate how Leptospira spp. escape the innate immune responses of Toll-Like receptors (TLR) and Nod-Like receptors (NLR). The rational use of TLR and NLR agonists as adjuvants could be key to design future vaccines against pathogenic leptospires.
Collapse
|