1
|
Mizote Y, Inoue T, Akazawa T, Kunimasa K, Tamiya M, Kumamoto Y, Tsuda A, Yoshida S, Tatsumi K, Ekawa T, Honma K, Nishino K, Tahara H. Potent CTLs can be induced against tumor cells in an environment of lower levels of systemic MFG-E8. Cancer Sci 2024; 115:1114-1128. [PMID: 38332689 PMCID: PMC11007000 DOI: 10.1111/cas.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takako Inoue
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Motohiro Tamiya
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yachiyo Kumamoto
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Arisa Tsuda
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Satomi Yoshida
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Kazumi Nishino
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Büttner JK, Becker S, Fink A, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NA. Direct antigen presentation is the canonical pathway of cytomegalovirus CD8 T-cell priming regulated by balanced immune evasion ensuring a strong antiviral response. Front Immunol 2023; 14:1272166. [PMID: 38149242 PMCID: PMC10749961 DOI: 10.3389/fimmu.2023.1272166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
CD8 T cells are important antiviral effectors in the adaptive immune response to cytomegaloviruses (CMV). Naïve CD8 T cells can be primed by professional antigen-presenting cells (pAPCs) alternatively by "direct antigen presentation" or "antigen cross-presentation". In the case of direct antigen presentation, viral proteins are expressed in infected pAPCs and enter the classical MHC class-I (MHC-I) pathway of antigen processing and presentation of antigenic peptides. In the alternative pathway of antigen cross-presentation, viral antigenic material derived from infected cells of principally any cell type is taken up by uninfected pAPCs and eventually also fed into the MHC class-I pathway. A fundamental difference, which can be used to distinguish between these two mechanisms, is the fact that viral immune evasion proteins that interfere with the cell surface trafficking of peptide-loaded MHC-I (pMHC-I) complexes are absent in cross-presenting uninfected pAPCs. Murine cytomegalovirus (mCMV) models designed to disrupt either of the two presentation pathways revealed that both are possible in principle and can substitute each other. Overall, however, the majority of evidence has led to current opinion favoring cross-presentation as the canonical pathway. To study priming in the normal host genetically competent in both antigen presentation pathways, we took the novel approach of enhancing or inhibiting direct antigen presentation by using recombinant viruses lacking or overexpressing a key mCMV immune evasion protein. Against any prediction, the strongest CD8 T-cell response was elicited under the condition of intermediate direct antigen presentation, as it exists for wild-type virus, whereas the extremes of enhanced or inhibited direct antigen presentation resulted in an identical and weaker response. Our findings are explained by direct antigen presentation combined with a negative feedback regulation exerted by the newly primed antiviral effector CD8 T cells. This insight sheds a completely new light on the acquisition of viral immune evasion genes during virus-host co-evolution.
