1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Nasiri F, Muhammadnejad S, Rahbarizadeh F. Effects of polybrene and retronectin as transduction enhancers on the development and phenotypic characteristics of VHH-based CD19-redirected CAR T cells: a comparative investigation. Clin Exp Med 2023; 23:2535-2549. [PMID: 36434173 DOI: 10.1007/s10238-022-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/15/2022] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor T cells (CAR T cells) have improved the prognosis of patients with certain hematologic malignancies. However, broader clinical application of this type of therapy is dependent on production protocols. We characterized VHH-based CD19-redirected CAR T cells generated using the transduction enhancers (TEs) polybrene or retronectin. The proliferation rate of activated T cells transduced using polybrene concentrations > 6 mg/mL decreased compared with untreated group. There was a direct relationship between polybrene concentration and transduction efficacy. Moreover, we demonstrated the proliferation of retronectin-transduced T cells increased in a dose-dependent manner (4-20 μg/mL). Whereas, different retronectin concentrations did not mediate a significant increase in T cell transduction rate. Moreover, lentiviral transduction rate was also dependent on the concentration of lentiviruses. At optimized TE concentrations, multiplicity of infection (MOI) of > 10 decreased living T cell transduction rate. Additionally, we demonstrated that CAR T cell phenotype is highly affected by TE type. Naïve T cell differentiation to central memory T cell was observed in the beginning of the expansion process and effector memory T cells became the predominant subset in the second week of expansion. Importantly, retronectin increased the proliferation of CAR T cells alongside medicating higher transduction rates, resulting in more naïve and central memory T cells. We demonstrated that a higher percentage of CAR T cells were generated using retronectin (with a less differentiated phenotype) making retronectin a more effective TE than polybrene for long-term CAR T cell processing in preclinical or clinical studies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Kim DH, Han SH, Go HJ, Kim DY, Kim JH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Antiviral activity of canine interferon lambda 3 expressed using a recombinant adenovirus against canine coronavirus, canine parvovirus, and canine distemper virus. Vet Res Commun 2022; 46:1363-1368. [PMID: 36155869 PMCID: PMC9511451 DOI: 10.1007/s11259-022-10000-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/07/2022] [Indexed: 10/27/2022]
Abstract
Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Hoon Han
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Da-Yoon Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea. .,KU Center for Animal Blood Medical Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea. .,Konkuk University Zoonotic Diseases Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.
| |
Collapse
|
4
|
Wang Y, Feng W, Liu P. Genotype-immunophenotype analysis reveals the immunogenomic subtype and prognosis of multiple myeloma. Carcinogenesis 2021; 41:1746-1754. [PMID: 32278317 DOI: 10.1093/carcin/bgaa037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 01/28/2023] Open
Abstract
Immune dysfunction plays an important role in tumour development, recurrence, therapeutic responses and overall survival (OS). Multiple myeloma (MM) is a clonal B-cell malignancy which characterized by anti-tumoural immune dysfunction. In this study, we analysed 28 tumour-immune-related pathways and calculated the immune pathway score through published microarray data from the Gene Expression Omnibus (GEO) data portal. A training set of 345 patients and a validation set of 214 patients with primary MM were chosen. We performed least absolute shrinkage and selection operator (LASSO) analysis to identify prognostic factors. Then, we used cluster analysis to divide patients into three immunogenomic subtypes, which named abnormal immune activated type, common type and anti-myeloma immune activated type. Log‑rank tests showed that anti-myeloma immune activated type had the best prognosis and abnormal immune activated type had the shortest OS (P = 0.000) and event-free survival (EFS) (P = 0.000). Multivariate Cox also indicated that the immunogenomic subtype was an independent predictor of OS (P = 0.001) and EFS (P = 0.000). We also analysed the characteristics and the immune-response patterns of different subtypes. Then, we established a mathematical model to classify patients in the validation set. In the validation set, patients with different immunogenomic subtypes also had a significantly different OS (P = 0.001) and EFS (P = 0.005). Our study explored tumour-immune-related pathways at a multi-dimensional level and found the immunogenomic subtype of MM. Potential mechanisms on the genetic level of how tumour-immunity influences the prognosis and therapeutic responses are provided. The immunogenomic subtype may be feasible for deciding clinical treatment in the future.
Collapse
Affiliation(s)
- Yue Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
6
|
Ioannidou K, Randin O, Semilietof A, Maby-El Hajjami H, Baumgaertner P, Vanhecke D, Speiser DE. Low Avidity T Cells Do Not Hinder High Avidity T Cell Responses Against Melanoma. Front Immunol 2019; 10:2115. [PMID: 31555299 PMCID: PMC6742971 DOI: 10.3389/fimmu.2019.02115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
The efficacy of T cells depends on their functional avidity, i. e., the strength of T cell interaction with cells presenting cognate antigen. The overall T cell response is composed of multiple T cell clonotypes, involving different T cell receptors and variable levels of functional avidity. Recently, it has been proposed that the presence of low avidity tumor antigen-specific CD8 T cells hinder their high avidity counterparts to protect from tumor growth. Here we analyzed human cytotoxic CD8 T cells specific for the melanoma antigen Melan-A/MART-1. We found that the presence of low avidity T cells did not result in reduced cytotoxicity of tumor cells, nor reduced cytokine production, by high avidity T cells. In vivo in NSG-HLA-A2 mice, the anti-tumor effect of high avidity T cells was similar in presence or absence of low avidity T cells. These data indicate that low avidity T cells are not hindering anti-tumor T cell responses, a finding that is reassuring because low avidity T cells are an integrated part of natural T cell responses.
Collapse
Affiliation(s)
- Kalliopi Ioannidou
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Olivier Randin
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Dominique Vanhecke
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| |
Collapse
|
7
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Bozhenko VK, Shramova EI, Shishkin AM, Ivanov AV, Khokhlova EV, Lebedin YS, Shkoporov AN. Characteristics of new monomolecular chimeric T-cell receptors to carcinoembryonic antigen. Bull Exp Biol Med 2013; 156:165-71. [PMID: 24319717 DOI: 10.1007/s10517-013-2302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We described two original genetic constructs encoding chimeric monomolecular T-cell receptors, where the effector T-cell receptor fragment was linked with the antigen-recognizing part consisting of two variable fragments of two different antibodies to carcinoembryonic antigen. Following transfection, these receptors were expressed on the cell surface and bound carcinoembryonic antigen. Human peripheral blood lymphocytes transfected with the above constructs demonstrated high cytotoxic activity against HCT116 cells expressing carcinoembryonic antigen.
