1
|
Yi J, Jung J, Horton D, Hsieh P, Peng Y, Wang SJ, Newberry R, Ericsson AC, Kim KS, Kau AL, Hsieh CS. A hierarchy of intestinal antigens instructs the CD4 + T cell receptor repertoire. Immunity 2025; 58:1217-1235.e4. [PMID: 40318631 DOI: 10.1016/j.immuni.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Intestinal CD4+ T cells that are specific for self-, diet-, or commensal-derived antigens are critical for host tolerance but must also be tightly regulated to prevent aberrant activation and conditions like inflammatory bowel disease (IBD). However, it is unclear how the antigen source and location dictate the intestinal TCR repertoire. Here, we hierarchically classified self-, diet-, or microbiota-dependent TCRs using TCliβ TCRβ transgenic mice. This demonstrated that microbiota had a greater influence than diet on CD4+ T cell responses throughout the intestine at homeostasis. Complex bi-directional interactions between microbes and diet were also observed. In the context of murine colitis as a model of IBD, we showed that antigen-free diet substantially altered the microbiota and associated T cell responses, which ameliorated intestinal inflammation. Collectively, these findings suggest how deconvoluting the gut immune interactome may facilitate identifying primary microbial and dietary drivers of T cell responses during health and disease.
Collapse
MESH Headings
- Animals
- Mice
- CD4-Positive T-Lymphocytes/immunology
- Mice, Transgenic
- Gastrointestinal Microbiome/immunology
- Mice, Inbred C57BL
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/microbiology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Antigens/immunology
- Colitis/immunology
- Colitis/microbiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Intestinal Mucosa/immunology
- Disease Models, Animal
- Intestines/immunology
- Intestines/microbiology
Collapse
Affiliation(s)
- Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biological Science, Ajou University, Suwon 16499, Republic of Korea
| | - Jisun Jung
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Horton
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patricia Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yangqing Peng
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean J Wang
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron C Ericsson
- The Mutant Mouse Resource and Research Center, University of Missouri (MU-MMRRC), Columbia, MO 65201, USA
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Lyu G, Wei W, Fan X, Zhong D, Li G. The effect of vitamin C on the JAK/STAT3 pathway in ischemic stroke: based on the molecular interaction between FOXP3 protein and stat3 protein. Int J Biol Macromol 2025; 311:144069. [PMID: 40348235 DOI: 10.1016/j.ijbiomac.2025.144069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Vitamin C, as an important antioxidant, has been widely studied in recent years for its protective effect in ischemic stroke. FOXP3 protein, as a key transcription factor for regulatory T cell (Treg) function, is closely related to the JAK/STAT3 signaling pathway. This study aimed to investigate the effects of vitamin C on the JAK/STAT3 pathway in ischemic stroke, focusing on the molecular interaction between FOXP3 and STAT3. To uncover its potential therapeutic mechanisms, a transient middle cerebral artery obstruction (MCAO) model was used to evaluate the effect of vitamin C on neurological impairment after ischemic stroke. Behavioral function was assessed by Garcia JH score, protein expression and cell infiltration were detected by Western blotting, flow cytometry and immunofluorescence staining, and peripheral blood mononuclear cells (PBMC) were isolated and analyzed. Statistical methods were used to evaluate the significance of the experimental results. The results showed that vitamin C significantly reduced nerve dysfunction and neuronal cell injury after ischemic stroke, and reduced glial cell infiltration in the injured area. Vitamin C also affected the proportion of regulatory T cells in ischemic stroke and in vitro experiments, and improved ischemic stroke damage by activating the Treg-STAT family, a process closely associated with FOXP3 and STAT3 interactions.
Collapse
Affiliation(s)
- Gongwei Lyu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wan Wei
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuehui Fan
- The First Affiliated Hospital, ShenZhen University School of Medicine, ShenZhen 518060, China
| | - Di Zhong
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guozhong Li
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150036, China.
| |
Collapse
|
3
|
Khosravi-Maharlooei M, Li HW, Sykes M. T Cell Development and Responses in Human Immune System Mice. Annu Rev Immunol 2025; 43:83-112. [PMID: 39705163 PMCID: PMC12031645 DOI: 10.1146/annurev-immunol-082223-041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| | - Megan Sykes
- Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| |
Collapse
|
4
|
Li N, Wang H, Hu C, Qie S, Liu Z. Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy. CNS Neurosci Ther 2025; 31:e70248. [PMID: 39878387 PMCID: PMC11775944 DOI: 10.1111/cns.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Stroke remains a leading cause of mortality and disability among adults. Given the restricted therapeutic window for intravascular interventions and neuroprotection during the acute phase, there has been a growing focus on tissue repair and functional recovery in the subacute and chronic phases after stroke. The pro-inflammatory microglial polarization occurs in subacute and chronic phases after stroke and may represent therapeutic targets for stroke recovery. CD4+ regulatory T cells (Tregs), a subtype of T cells with immunosuppressive effects, have been shown to be important in stroke. Tregs infiltrate into the brain primarily during the subacute and chronic phases following a stroke. Infiltrating Tregs play a critical role in mitigating pro-inflammatory microglial responses, modulating the immune microenvironment, and promoting the functional restoration of the damaged brain following a stroke. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science and then conduct a comprehensive analysis of the searched literature. RESULTS This review provides a comprehensive summary of recent preclinical research advances on the role of Tregs in stroke, with a particular focus on their reparative functions during the subacute and chronic phases. It discusses changes in peripheral and brain infiltrating Tregs post-stroke, their functions and underlying mechanisms, and therapeutic strategies involving Tregs. Additionally, this review explores the potential and challenges associated with the clinical application of Tregs in ischemic stroke. CONCLUSION Treg cell-related therapy represents a promising immune-therapeutic strategy for stroke recovery. However, there are several critical issues that must be resolved before its advancement to clinical application.
Collapse
Affiliation(s)
- Ning Li
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Hujun Wang
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Changbin Hu
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Zongjian Liu
- Department of Research, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2025; 62:518-532. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Baldwin I, Robey EA. Adjusting to self in the thymus: CD4 versus CD8 lineage commitment and regulatory T cell development. J Exp Med 2024; 221:e20230896. [PMID: 38980291 PMCID: PMC11232887 DOI: 10.1084/jem.20230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.