Collapse
Affiliation(s)
- Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sara Becker
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annette Fink
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, Lefever S, Skirtach AG, Krysko O, Krysko DV. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 2021; 8:jitc-2020-001369. [PMID: 33188036 PMCID: PMC7668384 DOI: 10.1136/jitc-2020-001369] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy represents the future of clinical cancer treatment. The type of cancer cell death determines the antitumor immune response and thereby contributes to the efficacy of anticancer therapy and long-term survival of patients. Induction of immunogenic apoptosis or necroptosis in cancer cells does activate antitumor immunity, but resistance to these cell death modalities is common. Therefore, it is of great importance to find other ways to kill tumor cells. Recently, ferroptosis has been identified as a novel, iron-dependent form of regulated cell death but whether ferroptotic cancer cells are immunogenic is unknown. Methods Ferroptotic cell death in murine fibrosarcoma MCA205 or glioma GL261 cells was induced by RAS-selective lethal 3 and ferroptosis was analyzed by flow cytometry, atomic force and confocal microscopy. ATP and high-mobility group box 1 (HMGB1) release were detected by luminescence and ELISA assays, respectively. Immunogenicity in vitro was analyzed by coculturing of ferroptotic cancer cells with bone-marrow derived dendritic cells (BMDCs) and rate of phagocytosis and activation/maturation of BMDCs (CD11c+CD86+, CD11c+CD40+, CD11c+MHCII+, IL-6, RNAseq analysis). The tumor prophylactic vaccination model in immune-competent and immune compromised (Rag-2−/−) mice was used to analyze ferroptosis immunogenicity. Results Ferroptosis can be induced in cancer cells by inhibition of glutathione peroxidase 4, as evidenced by confocal and atomic force microscopy and inhibitors’ analysis. We demonstrate for the first time that ferroptosis is immunogenic in vitro and in vivo. Early, but not late, ferroptotic cells promote the phenotypic maturation of BMDCs and elicit a vaccination-like effect in immune-competent mice but not in Rag-2−/− mice, suggesting that the mechanism of immunogenicity is very tightly regulated by the adaptive immune system and is time dependent. Also, ATP and HMGB1, the best-characterized damage-associated molecular patterns involved in immunogenic cell death, have proven to be passively released along the timeline of ferroptosis and act as immunogenic signal associated with the immunogenicity of early ferroptotic cancer cells. Conclusions These results pave the way for the development of new therapeutic strategies for cancers based on induction of ferroptosis, and thus broadens the current concept of immunogenic cell death and opens the door for the development of new strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Louis Van der Meeren
- NanoBioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Victoria D Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Tatiana A Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andre G Skirtach
- Cancer Research Institute Ghent, Ghent, Belgium.,NanoBioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent, Belgium.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Cashman S, Lampe K, Sheridan R, Hoebe K. An ENU mutagenesis approach to dissect "self"-induced immune responses: Unraveling the genetic footprint of immunosurveillance. Oncoimmunology 2021; 1:856-862. [PMID: 23162753 PMCID: PMC3489741 DOI: 10.4161/onci.20580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The immune system exerts a critical function as it recognizes and eliminates transformed or neoplastic cells, a process also referred to as immunosurveillance. NK cells play a particularly important role in that they are able to recognize tumor cells via “missing-self”—i.e., the absence of major histocompatibility complex Class I on target cells. Moreover, recent studies suggest that NK cells also participate in the onset and regulation of adaptive immune responses. The exact molecular pathways by which this occurs, however, remain poorly understood. To obtain further insight into the genes that are required for self-induced immune responses via NK cell-mediated cell death, our laboratory initiated a forward genetic approach using N-ethyl-N-nitrosourea (ENU) as a mutagen. Specifically, we tested the ability of NK cells from G3 ENU germline mice to recognize missing-self target cells and induce CD8+ T-cell responses following immunization with irradiated tumor cells. Here we present two ENU germline mutants, designated Ace and Chip, that are defective in the recognition of β-2 microglobulin-deficient target cells, yet exhibit improved clearance of B16 melanoma cells in vivo. Coarse mapping and whole genome sequencing of the Chip mutation revealed a missense mutation causing a T’A amino acid substitution in the highly conserved third immuno-receptor tyrosine-based switch motif of CD244 (2B4). The forward genetic approach described here promises to reveal important insight into critical genes that are required for host responses involved in anticancer immunity.