Collapse
Affiliation(s)
- V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Ministry of Health of the Russian Federation; N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation; XEMA Company, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Itzhaki O, Levy D, Zikich D, Treves AJ, Markel G, Schachter J, Besser MJ. Adoptive T-cell transfer in melanoma. Immunotherapy 2013; 5:79-90. [PMID: 23256800 DOI: 10.2217/imt.12.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds a highly promising treatment approach for metastatic melanoma patients. Adoptive cell transfer (ACT) involves the ex vivo expansion of autologous antitumor reactive lymphocytes and their reinfusion into lymphodepleted patients, accompanied by IL-2 administration. ACT with tumor-infiltrating T lymphocytes demonstrates objective clinical responses in 50-72% of the patients, including 10-40% complete responses and was shown to produce durable disease control with long progression-free survival. Tumor-infiltrating T-lymphocyte ACT might even have curative potential as the vast majority of the complete responders are without any evidence of disease many years after treatment. Other adoptive transfer studies employ the genetic modification of T lymphocytes with genes encoding tumor-specific T cell receptors or antibody-based chimeric antigen receptors. These approaches opened numerous possibilities to treat cancers other than melanoma. In this article we will summarize the ACT strategies in melanoma, the new developments in this field and combinations with other therapies.
Collapse
Affiliation(s)
- Orit Itzhaki
- Ella Institute for Melanoma, Sheba Medical Center, 52621 Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Batus M, Waheed S, Ruby C, Petersen L, Bines SD, Kaufman HL. Optimal management of metastatic melanoma: current strategies and future directions. Am J Clin Dermatol 2013; 14:179-94. [PMID: 23677693 PMCID: PMC3913474 DOI: 10.1007/s40257-013-0025-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melanoma is increasing in incidence and remains a major public health threat. Although the disease may be curable when identified early, advanced melanoma is characterized by widespread metastatic disease and a median survival of less than 10 months. In recent years, however, major advances in our understanding of the molecular nature of melanoma and the interaction of melanoma cells with the immune system have resulted in several new therapeutic strategies that are showing significant clinical benefit. Current therapeutic approaches include surgical resection of metastatic disease, chemotherapy, immunotherapy, and targeted therapy. Dacarbazine, interleukin-2, ipilimumab, and vemurafenib are now approved for the treatment of advanced melanoma. In addition, new combination chemotherapy regimens, monoclonal antibodies blocking the programmed death-1 (PD-1)/PD-ligand 1 pathway, and targeted therapy against CKIT, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and other putative signaling pathways in melanoma are beginning to show promise in early-phase clinical trials. Further research on these modalities alone and in combination will likely be the focus of future clinical investigation and may impact the outcomes for patients with advanced melanoma.
Collapse
Affiliation(s)
- Marta Batus
- Rush University Melanoma Program and Departments of Medicine, General Surgery and Immunology and Microbiology, Rush University Medical Center, 1725 W. Harrison Street, Room 845, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
11
|
Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 2012; 61:953-62. [PMID: 22527245 PMCID: PMC11028843 DOI: 10.1007/s00262-012-1254-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/25/2012] [Indexed: 12/30/2022]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a relatively new but promising approach in the field of cancer immunotherapy. This therapeutic strategy is based on the genetic reprogramming of T cells with an artificial immune receptor that redirects them against targets on malignant cells and enables their destruction by exerting T cell effector functions. There has been an explosion of interest in the use of CAR T cells as an immunotherapy for cancer. In the pre-clinical setting, there has been a considerable focus upon optimizing the structural and signaling potency of the CAR while advances in bio-processing technology now mean that the clinical testing of these gene-modified T cells has become a reality. This review will summarize the concept of CAR-based immunotherapy and recent clinical trial activity and will further discuss some of the likely future challenges facing CAR-modified T cell therapies.
Collapse
Affiliation(s)
- Grazyna Lipowska-Bhalla
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Experimental Immunotherapy Group, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dominic G. Rothwell
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Shirakura Y, Mizuno Y, Wang L, Imai N, Amaike C, Sato E, Ito M, Nukaya I, Mineno J, Takesako K, Ikeda H, Shiku H. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice. Cancer Sci 2012; 103:17-25. [PMID: 21951605 PMCID: PMC11164177 DOI: 10.1111/j.1349-7006.2011.02111.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Adoptive cell therapy with lymphocytes that have been genetically engineered to express tumor-reactive T-cell receptors (TCR) is a promising approach for cancer immunotherapy. We have been exploring the development of TCR gene therapy targeting cancer/testis antigens, including melanoma-associated antigen (MAGE) family antigens, that are ideal targets for adoptive T-cell therapy. The efficacy of TCR gene therapy targeting MAGE family antigens, however, has not yet been evaluated in vivo. Here, we demonstrate the in vivo antitumor activity in immunodeficient non-obese diabetic/SCID/γc(null) (NOG) mice of human lymphocytes genetically engineered to express TCR specific for the MAGE-A4 antigen. Polyclonal T cells derived from human peripheral blood mononuclear cells were transduced with the αβ TCR genes specific for MAGE-A4, then adoptively transferred into NOG mice inoculated with MAGE-A4 expressing human tumor cell lines. The transferred T cells maintained their effector function in vivo, infiltrated into tumors, and inhibited tumor growth in an antigen-specific manner. The combination of adoptive cell therapy with antigen peptide vaccination enhanced antitumor activity, with improved multifunctionality of the transferred cells. These data suggest that TCR gene therapy with MAGE-A4-specific TCR is a promising strategy to treat patients with MAGE-A4-expressing tumors; in addition, the acquisition of multifunctionality in vivo is an important factor to predict the quality of the T-cell response during adoptive therapy with human lymphocytes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Combined Modality Therapy
- Cytotoxicity, Immunologic/immunology
- Esophageal Neoplasms/immunology
- Esophageal Neoplasms/therapy
- Female
- Flow Cytometry
- Genetic Therapy
- Genetic Vectors/therapeutic use
- HLA-A Antigens/genetics
- HLA-A Antigens/immunology
- Humans
- Immunoenzyme Techniques
- Immunotherapy, Adoptive
- Leukocytes, Mononuclear/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Retroviridae
- Transduction, Genetic
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
- Yoshitaka Shirakura
- Department of Cancer Vaccine, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ertl HCJ, Zaia J, Rosenberg SA, June CH, Dotti G, Kahn J, Cooper LJN, Corrigan-Curay J, Strome SE. Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer Res 2011; 71:3175-81. [PMID: 21531763 DOI: 10.1158/0008-5472.can-10-4035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cells that are genetically modified to express single-chain chimeric antigen receptors (CAR) have shown promise in early cancer immunotherapy clinical trials. Unfortunately, 2 recent deaths in cancer patients treated with CAR T cells have created some uncertainty on how to best mitigate patient risk, while continuing to advance this very promising therapeutic avenue. In order to address these concerns, the Recombinant DNA Advisory Committee (RAC) held a symposium, the objectives of which were to first review the reported treatment-associated toxicities and, second, to discuss methods for improving safety and efficacy. This report highlights the issues raised as part of this discussion, with a specific focus on protocols infusing CAR T cells. Because this was not a consensus conference, the opinions described should not be construed to represent those of any individual RAC member, the RAC as a body, conference participants, the National Institutes of Health, or the U.S. Food and Drug Administration.