Collapse
Affiliation(s)
- Isabel Baldwin
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Burton OT, Bricard O, Tareen S, Gergelits V, Andrews S, Biggins L, Roca CP, Whyte C, Junius S, Brajic A, Pasciuto E, Ali M, Lemaitre P, Schlenner SM, Ishigame H, Brown BD, Dooley J, Liston A. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 2024; 57:1586-1602.e10. [PMID: 38897202 DOI: 10.1016/j.immuni.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Orian Bricard
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Samar Tareen
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Vaclav Gergelits
- Department of Pathology, University of Cambridge, Cambridge, UK; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Biggins
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carlos P Roca
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carly Whyte
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; University of Antwerp, Center of Molecular Neurology, Antwerp, Belgium
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Susan M Schlenner
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
9
|
Shi L, Lim JY, Kam LC. Improving regulatory T cell production through mechanosensing. J Biomed Mater Res A 2024; 112:1138-1148. [PMID: 38450935 PMCID: PMC11065567 DOI: 10.1002/jbm.a.37702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Induced Tregs (iTregs) have great promise in adoptive immunotherapy for treatment of autoimmune diseases. This report investigates the impacts of substrate stiffness on human Treg induction, providing a powerful yet simple approach to improving production of these cells. Conventional CD4+ human T cells were activated on materials of different elastic modulus and cultured under suppressive conditions. Enhanced Treg induction was observed on softer materials as early as 3 days following activation and persisted for multiple weeks. Substrate stiffness also affected epigenetic modification of Treg specific genes and Treg suppressive capacity. Tregs induced on substrates of an optimal stiffness balance quantity and suppressive quality.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
10
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
12
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. Regulatory T cells: A suppressor arm in post-stroke immune homeostasis. Neurobiol Dis 2023; 189:106350. [PMID: 37952680 DOI: 10.1016/j.nbd.2023.106350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The activation of the immune system and the onset of pro- and anti-inflammatory responses play crucial roles in the pathophysiological processes of ischaemic stroke (IS). CD4+ regulatory T (Treg) cells is the main immunosuppressive cell population that is studied in the context of peripheral tolerance, autoimmunity, and the development of chronic inflammatory diseases. In recent years, more studies have focused on immune modulation after IS, and Treg cells have been demonstrated to be essential in the remission of inflammation, nerve regeneration, and behavioural recovery. However, the exact effects of Treg cells in the context of IS remain controversial, with some studies suggesting a negative correlation with stroke outcomes. In this review, we aim to provide a comprehensive overview of the current understanding of Treg cell involvement in post-stroke homeostasis. We summarized the literature focusing on the temporal changes in Treg cell populations after IS, the mechanisms of Treg cell-mediated immunomodulation in the brain, and the potential of Treg cell-based therapies for treatment. The purposes of the current article are to address the importance of Treg cells and inspire more studies to help physicians, as well as scientists, understand the whole map of immune responses during IS.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing 100049, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
13
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
14
|
Dykema AG, Zhang J, Cheung LS, Connor S, Zhang B, Zeng Z, Cherry CM, Li T, Caushi JX, Nishimoto M, Munoz AJ, Ji Z, Hou W, Zhan W, Singh D, Zhang T, Rashid R, Mitchell-Flack M, Bom S, Tam A, Ionta N, Aye THK, Wang Y, Sawosik CA, Tirado LE, Tomasovic LM, VanDyke D, Spangler JB, Anagnostou V, Yang S, Spicer J, Rayes R, Taube J, Brahmer JR, Forde PM, Yegnasubramanian S, Ji H, Pardoll DM, Smith KN. Lung tumor-infiltrating T reg have divergent transcriptional profiles and function linked to checkpoint blockade response. Sci Immunol 2023; 8:eadg1487. [PMID: 37713507 PMCID: PMC10629528 DOI: 10.1126/sciimmunol.adg1487] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
Regulatory T cells (Treg) are conventionally viewed as suppressors of endogenous and therapy-induced antitumor immunity; however, their role in modulating responses to immune checkpoint blockade (ICB) is unclear. In this study, we integrated single-cell RNA-seq/T cell receptor sequencing (TCRseq) of >73,000 tumor-infiltrating Treg (TIL-Treg) from anti-PD-1-treated and treatment-naive non-small cell lung cancers (NSCLC) with single-cell analysis of tumor-associated antigen (TAA)-specific Treg derived from a murine tumor model. We identified 10 subsets of human TIL-Treg, most of which have high concordance with murine TIL-Treg subsets. Only one subset selectively expresses high levels of TNFRSF4 (OX40) and TNFRSF18 (GITR), whose engangement by cognate ligand mediated proliferative programs and NF-κB activation, as well as multiple genes involved in Treg suppression, including LAG3. Functionally, the OX40hiGITRhi subset is the most highly suppressive ex vivo, and its higher representation among total TIL-Treg correlated with resistance to PD-1 blockade. Unexpectedly, in the murine tumor model, we found that virtually all TIL-Treg-expressing T cell receptors that are specific for TAA fully develop a distinct TH1-like signature over a 2-week period after entry into the tumor, down-regulating FoxP3 and up-regulating expression of TBX21 (Tbet), IFNG, and certain proinflammatory granzymes. Transfer learning of a gene score from the murine TAA-specific TH1-like Treg subset to the human single-cell dataset revealed a highly analogous subcluster that was enriched in anti-PD-1-responding tumors. These findings demonstrate that TIL-Treg partition into multiple distinct transcriptionally defined subsets with potentially opposing effects on ICB-induced antitumor immunity and suggest that TAA-specific TIL-Treg may positively contribute to antitumor responses.
Collapse
Affiliation(s)
- Arbor G. Dykema
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiajia Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laurene S. Cheung
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sydney Connor
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhen Zeng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Taibo Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Justina X. Caushi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marni Nishimoto
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew J. Munoz
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wentao Zhan
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dipika Singh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tianbei Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rufiaat Rashid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nick Ionta
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thet H. K. Aye
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Camille A. Sawosik
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lauren E. Tirado
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Luke M. Tomasovic
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B. Spangler
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen Yang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Roni Rayes
- Department of Surgery, McGill University, Montreal, Canada
| | - Janis Taube
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julie R. Brahmer
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Patrick M. Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kellie N. Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4 + T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol 2023; 24:487-500. [PMID: 36759711 PMCID: PMC9992328 DOI: 10.1038/s41590-023-01425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.
Collapse
Affiliation(s)
- Victoria Lee
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Donald M Rodriguez
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Nicole K Ganci
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Junting Ai
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jaime L Chao
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Matthew T Walker
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Christine H Miller
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - David E J Klawon
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Domenick E Kennedy
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Drug Discovery Science and Technology, AbbVie, North Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marcus R Clark
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Malviya V, Yshii L, Junius S, Garg AD, Humblet-Baron S, Schlenner SM. Regulatory T-cell stability and functional plasticity in health and disease. Immunol Cell Biol 2023; 101:112-129. [PMID: 36479949 DOI: 10.1111/imcb.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
FOXP3-expressing regulatory T cells (Treg ) are indispensable for immune homeostasis and tolerance, and in addition tissue-resident Treg have been found to perform noncanonical, tissue-specific functions. For optimal tolerogenic function during inflammatory disease, Treg are equipped with mechanisms that assure lineage stability. Treg lineage stability is closely linked to the installation and maintenance of a lineage-specific epigenetic landscape, specifically a Treg -specific DNA demethylation pattern. At the same time, for local and directed immune regulation Treg must possess a level of functional plasticity that requires them to partially acquire T helper cell (TH ) transcriptional programs-then referred to as TH -like Treg . Unleashing TH programs in Treg , however, is not without risk and may threaten the epigenetic stability of Treg with consequently pathogenic ex-Treg contributing to (auto-) inflammatory conditions. Here, we review how the Treg -stabilizing epigenetic landscape is installed and maintained, and further discuss the development, necessity and lineage instability risks of TH 1-, TH 2-, TH 17-like Treg and follicular Treg .