Collapse
Affiliation(s)
- Siobhan Cashman
- Department of Molecular and Cellular Immunology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH USA
| | | | | | | |
Collapse
|
6
|
Fite BZ, Wang J, Kare AJ, Ilovitsh A, Chavez M, Ilovitsh T, Zhang N, Chen W, Robinson E, Zhang H, Kheirolomoom A, Silvestrini MT, Ingham ES, Mahakian LM, Tam SM, Davis RR, Tepper CG, Borowsky AD, Ferrara KW. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. Sci Rep 2021; 11:927. [PMID: 33441763 PMCID: PMC7806949 DOI: 10.1038/s41598-020-80135-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
High intensity focused ultrasound (HIFU) rapidly and non-invasively destroys tumor tissue. Here, we sought to assess the immunomodulatory effects of MR-guided HIFU and its combination with the innate immune agonist CpG and checkpoint inhibitor anti-PD-1. Mice with multi-focal breast cancer underwent ablation with a parameter set designed to achieve mechanical disruption with minimal thermal dose or a protocol in which tumor temperature reached 65 °C. Mice received either HIFU alone or were primed with the toll-like receptor 9 agonist CpG and the checkpoint modulator anti-PD-1. Both mechanical HIFU and thermal ablation induced a potent inflammatory response with increased expression of Nlrp3, Jun, Mefv, Il6 and Il1β and alterations in macrophage polarization compared to control. Furthermore, HIFU upregulated multiple innate immune receptors and immune pathways, including Nod1, Nlrp3, Aim2, Ctsb, Tlr1/2/4/7/8/9, Oas2, and RhoA. The inflammatory response was largely sterile and consistent with wound-healing. Priming with CpG attenuated Il6 and Nlrp3 expression, further upregulated expression of Nod2, Oas2, RhoA, Pycard, Tlr1/2 and Il12, and enhanced T-cell number and activation while polarizing macrophages to an anti-tumor phenotype. The tumor-specific antigen, cytokines and cell debris liberated by HIFU enhance response to innate immune agonists.
Collapse
Affiliation(s)
- Brett Z Fite
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - James Wang
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Aris J Kare
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
- Department of Biomedical Engineering, Stanford University, Palo Alto, CA, 94305, USA
| | - Asaf Ilovitsh
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Michael Chavez
- Department of Biomedical Engineering, Stanford University, Palo Alto, CA, 94305, USA
| | - Tali Ilovitsh
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Nisi Zhang
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Weiyu Chen
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Elise Robinson
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Hua Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Azadeh Kheirolomoom
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Sarah M Tam
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Katherine W Ferrara
- Department of Radiology, Stanford University, 3165 Porter Dr, Palo Alto, CA, 94305, USA.
| |
Collapse
|
7
|
Liang H, Yan Y, Wu J, Ge X, Wei L, Liu L, Chen Y. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. SCIENCE ADVANCES 2020; 6:eabb5274. [PMID: 32923608 PMCID: PMC7457336 DOI: 10.1126/sciadv.abb5274] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/12/2020] [Indexed: 05/26/2023]
Abstract
Cell-free DNA (cfDNA) released from damaged or dead cells combines with LL37 and is converted into an immune response activator to exacerbate psoriasis. Here, we show that cationic nanoparticles (cNPs) efficiently compete for DNA from the DNA-LL37 immunocomplex and inhibit DNA-LL37-induced cell activation. Using phenotypical images, psoriasis area and severity index scoring, histology, and immunohistochemical analysis, we demonstrate that topical application of cNPs on psoriasiform skin of a mouse model relieves psoriatic symptoms. It is noteworthy that the results were confirmed in a cynomolgus monkey model. Moreover, topically administrated cNPs showed low in vivo toxicity because of their retention in skin. Mechanistic analyses of cytokine expression in the psoriatic site, cfDNA levels in circulation and inflamed skin, skin permeation, and biodistribution of cNPs also matched the therapeutic outcomes. Therefore, we present a previously unidentified strategy of nanomedicine to treat skin inflammatory diseases, which demonstrates great potential for clinical application.