Collapse
|
14
|
González-Martín A, Gómez L, Lustgarten J, Mira E, Mañes S. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res 2011; 71:5455-66. [PMID: 21715565 DOI: 10.1158/0008-5472.can-11-1687] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.
Collapse
Affiliation(s)
- Alicia González-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Okano S, Yonemitsu Y, Shirabe K, Kakeji Y, Maehara Y, Harada M, Yoshikai Y, Inoue M, Hasegawa M, Sueishi K. Provision of continuous maturation signaling to dendritic cells by RIG-I-stimulating cytosolic RNA synthesis of Sendai virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1828-39. [PMID: 21187441 DOI: 10.4049/jimmunol.0901641] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cell (DC)-based immunotherapy has potential for treating infections and malignant tumors, but the functional capacity of DC must be assessed in detail, especially maturation and Ag-specific CTL priming. Recent reports suggest that DC that are provided with continuous maturation signals in vivo after transfer into patients are required to elicit the full DC functions. We demonstrate in this study that the rSendai virus vector (SeV) is a novel and ideal stimulant, providing DC with a continuous maturation signal via viral RNA synthesis in the cytosol, resulting in full maturation of monocyte-derived DC(s). Both RIG-I-dependent cytokine production and CD4 T cell responses to SeV-derived helper Ags are indispensable for overcoming regulatory T cell suppression to prime melanoma Ag recognized by T cell-1-specific CTL in the regulatory T cell abundant setting. DC stimulated via cytokine receptors, or TLRs, do not show these functional features. Therefore, SeV-infected DC have the potential for DC-directed immunotherapy.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Viral/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Transformed
- Coculture Techniques
- Cytosol/immunology
- Cytosol/metabolism
- Cytosol/virology
- Cytotoxicity Tests, Immunologic
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/physiology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Dendritic Cells/virology
- Epitopes, T-Lymphocyte/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Humans
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Receptors, Immunologic
- Sendai virus/genetics
- Sendai virus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/virology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Shinji Okano
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Focus on adoptive T cell transfer trials in melanoma. Clin Dev Immunol 2010; 2010:260267. [PMID: 21234353 PMCID: PMC3018069 DOI: 10.1155/2010/260267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.
Collapse
|
17
|
Jeras M, Bricl I, Zorec R, Švajger U. Induction/engineering, detection, selection, and expansion of clinical-grade human antigen-specific CD8 cytotoxic T cell clones for adoptive immunotherapy. J Biomed Biotechnol 2010; 2010:705215. [PMID: 20224660 PMCID: PMC2836183 DOI: 10.1155/2010/705215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 01/28/2010] [Indexed: 02/02/2023] Open
Abstract
Adoptive transfer of effector antigen-specific immune cells is becoming a promising treatment option in allogeneic transplantation, infectious diseases, cancer, and autoimmune disorders. Within this context, the important role of CD8+ cytotoxic T cells (CTLs) is objective of intensive studies directed to their in vivo and ex vivo induction, detection, selection, expansion, and therapeutic effectiveness. Additional questions that are being addressed by the scientific community are related to the establishment and maintenance of their longevity and memory state as well as to defining critical conditions underlying their transitions between discrete, but functionally different subtypes. In this article we review and comment latest approaches and techniques used for preparing large amounts of antigen-specific CTLs, suitable for clinical use.
Collapse
Affiliation(s)
- Matjaž Jeras
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
- Cell Engineering Laboratory, Celica, Biomedical Center, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Irena Bricl
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Cell Engineering Laboratory, Celica, Biomedical Center, Technology Park 24, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Urban Švajger
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-51. [PMID: 20179677 DOI: 10.1038/mt.2010.24] [Citation(s) in RCA: 1937] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In an attempt to treat cancer patients with ERBB2 overexpressing tumors, we developed a chimeric antigen receptor (CAR) based on the widely used humanized monoclonal antibody (mAb) Trastuzumab (Herceptin). An optimized CAR vector containing CD28, 4-1BB, and CD3zeta signaling moieties was assembled in a gamma-retroviral vector and used to transduce autologous peripheral blood lymphocytes (PBLs) from a patient with colon cancer metastatic to the lungs and liver, refractory to multiple standard treatments. The gene transfer efficiency into autologous T cells was 79% CAR(+) in CD3(+) cells and these cells demonstrated high-specific reactivity in in vitro coculture assays. Following completion of nonmyeloablative conditioning, the patient received 10(10) cells intravenously. Within 15 minutes after cell infusion the patient experienced respiratory distress, and displayed a dramatic pulmonary infiltrate on chest X-ray. She was intubated and despite intensive medical intervention the patient died 5 days after treatment. Serum samples after cell infusion showed marked increases in interferon-gamma (IFN-gamma), granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and IL-10, consistent with a cytokine storm. We speculate that the large number of administered cells localized to the lung immediately following infusion and were triggered to release cytokine by the recognition of low levels of ERBB2 on lung epithelial cells.
Collapse
|
19
|
Chang LJ. Lentiviral vector transduction of dendritic cells for novel vaccine strategies. Methods Mol Biol 2010; 614:161-71. [PMID: 20225043 DOI: 10.1007/978-1-60761-533-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that induce primary and memory immune response. Patients with chronic infections or cancer often display DC dysfunctions. Modification of DCs or DC progenitors in vitro may overcome the problems with defective DCs in vivo. Lentiviral vector is highly efficient in transducing hematopoietic cells including DCs. Examples of lentiviral modification of DCs with immune modulatory genes and analysis of antigen-specific T cells to demonstrate enhanced immune effector functions of DCs will be introduced.
Collapse
Affiliation(s)
- Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Ghani K, Wang X, de Campos-Lima PO, Olszewska M, Kamen A, Rivière I, Caruso M. Efficient human hematopoietic cell transduction using RD114- and GALV-pseudotyped retroviral vectors produced in suspension and serum-free media. Hum Gene Ther 2009; 20:966-74. [PMID: 19453219 DOI: 10.1089/hum.2009.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retroviral vectors derived from the Moloney murine leukemia virus have been used in successful and promising gene therapy clinical trials. However, platforms for their large-scale production must be further developed. As a proof of principle, we reported the generation of a packaging cell line that produces amphotropic retroviral vectors in suspension and serum-free medium (SFM). In the present study, we have constructed and characterized two retroviral packaging cell lines designed for gene transfer in hematopoietic cells. These cell lines grow in suspension and SFM, and produce high-titer RD114- and gibbon ape leukemia virus (GALV)-pseudotyped vectors for a 3-month culture period. Viral particles released are as robust during repeated freeze-thaw cycles and on thermal inactivation at 37 degrees C as their counterparts produced in cells cultured adherently with serum. We also show that RD114- and GALV-pseudotyped vectors produced in suspension and SFM efficiently transduce human lymphocytes and hematopoietic stem cells. As these retroviral packaging cell lines distinctively maintain high vector titers while growing in suspension and SFM, we conclude that these cell lines are uniquely suitable for large-scale clinical-grade vector production for late-phase clinical trials involving gene transfer into hematopoietic cells.