Collapse
Affiliation(s)
- Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Steffie Junius
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Skartsis N, Muller YD, Ferreira LMR. Regulatory T cell homeostasis: Requisite signals and implications for clinical development of biologics. Clin Immunol 2023; 246:109201. [PMID: 36470337 PMCID: PMC12066019 DOI: 10.1016/j.clim.2022.109201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Novel biologics are currently being tested in clinical trials for the treatment of autoimmune diseases and the prevention of transplant allograft rejection. Their premise is to deliver highly efficient immunosuppression while minimizing side-effects, as they specifically target inflammatory mediators involved in the dysregulation of the immune system. However, the pleiotropism of soluble mediators and cell-to-cell interactions with potential to exert both proinflammatory and regulatory influences on the outcome of the immune response can lead to unpredictable results. Predicting responses to biologic drugs requires mechanistic understanding of the cell type-specific effect of immune mediators. Elucidation of the central role of regulatory T cells (Treg), a small subset of T cells dedicated to immune homeostasis, in preventing the development of auto- and allo-immunity has provided a deeper understanding of the signaling pathways that govern immune tolerance. This review focuses on the requisite signals that promote Treg homeostasis and discusses the anticipated outcomes of biologics targeting these signals. Our goal is to inform and facilitate the design of cell-specific biologics that thwart T effector cells (Teff) while promoting Treg function for the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.
| | - Yannick D Muller
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Leonardo M R Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Zhang J, Wu YJ, Hu XX, Wei W. New insights into the Lck-NF-κB signaling pathway. Front Cell Dev Biol 2023; 11:1120747. [PMID: 36910149 PMCID: PMC9999026 DOI: 10.3389/fcell.2023.1120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Lck is essential for the development, activity, and proliferation of T cells, which may contribute to pathological progression and development of human diseases, such as autoimmune disorders and cancers when functioning aberrantly. Nuclear factor-κB (NF-κB) was initially discovered as a factor bound to the κ light-chain immunoglobulin enhancer in the nuclei of activated B lymphocytes. Activation of the nuclear factor-κB pathway controls expression of several genes that are related to cell survival, apoptosis, and inflammation. Abnormal expression of Lck and nuclear factor-κB has been found in autoimmune diseases and malignancies, including rheumatoid arthritis, systemic lupus erythematosus, acute T cell lymphocytic leukemia, and human chronic lymphocytic leukemia, etc. Nuclear factor-κB inhibition is effective against autoimmune diseases and malignancies through blocking inflammatory responses, although it may lead to serious adverse reactions that are unexpected and unwanted. Further investigation of the biochemical and functional interactions between nuclear factor-κB and other signaling pathways may be helpful to prevent side-effects. This review aims to clarify the Lck-nuclear factor-κB signaling pathway, and provide a basis for identification of new targets and therapeutic approaches against autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu-Jing Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Xi Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Bulygin AS, Khantakova JN, Shkaruba NS, Shiku H, Sennikov SS. The role of metabolism on regulatory T cell development and its impact in tumor and transplantation immunity. Front Immunol 2022; 13:1016670. [PMID: 36569866 PMCID: PMC9767971 DOI: 10.3389/fimmu.2022.1016670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory CD4+ T (Treg) cells play a key role in the induction of immune tolerance and in the prevention of autoimmune diseases. Treg cells are defined by the expression of transcription factor FOXP3, which ensures proliferation and induction of the suppressor activity of this cell population. In a tumor microenvironment, after transplantation or during autoimmune diseases, Treg cells can respond to various signals from their environment and this property ensures their suppressor function. Recent studies showed that a metabolic signaling pathway of Treg cells are essential in the control of Treg cell proliferation processes. This review presents the latest research highlights on how the influence of extracellular factors (e.g. nutrients, vitamins and metabolites) as well as intracellular metabolic signaling pathways regulate tissue specificity of Treg cells and heterogeneity of this cell population. Understanding the metabolic regulation of Treg cells should provide new insights into immune homeostasis and disorders along with important therapeutic implications for autoimmune diseases, cancer and other immune-system-mediated disorders.
Collapse
|
22
|
Owen DL, La Rue RS, Munro SA, Farrar MA. Tracking Regulatory T Cell Development in the Thymus Using Single-Cell RNA Sequencing/TCR Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1300-1313. [PMID: 36038290 PMCID: PMC9529998 DOI: 10.4049/jimmunol.2200089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have demonstrated that regulatory T cells (Tregs) develop in the thymus via two pathways involving distinct Treg progenitors (TregP): CD25+FOXP3- (CD25+ TregP) and CD25-FOXP3lo (FOXP3lo TregP) Treg progenitors. To examine this process in more detail, we carried out single-cell RNA sequencing (scRNA-Seq) and TCR-Seq on sorted murine CD4+CD8+ double-positive (DP) thymocytes, CD4+ single-positive (CD4SP) thymocytes, CD25+FOXP3-CD73- TregP, CD25-FOXP3loCD73- TregP, newly generated mature CD25+FOXP3+CD73- Tregs, and FOXP3+CD73+ recirculating/long-term resident Tregs (RT-Tregs). Sorted populations were individually hashtagged and then combined into one scRNA-Seq/TCR-Seq library before sequencing and subsequent analysis. We found that both CD25+ TregP and FOXP3lo TregP arise via an initial agonist-activated state that gives rise to a second transitional stage before differentiating into mature Tregs Using both scRNA-Seq and bulk RNA-Seq on sorted thymocyte subsets, we demonstrate that CD25+ TregP are significantly enriched for Il2 production, suggesting that they are the major source of IL-2 needed to convert TregP into mature Tregs Using TCR-Seq, we found that several TCRs were clearly biased in favor of the conventional or Treg lineages, but that a large fraction of TCRs were found in both these lineages. Finally, we found that RT-Tregs in the thymus are not monomorphic but are composed of multiple distinct subsets and that these RT-Tregs express the most diverse TCR repertoire of all CD4SP thymocytes. Thus, our studies define multiple stages of Treg differentiation within the murine thymus and serve as a resource for future studies on CD4+ thymocyte development and Treg differentiation.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN; and
| | - Rebecca S La Rue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN
| | - Sarah A Munro
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
23
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Apert C, Galindo-Albarrán AO, Castan S, Detraves C, Michaud H, McJannett N, Haegeman B, Fillatreau S, Malissen B, Holländer G, Žuklys S, Santamaria JC, Joffre OP, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 drive intrathymic development of distinct periphery-seeding CD4+Foxp3+ regulatory T lymphocytes. Front Immunol 2022; 13:965303. [PMID: 36159793 PMCID: PMC9495261 DOI: 10.3389/fimmu.2022.965303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Development of Foxp3-expressing regulatory T-lymphocytes (Treg) in the thymus is controlled by signals delivered in T-cell precursors via the TCR, co-stimulatory receptors, and cytokine receptors. In absence of IL-2, IL-15 or their receptors, fewer Treg apparently develop in the thymus. However, it was recently shown that a substantial part of thymic Treg are cells that had recirculated from the periphery back to the thymus, troubling interpretation of these results. We therefore reassessed the involvement of IL-2 and IL-15 in the development of Treg, taking into account Treg-recirculation. At the age of three weeks, when in wt and IL-15-deficient (but not in IL-2-deficient) mice substantial amounts of recirculating Treg are present in the thymus, we found similarly reduced proportions of newly developed Treg in absence of IL-2 or IL-15, and in absence of both cytokines even less Treg developed. In neonates, when practically no recirculating Treg were found in the thymus, the absence of IL-2 led to substantially more reduced Treg-development than deficiency in IL-15. IL-2 but not IL-15 modulated the CD25, GITR, OX40, and CD73-phenotypes of the thymus-egress-competent and periphery-seeding Treg-population. Interestingly, IL-2 and IL-15 also modulated the TCR-repertoire expressed by developing Treg. Upon transfer into Treg-less Foxp3sf mice, newly developed Treg from IL-2- (and to a much lesser extent IL-15-) deficient mice suppressed immunopathology less efficiently than wt Treg. Taken together, our results firmly establish important non-redundant quantitative and qualitative roles for IL-2 and, to a lesser extent, IL-15 in intrathymic Treg-development.