Collapse
Affiliation(s)
- Karim Ghani
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, Kato I. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 2009; 69:9003-11. [PMID: 19903853 DOI: 10.1158/0008-5472.can-09-1450] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy using lymphocytes genetically engineered to express tumor antigen-specific TCRs is an attractive strategy for treating patients with malignancies. However, there are potential drawbacks to this strategy: mispairing of the introduced TCR alpha/beta chains with the endogenous TCR subunits and competition of CD3 molecules between the introduced and endogenous TCRs can impair cell surface expression of the transduced TCR, resulting in insufficient function and potential generation of autoreactive T cells. In addition, the risk of tumor development following the infusion of cells with aberrant vector insertion sites increases with the vector copy number in the transduced cells. In this study, we developed retroviral vectors encoding both small interfering RNA constructs that specifically down-regulate endogenous TCR and a codon-optimized, small interfering RNA-resistant TCR specific for the human tumor antigens MAGE-A4 or WT1. At low copy numbers of the integrated vector, the transduced human lymphocytes exhibited high surface expression of the introduced tumor-specific TCR and reduced expression of endogenous TCRs. In consequence, the vector-transduced lymphocytes showed enhanced cytotoxic activity against antigen-expressing tumor cells. Therefore, our novel TCR gene therapy may open a new gate for effective immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Sachiko Okamoto
- Center for Cell and Gene Therapy, Takara Bio, Inc., Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:5563-74. [PMID: 19843940 PMCID: PMC6292203 DOI: 10.4049/jimmunol.0900447] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To generate chimeric Ag receptors (CARs) for the adoptive immunotherapy of cancer patients with ErbB2-expressing tumors, a single-chain Ab derived from the humanized mAb 4D5 Herceptin (trastuzumab) was initially linked to T cell signaling domains derived from CD28 and the CD3zeta to generate a CAR against ErbB2. Human PBLs expressing the 4D5 CAR demonstrated Ag-specific activities against ErbB2(+) tumors. However, a gradual loss of transgene expression was noted for PBLs transduced with this 4D5 CAR. When the CD3zeta signaling domain of the CAR was truncated or mutated, loss of CAR expression was not observed, suggesting that the CD3zeta signaling caused the transgene decrease, which was supported by the finding that T cells expressing 4D5 CARs with CD3zeta ITAM mutations were less prone to apoptosis. By adding 4-1BB cytoplasmic domains to the CD28-CD3zeta signaling moieties, we found increased transgene persistence in 4D5 CAR-transduced PBLs. Furthermore, constructs with 4-1BB sequences demonstrated increased cytokine secretion and lytic activity in 4D5 CAR-transduced T cells. More importantly, PBLs expressing this new version of the 4D5 CAR could not only efficiently lyse the autologous fresh tumor digests, but they could strongly suppress tumor growth in a xenogenic mouse model.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/therapeutic use
- Cell Line
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Coculture Techniques
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, SCID
- Protein Structure, Tertiary/genetics
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Transduction, Genetic
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yangbing Zhao
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiong J. Wang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shicheng Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James N. Kochenderfer
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaosong Zhong
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michel Sadelain
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Hu Z, Tan W, Zhang L, Liang Z, Xu C, Su H, Lu J, Gao J. A novel immunotherapy for superficial bladder cancer by intravesical immobilization of GM-CSF. J Cell Mol Med 2009; 14:1836-44. [PMID: 19627402 PMCID: PMC3829043 DOI: 10.1111/j.1582-4934.2009.00818.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In situ gene therapy with granulocyte-macrophage colony-stimulating factor (GM-CSF) was demonstrated to successfully inhibit tumour cell growth in a mouse orthotopic bladder cancer model, but suffered from several disadvantages, such as limited efficiency for gene delivery, low expression efficiency of the transgene and the safety concern resulting from viral vector. In order to address the limits, a novel immunotherapy was developed attentively through immobilization of streptavidin-tagged bioactive GM-CSF on the biotinylated mucosal surface of bladder wall on the basis of both the unique property of streptavidin (SA) to bind rapidly and almost irreversibly to any biotin-linked molecule and the outstanding ability of biotin to be incorporated easily into the proteins on the cell surface. The mouse orthotopic model of MB49 bladder cancer was used to evaluate the feasibility and efficacy of the novel immunotherapy performed twice a week for 3 weeks. Briefly, 1 day after intravesical implantation of 1 x 10(6) MB49 tumour cells in C57BL/6 mouse, 100 microl of 1 mg/ml NHS-PEO4-biotin was instilled and allowed to incubate in the bladder for 30 min., followed by intravesical instillation of 100 microl of 0.15 mg/ml SA-GM-CSF bifunctional fusion protein and incubation for 1 hr. SA-GM-CSF fusion protein was shown to be immobilized efficiently and durably on the biotinylated mucosal surface of bladder wall. The bladder cancer incidence was dramatically decreased from 100% in the control group to 37.5% in the SA-GM-CSF group. Importantly, 70% of the SA-GM-CSF-cured mice were protected against a second intravesical wild-type MB49 tumour challenge, indicating that an effective anti-tumour immunity was generated against MB49 bladder cancer. Thus, the novel immunotherapy may be an attractive therapeutic alternative and should be evaluated in bladder cancer patients.
Collapse
Affiliation(s)
- Zhiming Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Multiple antigen-targeted immunotherapy with alpha-galactosylceramide-loaded and genetically engineered dendritic cells derived from embryonic stem cells. J Immunother 2009; 32:219-31. [PMID: 19242378 DOI: 10.1097/cji.0b013e318194b63b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Numerous tumor-associated antigens (TAA) have been identified and their use in immunotherapy is considered to be promising. For TAA-based immunotherapy to be broadly applied as standard anticancer medicine, methods for active immunization should be improved. In the present study, we demonstrated the efficacy of multiple TAA-targeted dendritic cell (DC) vaccines and also the additive effects of loading alpha-galactosylceramide to DC using mouse melanoma models. On the basis of previously established methods to generate DC from mouse embryonic stem cells (ES-DC), 4 kinds of genetically modified ES-DC, which expressed the melanoma-associated antigens, glypican-3, secreted protein acidic and rich in cysteine, tyrosinase-related protein-2, or gp100 were generated. Anticancer effects elicited by immunization with the ES-DC were assessed in preventive and also therapeutic settings in the models of peritoneal dissemination and spontaneous metastasis to lymph node and lung. The in vivo transfer of a mixture of 3 kinds of TAA-expressing ES-DC protected the recipient mice from melanoma cells more effectively than the transfer of ES-DC expressing single TAA, thus demonstrating the advantage of multiple as compared with single TAA-targeted immunotherapy. Loading ES-DC with alpha-galactosylceramide further enhanced the anticancer effects, suggesting that excellent synergic effects of TAA-specific cytotoxic T lymphocytes and natural killer T cells against metastatic melanoma can be achieved by using genetically modified ES-DC. With the aid of advancing technologies related to pluripotent stem cells, induced pluripotent stem cells, and ES cells, clinical application of DC highly potent in eliciting anticancer immunity will be realized in the near future.