Collapse
Affiliation(s)
- Cécile Apert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Ariel O. Galindo-Albarrán
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Sarah Castan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Claire Detraves
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Héloise Michaud
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Nicola McJannett
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Bart Haegeman
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Simon Fillatreau
- Institut Necker Enfants Malades, Inserm U1151, CNRS UMR8253, Paris, France
- Université de Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Georg Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Saulius Žuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Jérémy C. Santamaria
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Olivier P. Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Paola Romagnoli
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Joost P. M. van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
- *Correspondence: Joost P. M. van Meerwijk,
| |
Collapse
|
25
|
Wang L, Jiang W, Wang X, Tong L, Song Y. Regulatory T cells in inflammation and resolution of acute lung injury. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:587-595. [PMID: 35924374 PMCID: PMC9436906 DOI: 10.1111/crj.13527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is characterized by hypoxemia and increased lung permeability and would result in acute respiratory failure and with high mortality. In patients who survive from acute lung injury (ALI)/ARDS, it is an active process of the transition from injury to resolution depending on the coordinated immune system. The roles of regulatory CD4+T cells (Tregs) are now gradually being clarified during inflammation and resolution of ARDS. However, clear conclusions about roles of Tregs in ALI/ARDS are only a few. Objective This review provides an overview of phenotype, differentiation, and suppressive mechanisms of Tregs and focuses on keys of biology of Tregs in alveolar space during the inflammatory response and resolution of ALI/ARDS. Data Source Literature search of Web of Science, PubMed, and EMBASE was made to find relative articles about Tregs in ALI/ARDS. We used the following search terms: Tregs, ALI, ARDS, inflammation, and resolution. Conclusion More and more studies have indicated Tregs involved in the processes of inflammation and resolution of ALI/ARDS. A deep understanding of the roles of Tregs may indicate new treatments for patients of ARDS. Therapies aimed at expansion or adaptive transfer of Tregs could be an effective therapy to ARDS patients.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
| | - Weipeng Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
| | - Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital Fudan University Shanghai China
- Shanghai Institute of Infectious Disease and Biosecurity Shanghai China
- Shanghai Respiratory Research Institute Shanghai China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
26
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Du J, Wang Q, Yang S, Chen S, Fu Y, Spath S, Domeier P, Hagin D, Anover-Sombke S, Haouili M, Liu S, Wan J, Han L, Liu J, Yang L, Sangani N, Li Y, Lu X, Janga SC, Kaplan MH, Torgerson TR, Ziegler SF, Zhou B. FOXP3 exon 2 controls T reg stability and autoimmunity. Sci Immunol 2022; 7:eabo5407. [PMID: 35749515 PMCID: PMC9333337 DOI: 10.1126/sciimmunol.abo5407] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qun Wang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuangshuang Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Si Chen
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Phillip Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Stephanie Anover-Sombke
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Maya Haouili
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juli Liu
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neel Sangani
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy R. Torgerson
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Baohua Zhou
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Lancaster JN, Keatinge‐Clay DE, Srinivasan J, Li Y, Selden HJ, Nam S, Richie ER, Ehrlich LIR. Central tolerance is impaired in the middle-aged thymic environment. Aging Cell 2022; 21:e13624. [PMID: 35561351 PMCID: PMC9197411 DOI: 10.1111/acel.13624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
One of the earliest hallmarks of immune aging is thymus involution, which not only reduces the number of newly generated and exported T cells, but also alters the composition and organization of the thymus microenvironment. Thymic T‐cell export continues into adulthood, yet the impact of thymus involution on the quality of newly generated T‐cell clones is not well established. Notably, the number and proportion of medullary thymic epithelial cells (mTECs) and expression of tissue‐restricted antigens (TRAs) decline with age, suggesting the involuting thymus may not promote efficient central tolerance. Here, we demonstrate that the middle‐aged thymic environment does not support rapid motility of medullary thymocytes, potentially diminishing their ability to scan antigen presenting cells (APCs) that display the diverse self‐antigens that induce central tolerance. Consistent with this possibility, thymic slice assays reveal that the middle‐aged thymic environment does not support efficient negative selection or regulatory T‐cell (Treg) induction of thymocytes responsive to either TRAs or ubiquitous self‐antigens. This decline in central tolerance is not universal, but instead impacts lower‐avidity self‐antigens that are either less abundant or bind to TCRs with moderate affinities. Additionally, the decline in thymic tolerance by middle age is accompanied by both a reduction in mTECs and hematopoietic APC subsets that cooperate to drive central tolerance. Thus, age‐associated changes in the thymic environment result in impaired central tolerance against moderate‐avidity self‐antigens, potentially resulting in export of increasingly autoreactive naive T cells, with a deficit of Treg counterparts by middle age.
Collapse
Affiliation(s)
- Jessica N. Lancaster
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | | | - Jayashree Srinivasan
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Yu Li
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Hilary J. Selden
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Seohee Nam
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Lauren I. R. Ehrlich
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
- Department of Oncology Dell Medical School at The University of Texas at Austin Austin Texas USA
| |
Collapse
|
29
|
Role of T Regulatory Cells and Myeloid-Derived Suppressor Cells in COVID-19. J Immunol Res 2022; 2022:5545319. [PMID: 35497875 PMCID: PMC9042623 DOI: 10.1155/2022/5545319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been raised as a pandemic disease since December 2019. Immunosuppressive cells including T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are key players in immunological tolerance and immunoregulation; however, they contribute to the pathogenesis of different diseases including infections. Tregs have been shown to impair the protective role of CD8+ T lymphocytes against viral infections. In COVID-19 patients, most studies reported reduction, while few other studies found elevation in Treg levels. Moreover, Tregs have a dual role, depending on the different stages of COVID-19 disease. At early stages of COVID-19, Tregs have a critical role in decreasing antiviral immune responses, and consequently reducing the viral clearance. On the other side, during late stages, Tregs reduce inflammation-induced organ damage. Therefore, inhibition of Tregs in early stages and their expansion in late stages have potentials to improve clinical outcomes. In viral infections, MDSC levels are highly increased, and they have the potential to suppress T cell proliferation and reduce viral clearance. Some subsets of MDSCs are expanded in the blood of COVID-19 patients; however, there is a controversy whether this expansion has pathogenic or protective effects in COVID-19 patients. In conclusion, further studies are required to investigate the role and function of immunosuppressive cells and their potentials as prognostic biomarkers and therapeutic targets in COVID-19 patients.
Collapse
|
30
|
Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Insight Into Regulatory T Cells in Sepsis-Associated Encephalopathy. Front Neurol 2022; 13:830784. [PMID: 35370925 PMCID: PMC8965708 DOI: 10.3389/fneur.2022.830784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse central nervous system (CNS) dysfunction during sepsis, and is associated with increased mortality and poor outcomes in septic patients. Despite the high incidence and clinical relevance, the exact mechanisms driving SAE pathogenesis are not yet fully understood, and no specific therapeutic strategies are available. Regulatory T cells (Tregs) have a role in SAE pathogenesis, thought to be related with alleviation of sepsis-induced hyper-inflammation and immune responses, promotion of T helper (Th) 2 cells functional shift, neuroinflammation resolution, improvement of the blood-brain barrier (BBB) function, among others. Moreover, in a clinical point of view, these cells have the potential value of improving neurological and psychiatric/mental symptoms in SAE patients. This review aims to provide a general overview of SAE from its initial clinical presentation to long-term cognitive impairment and summarizes the main features of its pathogenesis. Additionally, a detailed overview on the main mechanisms by which Tregs may impact SAE pathogenesis is given. Finally, and considering that Tregs may be a novel target for immunomodulatory intervention in SAE, different therapeutic options, aiming to boost peripheral and brain infiltration of Tregs, are discussed.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Yu-lei Gao
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai
| |
Collapse
|
31
|
Li Y, Ye Z, Zhu J, Fang S, Meng L, Zhou C. Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Front Immunol 2022; 13:844335. [PMID: 35355998 PMCID: PMC8960063 DOI: 10.3389/fimmu.2022.844335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulate and shape the body’s adaptive immune response through bacterial components and its active metabolites, which orchestrates the formation and maintenance of the body’s immune homeostasis. In addition, the imbalances in microbiota-adaptive immunity contribute to the development of tumor and the antitumor efficiency of a series of antitumor therapies at the preclinical and clinical levels. Regardless of significant results, the regulation of gut microbiota on adaptive immunity in immune homeostasis and tumors needs a more thorough understanding. Herein, we highlighted the comprehensive knowledge, status, and limitations in the mechanism of microbiome interaction with adaptive immunity and put forward the prospect of how to translate these insights in inhibiting tumor progression and enhancing the efficacy of antitumor interventions.
Collapse
Affiliation(s)
- Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Shuguang Fang
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Lijuan Meng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| | - Chen Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| |
Collapse
|
32
|
Chen JW, Schickel JN, Tsakiris N, Sng J, Arbogast F, Bouis D, Parisi D, Gera R, Boeckers JM, Delmotte FR, Veselits M, Schuetz C, Jacobsen EM, Posovszky C, Schulz AS, Schwarz K, Clark MR, Menard L, Meffre E. Positive and negative selection shape the human naïve B cell repertoire. J Clin Invest 2021; 132:150985. [PMID: 34813502 PMCID: PMC8759783 DOI: 10.1172/jci150985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Although negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naive B cell positive selection remains elusive. Using 2 humanized mouse models, we demonstrate that there was strong skewing of the expressed immunoglobulin repertoire upon transit into the peripheral naive B cell pool. This positive selection of expanded naive B cells in humanized mice resembled that observed in healthy human donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymus-derived Tregs and MHC class II–restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on B cells of patients with rare bare lymphocyte syndrome and prevention of self-antigen presentation via HLA-DM inhibition in humanized mice resulted in the production of autoreactive naive B cells. These latter observations suggest that Tregs repressed autoreactive naive B cells continuously produced by the bone marrow. Thus, a model emerged, in which both positive and negative selection shaped the human naive B cell repertoire and that each process was mediated by fundamentally different molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Jeff W Chen
- Department of Immunobiology, Yale University, New Haven, United States of America
| | | | - Nikolaos Tsakiris
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Joel Sng
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Florent Arbogast
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Delphine Bouis
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Daniele Parisi
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Ruchi Gera
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Joshua M Boeckers
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Fabien R Delmotte
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Margaret Veselits
- Department of Medicine, University of Chicago, Chicago, United States of America
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Klaus Schwarz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Marcus R Clark
- Department of Medicine, University of Chicago, Chicago, United States of America
| | - Laurence Menard
- Department of Immunobiology, Yale University, New Haven, United States of America
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, United States of America
| |
Collapse
|
33
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Uehlein S, Ding X, Flößer J, Schmidt S, Steitz J, Bille M, Schnitter F, Baltes S, Saalmüller A, Gerner W, Herrmann T, Frey A, Kerkau T, Hofmann U, Beyersdorf N. Human-like Response of Pig T Cells to Superagonistic Anti-CD28 Monoclonal Antibodies. THE JOURNAL OF IMMUNOLOGY 2021; 207:2473-2488. [PMID: 34625520 DOI: 10.4049/jimmunol.2100174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Because of its size, anatomical similarities, and now also accessibility to genetic manipulations, pigs are used as animal models for human diseases and immune system development. However, expression and function of CD28, the most important costimulatory receptor expressed by T cells, so far is poorly understood in this species. Using a newly generated mAb (mAb 3D11) with specificity for pig CD28, we detected CD28 on CD8+ and CD4+ αβ T cells. Among γδ T cells, CD28 expression was restricted to a small CD2+ subpopulation of phenotypically naive cells. Functionally, CD28 ligation with mAb 3D11-costimulated porcine T cells, enhanced proliferation and cytokine secretion in vitro. We used a second, likewise newly generated but superagonistic, anti-CD28 mAb (CD28-SA; mAb 4D12) to test the function of CD28 on porcine T cells in a pilot study in vivo. Injection of the CD28-SA into pigs in vivo showed a very similar dose-response relationship as in humans (i.e., 100 µg/kg body weight [BW]) of CD28-SA induced a cytokine release syndrome that was avoided at a dose of 10 µg/kg BW and below. The data further suggest that low-dose (10 µg/kg BW) CD28-SA infusion was sufficient to increase the proportion of Foxp3+ regulatory T cells among CD4+ T cells in vivo. The pig is thus a suitable animal model for testing novel immunotherapeutics. Moreover, data from our pilot study in pigs further suggest that low-dose CD28-SA infusion might allow for selective expansion of CD4+ regulatory T cells in humans.