Collapse
|
25
|
Abstract
Innovative approaches to induce a strong immune response are key to the success of immunotherapy. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) equipped with co-stimulatory, adhesion, and major histocompatibility complex (MHC) molecules needed for initiation and reactivation of the immune response. DCs are able to initiate and stimulate both innate and adaptive immune responses and, by secretion of cytokines, chemokines, and expression of regulatory molecules, to shape the adaptive immune response toward a long-lasting memory immunity. DCs from the peripheral blood of immune-compromised patients, however, often display an immature phenotype with defective functions. This emphasizes the importance and potential of engineering antigen-specific DCs in vitro. A state-of-the-art approach to overcome the prevailing immune dysfunction(s) in patients is to engineer DCs or DC progenitors to generate fully functional DCs for the modification of host immunity. Lentiviral vectors (LVs) are highly efficient gene transfer vehicles for engineering DC functions. Examples oflentiviral vectors encoding immune-modulatory genes and useful functional assays for the analysis of effector immune cell response are described in this chapter.
Collapse
Affiliation(s)
- Shuhong Han
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | | |
Collapse
|
26
|
Abstract
A surge in interest in the chemokine–chemokine receptor network is probably related to the expanding roles that chemokines have now been identified to play in human biology, particularly immunity. Specific tissue microenvironments express distinct chemokines and both hematopoietic and nonhematopoietic cells have receptor expression profiles that permit the coordinated trafficking and organization of cells within these specific tissues. Since the chemokine network plays critical roles in both the function of the immune system and the progression of cancer, it is an attractive target for therapeutic manipulation. This review will focus on chemokine and chemokine receptor network-related therapeutic interventions that utilize host–tumor interactions particularly involving the immune system.
Collapse
Affiliation(s)
- Trina J Stewart
- Cancer Immunology Research Program, The Peter MacCallum Cancer Centre, Level 2 Smorgon Family Building, St Andrews Place, East Melbourne, Victoria, 3002, Australia
| | - Mark J Smyth
- Cancer Immunology Research Program, The Peter MacCallum Cancer Centre, Level 2 Smorgon Family Building, St Andrews Place, East Melbourne, Victoria, 3002, Australia
| |
Collapse
|
27
|
Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299-308. [PMID: 18354418 PMCID: PMC2553205 DOI: 10.1038/nrc2355] [Citation(s) in RCA: 1198] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using autologous tumour-infiltrating lymphocytes has emerged as the most effective treatment for patients with metastatic melanoma and can mediate objective cancer regression in approximately 50% of patients. The use of donor lymphocytes for ACT is an effective treatment for immunosuppressed patients who develop post-transplant lymphomas. The ability to genetically engineer human lymphocytes and use them to mediate cancer regression in patients, which has recently been demonstrated, has opened possibilities for the extension of ACT immunotherapy to patients with a wide variety of cancer types and is a promising new approach to cancer treatment.
Collapse
Affiliation(s)
- Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
28
|
Absence of retroviral vector-mediated transformation of gene-modified T cells after long-term engraftment in mice. Gene Ther 2008; 15:1056-66. [DOI: 10.1038/gt.2008.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
|
30
|
Liu S, Breiter DR, Zheng G, Chen A. Enhanced antitumor responses elicited by combinatorial protein transfer of chemotactic and costimulatory molecules. THE JOURNAL OF IMMUNOLOGY 2007; 178:3301-6. [PMID: 17312181 DOI: 10.4049/jimmunol.178.5.3301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thus far, immunotherapies based on one or a few immunostimulatory molecules have shown limited antitumor efficacy. This highlights the need to use multiple immunostimulatory molecules, to target different immune cells, including immunosuppressive cells, simultaneously. Consequently, in this study, we delivered intratumorally via protein transfer four molecules, including the chemotactic molecules secondary lymphoid tissue chemokine and Fas ligand and the costimulatory molecules 4-1BBL and TNF-related activation-induced cytokine. Secondary lymphoid tissue chemokine and Fas ligand together can attract an array of immune cells and induce apoptosis in CD4(+)CD25(+) regulatory T cells (Treg), whereas 4-1BBL and TRANCE together can stimulate T cells and dendritic cells (DCs). We show that the transfer of all four molecules increases tumor-infiltrating neutrophils, DCs, and CD4(+) and CD8(+) T cells and decreases intratumoral Treg. We show that the treatment favors the generation of a Th1 cytokine milieu at the tumor site, which is attributed not only to an increase in IL-12-producting DCs and IFN-gamma-producing CD8(+) T cells, but also to a decrease in IL-10-producing Treg. Importantly, in the L5178Y lymphoma model, we show that compared with transfer of the chemotactic molecules alone or the costimulatory molecules alone, transfer of all four molecules demonstrates stronger antitumor responses against established tumors. Furthermore, we show that the antitumor responses elicited by transfer of all four molecules are mediated by long-term, systemic antitumor immunity. Hence, this study demonstrates for the first time that combinatorial use of chemotactic and costimulatory molecules provides a useful strategy for enhancing antitumor responses.
Collapse
Affiliation(s)
- Shanrong Liu
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Rockford, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | | | | | | |
Collapse
|
31
|
Liu S, Foster BA, Chen T, Zheng G, Chen A. Modifying Dendritic Cells via Protein Transfer for Antitumor Therapeutics. Clin Cancer Res 2007; 13:283-91. [PMID: 17200367 DOI: 10.1158/1078-0432.ccr-06-1913] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The modification of therapeutic dendritic cells (DC) with various immunostimulatory molecules represents a useful means for improving the antitumor efficacy of DC transfer-based immunotherapy. We have evaluated the feasibility of modifying therapeutic DCs with multiple immunostimulatory molecules using a time-efficient, protein transfer (or protein "painting")-based method. EXPERIMENTAL DESIGN Bone marrow-derived DCs were painted with either control protein human IgG (hIgG) or three immunostimulatory molecules, SLC, 4-1BBL, and TRANCE (the triad protein). Painted DCs were injected intratumorally into mice bearing established tumors. Subsequently, the capacities of painted DCs to migrate to the draining lymph nodes, recruit the host T cells, promote Th1 cytokine responses, and elicit therapeutic antitumor responses were evaluated. RESULTS The triad protein transfer yields a uniform population of DCs that coexpress all three of the proteins. Compared with the hIgG-painted DCs, the triad protein-painted DCs migrate more efficiently to the draining lymph nodes and show enhanced capabilities to induce T cell infiltration of tumors and to promote Th1 cytokine responses in vivo. Furthermore, in both the EG.7 and TRAMP-C2 tumor models, compared with the DCs painted with hIgG or only one of the three proteins, the triad protein-painted DCs, upon adoptive transfer, elicit stronger therapeutic responses against established tumors. Importantly, the antitumor responses of the triad protein-painted DCs are mediated by systemic antitumor immunity. CONCLUSIONS This study establishes, for the first time, the feasibility of optimizing DC transfer-based immunotherapy via combinatorial protein transfer of therapeutic DCs with an array of immunostimulatory molecules.
Collapse
Affiliation(s)
- Shanrong Liu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois 61107, USA
| | | | | | | | | |
Collapse
|
32
|
Daga A, Orengo AM, Gangemi RMR, Marubbi D, Perera M, Comes A, Ferrini S, Corte G. Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 2007; 121:1756-63. [PMID: 17582604 DOI: 10.1002/ijc.22901] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most tumors of the central nervous system, especially glioblastoma, are refractory to treatment and invariably lethal. The aim of this study was to assess the ability of different interleukins (IL), IL-2, IL-12 and IL-21, produced by transduced glioma cells to activate an immune response and trigger intracranial tumor rejection. Such experiments were performed by the use of a slow-growing clone of GL261 (GL D2-60) that was used as orthotopic glioma model. Using GL D2-60-transduced cells, all cytokines elicited an immune response against the tumor. Most notably 100% of the animals receiving a primary implant of IL-21-transduced cells rejected the implant, and 76% of these animals survived to a subsequent rechallenge with GL261 parental cells, while the other transduced cytokine genes were not as effective. Rejection responses were also obtained by admixing wild-type tumor cells with IL-21-producing GL D2-60 cells, indicating a local bystander effect of IL-21. More importantly, IL-21-secreting GL D2-60 cells or 1 microg of rIL-21 protein stereotactically injected into established GL D2-60 tumors were able to trigger glioblastoma rejection in 90 and 77% of mice, respectively. Again most of these mice survived to GL261 rechallenge. Immune mice showed antibody responses to glioma antigens, predominantly involving IgG2a and IgG2b isotypes, which mediated complement- or cell-dependent glioma cell lysis. Antibody responses were crucial for glioma immunotherapy by IL-21-secreting GL D2-60 cells, as immunotherapy was uneffective in syngeneic microMT B-cell-deficient mice. These results suggest that IL-21 should be considered as a suitable candidate for glioma immunotherapy by local delivery.
Collapse
Affiliation(s)
- Antonio Daga
- Department of Translational Oncology, IST-National Institute for Cancer Research, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although the philosophy of management of patients with chronic lymphocytic leukaemia (CLL) has been altered with the advent of fludarabine-based therapies, impact on long-term survival is unclear and a significant proportion of patients will develop resistance to fludarabine. Similar to other haematological malignancies, a potential for 'cure' is likely to be achieved only if 'high-quality' complete remissions (CRs) are achieved. Treatment options for patients who develop resistance to fludarabine continue to be limited, with only a proportion obtaining a response (usually not CRs) with salvage therapies. This review summarises novel therapies that are being evaluated in patients with CLL, specifically those targeting the antiapoptotic Bcl-2 family of proteins and receptors (e.g., CD40, CD80, HLA-DR) involved in mediating survival signals from the microenvironment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- B7-1 Antigen/immunology
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- HLA-DR Antigens/pharmacology
- HLA-DR Antigens/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Nitrophenols
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/therapeutic use
- Piperazines
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Signal Transduction/drug effects
- Sulfonamides
- Thionucleotides/genetics
- Thionucleotides/metabolism
- Thionucleotides/therapeutic use
Collapse
Affiliation(s)
- Karen W L Yee
- Department of Leukaemia, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Naujokat C, Berges C, Höh A, Wieczorek H, Fuchs D, Ovens J, Miltz M, Sadeghi M, Opelz G, Daniel V. Proteasomal chymotrypsin-like peptidase activity is required for essential functions of human monocyte-derived dendritic cells. Immunology 2006; 120:120-32. [PMID: 17083604 PMCID: PMC2265869 DOI: 10.1111/j.1365-2567.2006.02487.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway is the principal system for extralysosomal protein degradation in eukaryotic cells, and is essential for the regulation and maintenance of basic cellular processes, including differentiation, proliferation, cell cycling, gene transcription and apoptosis. The 26S proteasome, a large multicatalytic protease complex, constitutes the system's proteolytic core machinery that exhibits different proteolytic activities residing in defined proteasomal subunits. We have identified proteasome inhibitors - bortezomib, epoxomicin and lactacystin - which selectively inhibit the proteasomal beta5 subunit-located chymotrypsin-like peptidase activity in human monocyte-derived dendritic cells (DCs). Inhibition of proteasomal chymotrypsin-like peptidase activity in immature and mature DCs impairs the cell-surface expression of CD40, CD86, CD80, human leucocyte antigen (HLA)-DR, CD206 and CD209, induces apoptosis, and impairs maturation of DCs, as demonstrated by decreased cell-surface expression of CD83 and lack of nuclear translocation of RelA and RelB. Inhibition of chymotrypsin-like peptidase activity abrogates macropinocytosis and receptor-mediated endocytosis of macromolecular antigens in immature DCs, and inhibits the synthesis of interleukin (IL)-12p70 and IL-12p40 in mature DCs. As a functional consequence, DCs fail to stimulate allogeneic CD4(+) and CD8(+) T cells and autologous CD4(+) T cells sufficiently in response to inhibition of chymotrypsin-like peptidase activity. Thus, proteasomal chymotrypsin-like peptidase activity is required for essential functions of human DCs, and inhibition of proteasomal chymotrypsin-like peptidase activity by selective inhibitors, or by targeting beta5 subunit expression, may provide a novel therapeutic strategy for suppression of deregulated and unwanted immune responses.