Collapse
Affiliation(s)
- Sabrina Uehlein
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Xin Ding
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janina Flößer
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Selma Schmidt
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Steitz
- Faculty of Medicine, Institute for Laboratory Animal Science, RWTH Aachen University, Aachen, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; and
| | - Florian Schnitter
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; and.,Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Steffen Baltes
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; and
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Frey
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; and.,Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; and.,Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany;
| |
Collapse
|
35
|
Russler-Germain EV, Jung J, Miller AT, Young S, Yi J, Wehmeier A, Fox LE, Monte KJ, Chai JN, Kulkarni DH, Funkhouser-Jones LJ, Wilke G, Durai V, Zinselmeyer BH, Czepielewski RS, Greco S, Murphy KM, Newberry RD, Sibley LD, Hsieh CS. Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity 2021; 54:2547-2564.e7. [PMID: 34715017 DOI: 10.1016/j.immuni.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.
Collapse
Affiliation(s)
- Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jisun Jung
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aidan T Miller
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon Young
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alec Wehmeier
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey E Fox
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen J Monte
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafael S Czepielewski
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Wang H, Wang Z, Cao W, Wu Q, Yuan Y, Zhang X. Regulatory T cells in COVID-19. Aging Dis 2021; 12:1545-1553. [PMID: 34631206 PMCID: PMC8460308 DOI: 10.14336/ad.2021.0709] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which leads to the disruption of immune system, exacerbated inflammation, and even multiple organ dysfunction syndrome. Regulatory T cells (Tregs) are an important subpopulation of T cells that exert immunosuppressive effects. Recent studies have demonstrated that the number of Tregs is significantly reduced in COVID-19 patients, and this reduction may affect COVID-19 patients on several aspects, such as weakening the effect of inflammatory inhibition, causing an imbalance in Treg/Th17 ratio, and increasing the risk of respiratory failure. Treg-targeted therapy may alleviate the symptoms and retard disease progression in COVID-19 patients. This study highlights the recent findings on the involvement of Tregs in the regulation of immune responses to COVID-19, and we hope to provide novel perspectives on the alternative immunotherapeutic strategies for this disease that is currently prevalent worldwide.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Hebei Vascular Homeostasis Key Laboratory for Neurology, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
37
|
Carstens MR, Wasserfall CH, Acharya AP, Lewis J, Agrawal N, Koenders K, Bracho-Sanchez E, Keselowsky BG. GRAS-microparticle microarrays identify dendritic cell tolerogenic marker-inducing formulations. LAB ON A CHIP 2021; 21:3598-3613. [PMID: 34346460 PMCID: PMC8725777 DOI: 10.1039/d1lc00096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays, miniaturized platforms used for high-content studies, provide potential advantages over traditional in vitro investigation in terms of time, cost, and parallel analyses. Recently, microarrays have been leveraged to investigate immune cell biology by providing a platform with which to systematically investigate the effects of various agents on a wide variety of cellular processes, including those giving rise to immune regulation for application toward curtailing autoimmunity. A specific embodiment incorporates dendritic cells cultured on microarrays containing biodegradable microparticles. Such an approach allows immune cell and microparticle co-localization and release of compounds on small, isolated populations of cells, enabling a quick, convenient method to quantify a variety of cellular responses in parallel. In this study, the microparticle microarray platform was utilized to investigate a small library of sixteen generally regarded as safe (GRAS) compounds (ascorbic acid, aspirin, capsaicin, celastrol, curcumin, epigallocatechin-3-gallate, ergosterol, hemin, hydrocortisone, indomethacin, menadione, naproxen, resveratrol, retinoic acid, α-tocopherol, vitamin D3) for their ability to induce suppressive phenotypes in murine dendritic cells. Two complementary tolerogenic index ranking systems were proposed to summarize dendritic cell responses and suggested several lead compounds (celastrol, ergosterol, vitamin D3) and two secondary compounds (hemin, capsaicin), which warrant further investigation for applications toward suppression and tolerance.
Collapse
Affiliation(s)
- Matthew R Carstens
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jamal Lewis
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Nikunj Agrawal
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Kevin Koenders
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| |
Collapse
|
38
|
Galindo-Albarrán A, Castan S, Santamaria JC, Joffre OP, Haegeman B, Romagnoli P, van Meerwijk JPM. The Repertoire of Newly Developing Regulatory T Cells in the Type 1 Diabetes-Prone NOD Mouse Is Very Diverse. Diabetes 2021; 70:1729-1737. [PMID: 34035042 DOI: 10.2337/db20-1072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022]
Abstract
Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen specificity of Treg plays an important role in their in vivo activity. We therefore assessed the diversity of the T-cell receptors (TCRs) for antigen expressed by Treg newly developed in the thymus of autoimmune type 1 diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that use of the TCRα and TCRβ variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRα and TCRβ chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type 1 diabetes in the NOD mouse.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Ariel Galindo-Albarrán
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
- Station d'Écologie Théorique et Expérimentale, CNRS-Université Paul Sabatier (UPS), Moulis, France
| | - Sarah Castan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Jérémy C Santamaria
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Olivier P Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Bart Haegeman
- Station d'Écologie Théorique et Expérimentale, CNRS-Université Paul Sabatier (UPS), Moulis, France
| | - Paola Romagnoli
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| | - Joost P M van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
39
|
Saxena V, Lakhan R, Iyyathurai J, Bromberg JS. Mechanisms of exTreg induction. Eur J Immunol 2021; 51:1956-1967. [PMID: 33975379 PMCID: PMC8338747 DOI: 10.1002/eji.202049123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
CD4+ CD25+ Foxp3+ Tregs play an important role in the maintenance of the immune system by regulating immune responses and resolving inflammation. Tregs exert their function by suppressing other immune cells and mediating peripheral self-tolerance. Under homeostatic conditions, Tregs are stable T-cell populations. However, under inflammatory environments, Tregs are converted to CD4+ CD25low Foxp3low cells. These cells are termed "exTreg" or "exFoxp3" cells. The molecular mechanism of Treg transition to exTregs remains incompletely understood. Uncertainties might be explained by a lack of consensus of biological markers to define Treg subsets in general and exTregs in particular. In this review, we summarize known markers of Tregs and factors responsible for exTreg generation including cytokines, signaling pathways, transcription factors, and epigenetic mechanisms. We also identify studies demonstrating the presence of exTregs in various diseases and sources of exTregs. Understanding the biology of Treg transition to exTregs will help in designing Treg-based therapeutic approaches.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jegan Iyyathurai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
40
|
Korn T, Hiltensperger M. Role of IL-6 in the commitment of T cell subsets. Cytokine 2021; 146:155654. [PMID: 34325116 PMCID: PMC8375581 DOI: 10.1016/j.cyto.2021.155654] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
IL-6 is a non-redundant differentiation factor for Th17 cells and Tfh cells. The induction of ROR-γt+ Treg cells in the lamina propria depends on IL-6. Generation of distinct T helper cell subsets might depend on different IL-6 signaling modalities. IL-6-directed therapies must consider the disease-relevant IL-6 signaling modality.