Collapse
Affiliation(s)
- Cord Naujokat
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tagawa M, Kawamura K, Shimozato O, Ma G, Li Q, Suzuki N, Shimada H, Ochiai T. Virology- and immunology-based gene therapy for cancer. Cancer Immunol Immunother 2006; 55:1420-5. [PMID: 16691360 PMCID: PMC11030265 DOI: 10.1007/s00262-006-0173-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Current strategies for cancer gene therapy consist mainly of direct inhibition of tumor cell growth and activation of systemic host defense mechanisms. Conventional chemotherapy and radiotherapy, even considered to be temporally suppressing tumor growth, suppress immune responses; therefore, we examined potential clinical feasibility of virus-mediated tumor destruction, which can rather enhance immunity. We showed that human tumors were more susceptible to adenoviruses (Ad) in which the E1A expression was controlled by a putative tumor promoter than normal cells, and that a replication of the Ad was greater in tumor cells than in normal cells. We also demonstrated that the intratumoral injection of the Ad bearing a tumor promoter inhibited the subsequent tumor growth in vivo. The E1A expression was detected in the tumors injected with the Ad but not in non-tumorous tissues of the same mice. The Ad modified to show the regulated E1A expression is thereby oncolytic in nature. Antitumor immune responses are initiated after the acquisition of putative tumor antigen(s) by dendritic cells (DCs); therefore, enhanced antigen presentation is a crucial step for the early phase of cell-mediated immunity. Destruction of tumors can release the tumor antigens and DCs come to recognize them thereafter. We found that the stimulation of Fas expressed on DCs with Fas ligand (FasL) did not induce apoptosis of DCs but rather enhanced the antigen presentation. Activation of DCs induced production of a number of cytokines, and we showed that the interleukin-12 family secreted from tumors could induce systemic antitumor immunity. We presume that the administration of oncolytic Ad, which can destroy local tumors and subsequently make the putative tumor antigen(s) released from the tumors, stimulation of DCs with the Fas/FasL signal pathway and secretion of DCs-derived cytokines coordinately produce synergistic antitumor effects and that a combinatory application of these procedures can be a possible therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Masatoshi Tagawa
- Division of Pathology, Chiba Cancer Center Research Institute, 666-2 Nitona, Chiba 260-8717, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
37
|
Schirmbeck R, Riedl P, Kupferschmitt M, Wegenka U, Hauser H, Rice J, Kröger A, Reimann J. Priming Protective CD8 T Cell Immunity by DNA Vaccines Encoding Chimeric, Stress Protein-Capturing Tumor-Associated Antigen. THE JOURNAL OF IMMUNOLOGY 2006; 177:1534-42. [PMID: 16849460 DOI: 10.4049/jimmunol.177.3.1534] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA vaccines encoding heat shock protein (hsp)-capturing, chimeric peptides containing antigenic determinants of the tumor-associated Ag (TAA) gp70 (an envelope protein of endogenous retrovirus) primed stable, specific, and tumor-protective CD8 T cell immunity. Expression of gp70 transcripts was detectable in most normal tissues but was particularly striking in some (but not all) tumor cell lines tested (including the adenocarcinoma cell line CT26). An approximately 200 residue gp70 fragment or its L(d)-binding antigenic AH1 peptide cloned in-frame behind an hsp-capturing (cT(272)) or noncapturing (T(60)) N-terminal large SV40 tumor Ag sequence was expressed as either hsp-binding or -nonbinding chimeric Ags. Only hsp-capturing, chimeric fusion proteins were expressed efficiently in transfected cell lines and primed TAA-specific CD8 T cell immunity. This immunity mediated protection in the CT26 and mKSA models. A vaccination strategy based on delivering antigenic, hsp-associated TAA fragments can thus prime protective CD8 T cell immunity even if these TAA are of low intrinsic immunogenicity.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/prevention & control
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line
- Cell Line, Tumor
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/prevention & control
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Glycoproteins/immunology
- Heat-Shock Proteins/administration & dosage
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/immunology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/prevention & control
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutant Chimeric Proteins/administration & dosage
- Mutant Chimeric Proteins/genetics
- Mutant Chimeric Proteins/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
|
38
|
Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T. Antitumor Activity of IFN-λ in Murine Tumor Models. THE JOURNAL OF IMMUNOLOGY 2006; 176:7686-94. [PMID: 16751416 DOI: 10.4049/jimmunol.176.12.7686] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IFN-lambda 1, -lambda 2 and -lambda 3 have been discovered as the latest members of the class II cytokine family and shown to possess antiviral activity. Murine B16 melanoma and Colon26 cancer cells were transduced with mouse IFN-lambda to determine whether IFN-lambda possesses antitumor activity. Overexpression of IFN-lambda induced cell surface MHC class I expression and Fas/CD95 Ag, induced significant caspase-3/7 activity, and increased p21(Waf1/Cip1) and dephosphorylated Rb (Ser(780)) in B16 cells in vitro. IFN-lambda expression in tumor cell lines markedly inhibited s.c. and metastatic tumor formation in vivo compared with mock transfections (p < 0.05). Moreover, IFN-lambda expression induced lymphocytic infiltrates, and an Ab-mediated immune cell depletion assay showed that NK cells were critical to IFN-lambda-mediated tumor growth inhibition. Hydrodynamic injection of IFN-lambda cDNA successfully targeted liver metastatic foci of Colon26 cells, and moderately decreased the mortality of mice with tumors. IFN-lambda overexpression in the liver increased NK/NKT cells and enhanced their tumor-killing activity, and suggested the activation of innate immune responses. Thus, IFN-lambda induced both tumor apoptosis and NK cell-mediated immunological tumor destruction through innate immune responses. These findings suggested that local delivery of IFN-lambda might prove a useful adjunctive strategy in the clinical treatment of human malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- COS Cells
- Cell Line, Tumor
- Chlorocebus aethiops
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/physiology
- Cytotoxicity, Immunologic
- Genetic Vectors
- Growth Inhibitors/physiology
- Interferon-gamma/administration & dosage
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymphocyte Count
- Male
- Melanoma, Experimental
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NIH 3T3 Cells
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/prevention & control
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Atsuko Sato
- Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Tochigi, Japan
| | | | | | | | | |
Collapse
|
39
|
Nukiwa M, Andarini S, Zaini J, Xin H, Kanehira M, Suzuki T, Fukuhara T, Mizuguchi H, Hayakawa T, Saijo Y, Nukiwa T, Kikuchi T. Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur J Immunol 2006; 36:1019-27. [PMID: 16525992 DOI: 10.1002/eji.200535549] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fractalkine (CX3CL1) is a unique membrane-bound CX3C chemokine that serves as a potent chemoattractant for lymphocytes. The hypothesis of this study is that dendritic cells (DC) genetically modified ex vivo to overexpress fractalkine would enhance the T cell-mediated cellular immune response with a consequent induction of anti-tumor immunity to suppress tumor growth. To prove this hypothesis, established tumors of different mouse cancer cells (B16-F10 melanoma, H-2b, and Colon-26 colon adenocarcinoma, H-2d) were treated with intratumoral injection of bone marrow-derived DC that had been modified in vitro with an RGD fiber-mutant adenovirus vector expressing mouse fractalkine (Ad-FKN). In both tumor models tested, treatment of tumor-bearing mice with Ad-FKN-transduced DC gave rise to a significant suppression of tumor growth along with survival advantages in the treated mice. Immunohistochemical analysis of tumors treated with direct injection of Ad-FKN-transduced DC demonstrated that the treatment prompted CD8+ T cells and CD4+ T cells to accumulate in the tumor milieu, leading to activation of immune-relevant processes. Consistent with the finding, the intratumoral administration of Ad-FKN-transduced DC evoked tumor-specific cytotoxic T lymphocytes, which ensued from in vivo priming of Th1 immune responses in the treated host. In addition, the anti-tumor effect provided by intratumoral injection of Ad-FKN-transduced DC was completely abrogated in CD4+ T cell-deficient mice as well as in CD8+ T cell-deficient mice. These results support the concept that genetic modification of DC with a recombinant fractalkine adenovirus vector may be a useful strategy for cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Mio Nukiwa
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huarte E, Larrea E, Hernández-Alcoceba R, Alfaro C, Murillo O, Arina A, Tirapu I, Azpilicueta A, Hervás-Stubbs S, Bortolanza S, Pérez-Gracia JL, Civeira MP, Prieto J, Riezu-Boj JI, Melero I. Recombinant adenoviral vectors turn on the type I interferon system without inhibition of transgene expression and viral replication. Mol Ther 2006; 14:129-38. [PMID: 16627004 DOI: 10.1016/j.ymthe.2006.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/26/2006] [Accepted: 02/14/2006] [Indexed: 01/12/2023] Open
Abstract
Recombinant adenovirus administration gives rise to transgene-independent effects caused by the ability of the vector to activate innate immunity mechanisms. We show that recombinant adenoviruses encoding reporter genes trigger IFN-alpha and IFN-beta transcription from both plasmacytoid and myeloid mouse dendritic cells. Interestingly, IFN-beta and IFN-alpha5 are the predominant transcribed type I IFN genes both in vitro and in vivo. In human peripheral blood leukocytes type I IFNs are induced by adenoviral vectors, with a preponderance of IFN-beta together with IFN-alpha1 and IFN-alpha5 subtypes. Accordingly, functional type I IFN is readily detected in serum samples from human cancer patients who have been treated intratumorally with a recombinant adenovirus encoding thymidine kinase. Despite inducing functional IFN-alpha release in both mice and humans, gene transfer by recombinant adenoviruses is not interfered with by type I IFNs either in vitro or in vivo. Moreover, IFN-alpha does not impair replication of wild-type adenovirus. As a consequence, cancer gene therapy strategies with defective or replicative-competent adenoviruses are not expected to be hampered by the effect of the type I IFNs induced by the vector itself. However, type I IFN might modulate antitumor and antiadenoviral immune responses and thus influence the outcome of gene immunotherapy.
Collapse
Affiliation(s)
- Eduardo Huarte
- Center for Applied Medical Research, School of Medicine, and University Clinic, University of Navarra, Avenida Pio XII, 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Motomura Y, Senju S, Nakatsura T, Matsuyoshi H, Hirata S, Monji M, Komori H, Fukuma D, Baba H, Nishimura Y. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16-F10. Cancer Res 2006; 66:2414-22. [PMID: 16489048 DOI: 10.1158/0008-5472.can-05-2090] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have recently established a method to generate dendritic cells from mouse embryonic stem cells. By introducing exogenous genes into embryonic stem cells and subsequently inducing differentiation to dendritic cells (ES-DC), we can now readily generate transfectant ES-DC expressing the transgenes. A previous study revealed that the transfer of genetically modified ES-DC expressing a model antigen, ovalbumin, protected the recipient mice from a challenge with an ovalbumin-expressing tumor. In the present study, we examined the capacity of ES-DC expressing mouse homologue of human glypican-3, a recently identified oncofetal antigen expressed in human melanoma and hepatocellular carcinoma, to elicit protective immunity against glypican-3-expressing mouse tumors. CTLs specific to multiple glypican-3 epitopes were primed by the in vivo transfer of glypican-3-transfectant ES-DC (ES-DC-GPC3). The transfer of ES-DC-GPC3 protected the recipient mice from subsequent challenge with B16-F10 melanoma, naturally expressing glypican-3, and with glypican-3-transfectant MCA205 sarcoma. The treatment with ES-DC-GPC3 was also highly effective against i.v. injected B16-F10. No harmful side effects, such as autoimmunity, were observed for these treatments. The depletion experiments and immunohistochemical analyses suggest that both CD8+ and CD4+ T cells contributed to the observed antitumor effect. In conclusion, the usefulness of glypican-3 as a target antigen for antimelanoma immunotherapy was thus shown in the mouse model using the ES-DC system. Human dendritic cells expressing glypican-3 would be a promising means for therapy of melanoma and hepatocellular carcinoma.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Glypicans
- Heparan Sulfate Proteoglycans/biosynthesis
- Heparan Sulfate Proteoglycans/genetics
- Heparan Sulfate Proteoglycans/immunology
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/prevention & control
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Stem Cells/cytology
- Stem Cells/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Yutaka Motomura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Dendritic cells are professional antigen presenting cells, which show an extraordinary capacity to initiate primary immune responses by stimulating T cells. This established function of dendritic cells has attracted much attention in efforts to develop useful vaccines for the treatment of cancer and infectious diseases. Designing effective strategies to generate clinical dendritic cell-based vaccine protocols remains a challenging field of research. The successful realization of immunotherapy utilizing dendritic cells will depend on modifications of these protocols to optimize the natural stimulatory properties of dendritic cells, such as genetic modification of dendritic cells. This review focuses on dendritic cell gene modifications for enhancing the multiple effector functions of dendritic cells, including viral and non-viral gene transfer into dendritic cells, and a variety of transferred genes, such as those encoding antigens, co-stimulatory molecules, cytokines, and chemokines.
Collapse
Affiliation(s)
- Toshiaki Kikuchi
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
43
|
Abstract
It is generally accepted that the immune system plays an important role in controlling tumour development. However, the interplay between tumour and immune system is complex, as demonstrated by the fact that tumours can successfully establish and develop despite the presence of T cells in tumour. An improved understanding of how tumours evade T-cell surveillance, coupled with technical developments allowing the culture and manipulation of T cells, has driven the exploration of therapeutic strategies based on the adoptive transfer of tumour-specific T cells. The isolation, expansion and re-infusion of large numbers of tumour-specific T cells generated from tumour biopsies has been shown to be feasible. Indeed, impressive clinical responses have been documented in melanoma patients treated with these T cells. These studies and others demonstrate the potential of T cells for the adoptive therapy of cancer. However, the significant technical issues relating to the production of natural tumour-specific T cells suggest that the application of this approach is likely to be limited at the moment. With the advent of retroviral gene transfer technology, it has become possible to efficiently endow T cells with antigen-specific receptors. Using this strategy, it is potentially possible to generate large numbers of tumour reactive T cells rapidly. This review summarises the current gene therapy approaches in relation to the development of adoptive T-cell-based cancer treatments, as these methods now head towards testing in the clinical trial setting.
Collapse
Affiliation(s)
- W Mansoor
- Cancer Research UK, Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK
| | - D E Gilham
- Cancer Research UK, Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK
| | - F C Thistlethwaite
- Cancer Research UK, Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK
| | - R E Hawkins
- Cancer Research UK, Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK
- Cancer Research UK, Department of Medical Oncology, University of Manchester, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK. E-mail:
| |
Collapse
|
44
|
Olsen AL, Stachura DL, Weiss MJ. Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 2005; 107:1265-75. [PMID: 16254136 PMCID: PMC1895404 DOI: 10.1182/blood-2005-09-3621] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.
Collapse
Affiliation(s)
- Abby L Olsen
- Division of Hematology, 3615 Civic Center Blvd, Abramson Research Center, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|