IL-6 gained much attention with the discovery that this cytokine is a non-redundant differentiation factor for Th17 cells and T follicular helper cells. Adaptive immune responses to fungi and extracellular bacteria are impaired in the absence of IL-6. IL-6 is also required for the induction of ROR-γt+ Treg cells, which are gatekeepers of homeostasis in the gut lamina propria in the presence of commensal bacteria. Conversely, severe immunopathology in T cell-mediated autoimmunity is mediated by Th17 cells that rely on IL-6 for their generation and maintenance. Recently, it has been discovered that the differentiation of these distinct T helper cell subsets may be linked to distinct signaling modalities of IL-6. Here, we summarize the current knowledge on the mode of action of IL-6 in the differentiation and maintenance of T cell subsets and propose that a context-dependent understanding of the impact of IL-6 on T cell subsets might inform rational IL-6-directed interventions in autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Dept. of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| | - Michael Hiltensperger
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
41
|
Junius S, Mavrogiannis AV, Lemaitre P, Gerbaux M, Staels F, Malviya V, Burton O, Gergelits V, Singh K, Tito Tadeo RY, Raes J, Humblet-Baron S, Liston A, Schlenner SM. Unstable regulatory T cells, enriched for naïve and Nrp1 neg cells, are purged after fate challenge. Sci Immunol 2021; 6:6/61/eabe4723. [PMID: 34301799 DOI: 10.1126/sciimmunol.abe4723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) are indispensable for the control of immune homeostasis and have clinical potential as a cell therapy for treating autoimmunity. Tregs can lose expression of the lineage-defining Foxp3 transcription factor and acquire effector T cell (Teff) characteristics, a process referred to as Treg plasticity. The extent and reversibility of such plasticity during immune responses remain unknown. Here, using a murine genetic fate-mapping system, we show that Treg stability is maintained even during exposure to a complex microbial/antigenic environment. Furthermore, we demonstrate that the observed plasticity of Tregs after adoptive transfer into a lymphopenic environment is a property limited to only a subset of the Treg population, with the nonconverting majority of Tregs being resistant to plasticity upon secondary stability challenge. The unstable Treg fraction is a complex mixture of phenotypically distinct Tregs, enriched for naïve and neuropilin-1-negative Tregs, and includes peripherally induced Tregs and recent thymic emigrant Tregs These results suggest that a "purging" process can be used to purify stable Tregs that are capable of robust fate retention, with potential implications for improving cell transfer therapy.
Collapse
Affiliation(s)
- Steffie Junius
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB Center for Brain and Disease Research, Leuven 3000, Belgium
| | - Adamantios V Mavrogiannis
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Pierre Lemaitre
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Margaux Gerbaux
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederik Staels
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB Center for Brain and Disease Research, Leuven 3000, Belgium
| | - Vanshika Malviya
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Oliver Burton
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Václav Gergelits
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kailash Singh
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Raul Yhossef Tito Tadeo
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Jeroen Raes
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Stephanie Humblet-Baron
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Adrian Liston
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium. .,VIB Center for Brain and Disease Research, Leuven 3000, Belgium.,Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Susan M Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.
| |
Collapse
|
42
|
Lee JK, Koo SY, Nam HM, Lee JB, Ko J, Kim KM, Park EJ, Kim TJ, Lee H, Go H, Lee CW. Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells. Cell Mol Immunol 2021; 18:1395-1411. [PMID: 33850312 PMCID: PMC8166877 DOI: 10.1038/s41423-021-00671-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The homeostatic balance between effector T cells and regulatory T cells (Tregs) is crucial for adaptive immunity; however, epigenetic programs that inhibit phosphorylation to regulate Treg development, peripheral expression, and suppressive activity are elusive. Here, we found that the Ssu72 phosphatase is activated by various T-cell receptor signaling pathways, including the T-cell receptor and IL-2R pathways, and localizes at the cell membrane. Deletion of Ssu72 in T cells disrupts CD4+ T-cell differentiation into Tregs in the periphery via the production of high levels of the effector cytokines IL-2 and IFNγ, which induce CD4+ T-cell activation and differentiation into effector cell lineages. We also found a close correlation between downregulation of Ssu72 and severe defects in mucosal tolerance in patients. Interestingly, Ssu72 forms a complex with PLCγ1, which is an essential effector molecule for T-cell receptor signaling as well as Treg development and function. Ssu72 deficiency impairs PLCγ1 downstream signaling and results in failure of Foxp3 induction. Thus, our studies show that the Ssu72-mediated cytokine response coordinates the differentiation and function of Treg cells in the periphery.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Research Institute, Curogen Technology, Suwon, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hye-Mi Nam
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
- MOGAM Institute for Biomedical Research, Gyeonggi, South Korea
| | - Jee-Boong Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Mo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, South Korea.
| | - Heounjeong Go
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chang-Woo Lee
- Research Institute, Curogen Technology, Suwon, South Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
43
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
44
|
Eldershaw S, Verma K, Croft W, Rai T, Kinsella F, Stephens C, Chen H, Nunnick J, Zuo J, Malladi R, Moss P. Lymphopenia-induced lymphoproliferation drives activation of naive T cells and expansion of regulatory populations. iScience 2021; 24:102164. [PMID: 33665580 PMCID: PMC7907823 DOI: 10.1016/j.isci.2021.102164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Chemotherapy pre-conditioning is an essential component of chimeric antigen receptor transduced cell therapy. Acute lymphopenia-induced proliferation (LIP) is known to be driven primarily by homeostatic cytokines, but little is known on the underlying mechanisms in humans. We undertook phenotypic and transcriptional analysis of T cells undergoing LIP two weeks post-myeloablative autograft stem cell transplantation. Strong IL-7 signaling was reflected in downregulated IL-7R expression on all T cells, including naive cells, along with parallel increased IL-2Rα expression. Notably, activated residual naive cells expressed Fas indicating recent TCR engagement. Moreover, proportion of Ki67 + FoxP3+ Tregs was almost doubled. Transcriptional analysis revealed increased fatty acid metabolism and interferon signaling responses. In contrast, TGF-β signaling was strongly suppressed. Thus, human LIP response is characterized by cytokine and TCR-driven proliferation which drives global T cell activation but also preferentially triggers regulatory cell expansion which may limit tumor-specific immunity. These features indicate potential therapeutic opportunities to manipulate immunotherapy regimens incorporating LIP conditioning protocols.
Collapse
Affiliation(s)
- S. Eldershaw
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - K. Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - W. Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - T. Rai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - F.A.M. Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - C. Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - H. Chen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J. Nunnick
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - J. Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - R. Malladi
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - P. Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Opstelten R, Amsen D. Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy. Immunol Lett 2021; 239:96-112. [PMID: 33676975 DOI: 10.1016/j.imlet.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells are essential for immunological tolerance and can be used to suppress unwanted or excessive immune responses through adoptive cellular therapy. It is increasingly clear that many subsets of Treg cells exist, which have different functions and reside in different locations. Treg cell therapies may benefit from tailoring the selected subset to the tissue that must be protected as well as to characteristics of the immune response that must be suppressed, but little attention is given to this topic in current therapies. Here, we will discuss how three major axes of heterogeneity can be discerned among the Treg cell population, which determine function and lineage fidelity. A first axis relates to the developmental route, as Treg cells can be generated from immature T cells in the thymus or from already mature Tconv cells in the immunological periphery. Heterogeneity furthermore stems from activation history (naïve or effector) and location (lymphoid or peripheral tissues). Each of these axes bestows specific properties on Treg cells, which are further refined by additional processes leading to yet further variation. A critical aspect impacting on Treg cell heterogeneity is TCR specificity, which determines when and where Treg cells are generated as well as where they exhibit their effector functions. We will discuss the implications of this heterogeneity and the role of the TCR for the design of next generation adoptive cellular therapy with Treg cells.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Santamaria JC, Borelli A, Irla M. Regulatory T Cell Heterogeneity in the Thymus: Impact on Their Functional Activities. Front Immunol 2021; 12:643153. [PMID: 33643324 PMCID: PMC7904894 DOI: 10.3389/fimmu.2021.643153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Foxp3+ regulatory T cells (Treg) maintain the integrity of the organism by preventing excessive immune responses. These cells protect against autoimmune diseases but are also important regulators of other immune responses including inflammation, allergy, infection, and tumors. Furthermore, they exert non-immune functions such as tissue repair and regeneration. In the periphery, Foxp3+ Treg have emerged as a highly heterogeneous cell population with distinct molecular and functional properties. Foxp3+ Treg mainly develop within the thymus where they receive instructive signals for their differentiation. Recent studies have revealed that thymic Treg are also heterogeneous with two distinct precursors that give rise to mature Foxp3+ Treg exhibiting non-overlapping regulatory activities characterized by a differential ability to control different types of autoimmune reactions. Furthermore, the thymic Treg cell pool is not only composed of newly developing Treg, but also contain a large fraction of recirculating peripheral cells. Here, we review the two pathways of thymic Treg cell differentiation and their potential impact on Treg activity in the periphery. We also summarize our current knowledge on recirculating peripheral Treg in the thymus.
Collapse
Affiliation(s)
- Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
47
|
Russler-Germain EV, Yi J, Young S, Nutsch K, Wong HS, Ai TL, Chai JN, Durai V, Kaplan DH, Germain RN, Murphy KM, Hsieh CS. Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. eLife 2021; 10:54792. [PMID: 33533717 PMCID: PMC7877908 DOI: 10.7554/elife.54792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Generation of tolerogenic peripheral regulatory T (pTreg) cells is commonly thought to involve CD103+ gut dendritic cells (DCs), yet their role in commensal-reactive pTreg development is unclear. Using two Helicobacter-specific T cell receptor (TCR) transgenic mouse lines, we found that both CD103+ and CD103- migratory, but not resident, DCs from the colon-draining mesenteric lymph node presented Helicobacter antigens to T cells ex vivo. Loss of most CD103+ migratory DCs in vivo using murine genetic models did not affect the frequency of Helicobacter-specific pTreg cell generation or induce compensatory tolerogenic changes in the remaining CD103- DCs. By contrast, activation in a Th1-promoting niche in vivo blocked Helicobacter-specific pTreg generation. Thus, these data suggest a model where DC-mediated effector T cell differentiation is 'dominant', necessitating that all DC subsets presenting antigen are permissive for pTreg cell induction to maintain gut tolerance.
Collapse
Affiliation(s)
- Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Shannon Young
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Katherine Nutsch
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Teresa L Ai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Vivek Durai
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, United States
| | - Daniel H Kaplan
- Department of Dermatology, Department of Immunology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Kenneth M Murphy
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, United States
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
48
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Wang H, Wang Z, Wu Q, Yuan Y, Cao W, Zhang X. Regulatory T cells in ischemic stroke. CNS Neurosci Ther 2021; 27:643-651. [PMID: 33470530 PMCID: PMC8111493 DOI: 10.1111/cns.13611] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of neuroinflammation, angiogenesis, and neuroplasticity are currently the hotspots of researches in ischemic stroke. Regulatory T cells (Tregs), a subset of T cells that control inflammatory and immune responses in the body, are closely related to the pathogenesis of ischemic stroke. They participate in the inflammatory response and neuroplasticity process of ischemic stroke by various mechanisms, such as secretion of anti‐inflammatory factors, inhibition of pro‐inflammatory factors, induction of cell lysis, production of the factors that promote neural regeneration, and modulation of microglial and macrophage polarization. However, it remains unclear whether Tregs play a beneficial or deleterious role in ischemic stroke and the effect of Tregs in different stages of ischemic stroke. Here, we discuss the dynamic changes of Tregs at various stages of experimental and clinical stroke, the potential mechanisms under Tregs in regulating stroke and the preclinical studies of Tregs‐related treatments, in order to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, PR China.,Hebei Vascular Homeostasis Key Laboratory, Shijiazhuang, Hebei, PR China
| |
Collapse
|
50
|
Almeida-Santos J, Bergman ML, Cabral IA, Demengeot J. Interruption of Thymic Activity in Adult Mice Improves Responses to Tumor Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2021; 206:978-986. [PMID: 33472908 DOI: 10.4049/jimmunol.2000626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
The thymus produces precursors of both conventional T cells (Tconv; also known as effector T cells) and regulatory T cells (Treg) whose interactions prevent autoimmunity while allowing efficient protective immune responses. Tumors express a composite of self-antigens and tumor-specific Ags and engage both Tconv and Treg. Along the aging process, the thymus involutes, and tumor prevalence increases, a correlation proposed previously to result from effector cell decline. In this work, we directly tested whether interruption of thymic activity in adult mice affects Foxp3-expressing Treg composition and function and alters tumor immune surveillance. Young adult mice, on two different genetic backgrounds, were surgically thymectomized (TxT) and analyzed or challenged 2 mo later. Cellular analysis revealed a 10-fold decrease in both Tconv and Treg numbers and a bias for activated cells. The persisting Treg displayed reduced stability of Foxp3 expression and, as a population, showed a compromised return to homeostasis upon induced perturbations. We next tested the growth of three tumor models from different tissue origins and/or presenting distinct degrees of spontaneous immunogenicity. In none of these conditions, adult TxT facilitated tumor growth. Rather, TxT enhanced the efficacy of antitumor immunotherapies targeting Treg and/or the immune checkpoint CTLA4, as evidenced by the increased frequency of responder mice and decreased intratumoral Treg to CD8+IFN-γ+ cell ratio. Together, our findings point to a scenario in which abrogation of thymic activities affects preferentially the regulatory over the ridding arm of the immune activities elicited by tumors and argues that higher prevalence of tumors with age cannot be solely attributed to thymic output decline.
Collapse
|