Collapse
Affiliation(s)
- Huiyi Liang
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanzi Yan
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingjiao Wu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaofei Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Yokoji-Takeuchi M, Tabeta K, Takahashi N, Arimatsu K, Miyazawa H, Matsuda-Matsukawa Y, Sato K, Yamada M, Yamazaki K. Indirect regulation of PCSK9 gene in inflammatory response by Porphyromonas gingivalis infection. Heliyon 2019; 5:e01111. [PMID: 30671557 PMCID: PMC6328067 DOI: 10.1016/j.heliyon.2018.e01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/12/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9), a secreted serine protease, regulates serum low-density lipoprotein (LDL) cholesterol levels by targeting the degradation of LDL receptor (LDLR) in the liver. Although previous reports describe elevated levels of PCSK9 in patients with periodontitis, the mechanisms that trigger this increase in serum PCSK9 levels and induce the related inflammatory response remain unclear. In an unc93b1-deficient mouse of Porphyromonas gingivalis infection, nucleic acid antigen recognition via Toll-like receptors was found to promote PCSK9 production, suggesting an indirect role for tumor necrosis factor-α as an inducer of PCSK9 in contrast to that reported in previous studies. Furthermore, PCSK9 production was independent of the TIR domain-containing adapter-inducing interferon-β-dependent signaling pathway. These results indicate that changes in LDLR expression precede an increase in the serum PCSK9 level in the context of an infectious disease such as periodontitis.
Collapse
Affiliation(s)
- Mai Yokoji-Takeuchi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kei Arimatsu
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruna Miyazawa
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Matsuda-Matsukawa
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Pollard KM, Escalante GM, Huang H, Haraldsson KM, Hultman P, Christy JM, Pawar RD, Mayeux JM, Gonzalez-Quintial R, Baccala R, Beutler B, Theofilopoulos AN, Kono DH. Induction of Systemic Autoimmunity by a Xenobiotic Requires Endosomal TLR Trafficking and Signaling from the Late Endosome and Endolysosome but Not Type I IFN. THE JOURNAL OF IMMUNOLOGY 2017; 199:3739-3747. [PMID: 29055005 DOI: 10.4049/jimmunol.1700332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
Type I IFN and nucleic acid-sensing TLRs are both strongly implicated in the pathogenesis of lupus, with most patients expressing IFN-induced genes in peripheral blood cells and with TLRs promoting type I IFNs and autoreactive B cells. About a third of systemic lupus erythematosus patients, however, lack the IFN signature, suggesting the possibility of type I IFN-independent mechanisms. In this study, we examined the role of type I IFN and TLR trafficking and signaling in xenobiotic systemic mercury-induced autoimmunity (HgIA). Strikingly, autoantibody production in HgIA was not dependent on the type I IFN receptor even in NZB mice that require type I IFN signaling for spontaneous disease, but was dependent on the endosomal TLR transporter UNC93B1 and the endosomal proton transporter, solute carrier family 15, member 4. HgIA also required the adaptor protein-3 complex, which transports TLRs from the early endosome to the late endolysosomal compartments. Examination of TLR signaling pathways implicated the canonical NF-κB pathway and the proinflammatory cytokine IL-6 in autoantibody production, but not IFN regulatory factor 7. These findings identify HgIA as a novel type I IFN-independent model of systemic autoimmunity and implicate TLR-mediated NF-κB proinflammatory signaling from the late endocytic pathway compartments in autoantibody generation.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| | - Gabriela M Escalante
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Hua Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Katarina M Haraldsson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Per Hultman
- Department of Experimental and Clinical Medicine, Linköping University, Linköping 58183, Sweden; and
| | - Joseph M Christy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rahul D Pawar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jessica M Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Roberto Baccala
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Dwight H Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
10
|
Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA, Lages CS, Janssen EM. Loss of Phagocytic and Antigen Cross-Presenting Capacity in Aging Dendritic Cells Is Associated with Mitochondrial Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2624-32. [PMID: 26246142 PMCID: PMC4561185 DOI: 10.4049/jimmunol.1501006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impaired functionality of dendritic cells (DCs) significantly contributes to decreased adaptive immune responses in aged hosts. The expression of MHC-peptide on the DC surface is the critical first step in T cell priming, but few studies have addressed the effect of aging on Ag acquisition, processing, and presentation by DCs. In this study, we show that aged murine DCs were less efficient in the cross-presentation of cell-associated Ag and subsequently in the cross-priming of CD8(+) T cells than were their young counterparts. The decreased cross-presentation was associated with a reduction in the frequency of CD8α DCs and merocytic (CD8α(-)CD11b(-))DCs that could endocytose cell-associated Ag, as well as the number and the size of the endocytosed particles in the DC that did internalize cell-associated materials. Mechanistically, phagocytic capacity has been associated with mitochondrial activity and membrane potential (Δψm). Aged DCs exhibited profound signs of mitochondrial dysfunction, illustrated by lower Δψm, reduced ATP turnover and coupling efficiency, decreased baseline oxidative phosphorylation, and greater proton leak and reactive oxygen species (ROS) production. Mimicking the aged metabolic phenotype in young DCs by pharmacologic manipulation indicated that the reductions in Δψm and ATP impeded the phagocytic capacity whereas ROS interfered with a later step in the cross-presentation process. Conversely, in vitro scavenging of ROS partially restored cross-presentation by aged DCs. Taken together, these data suggest that improvement of aged DC functionality might be feasible in the elderly by targeting metabolic dysfunction or its downstream sequelae, thereby opening new avenues for enhancing vaccine efficiency in this population.
Collapse
Affiliation(s)
- Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Robert I Thacker
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Hesham M Shehata
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Cassandra M Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Celine S Lages
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
11
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
12
|
Schuster P, Thomann S, Werner M, Vollmer J, Schmidt B. A subset of human plasmacytoid dendritic cells expresses CD8α upon exposure to herpes simplex virus type 1. Front Microbiol 2015; 6:557. [PMID: 26082771 PMCID: PMC4451679 DOI: 10.3389/fmicb.2015.00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Abstract
Classical and plasmacytoid dendritic cells (DC) play important roles in the defense against murine and human infections with herpes simplex virus (HSV). So far, CD8α expression has only been reported for murine DC. CD8α+ DC have prominent cross-presenting activities, which are enhanced by murine CD8α+ PDC. The human orthologue of murine CD8α+ DC, the CD141 (BDCA3)+ DC, mainly cross-present after TLR3 ligation. We report here the serendipitous finding that a subset of human PDC upregulates CD8α upon HSV-1 stimulation, as shown by gene array and flow cytometry analyses. CD8α, not CD8ß, was expressed upon exposure. Markers of activation, migration, and costimulation were upregulated on CD8α-expressing human PDC. In these cells, increased cytokine and chemokine levels were detected that enhance development and function of T, B, and NK cells, and recruit immature DC, monocytes, and Th1 cells, respectively. Altogether, human CD8α+ PDC exhibit a highly activated phenotype and appear to recruit other immune cells to the site of inflammation. Further studies will show whether CD8α-expressing PDC contribute to antigen cross-presentation, which may be important for immune defenses against HSV infections in vitro and in vivo.
Collapse
Affiliation(s)
- Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany ; Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Sabrina Thomann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Maren Werner
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany
| | | | - Barbara Schmidt
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany ; Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
13
|
Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:6124-34. [PMID: 25385820 DOI: 10.4049/jimmunol.1401869] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses to Ags released by dying cells play a critical role in the development of autoimmunity, allograft rejection, and spontaneous as well as therapy-induced tumor rejection. Although cell death in these situations is considered sterile, various reports have implicated type I IFNs as drivers of the ensuing adaptive immune response to cell-associated Ags. However, the mechanisms that underpin this type I IFN production are poorly defined. In this article, we show that dendritic cells (DCs) can uptake and sense nuclear DNA-associated entities released by dying cells to induce type I IFN. Remarkably, this molecular pathway requires STING, but not TLR or NLR function, and results in the activation of IRF3 in a TBK1-dependent manner. DCs are shown to depend on STING function in vivo to efficiently prime IFN-dependent CD8(+) T cell responses to tumor Ags. Furthermore, loss of STING activity in DCs impairs the generation of follicular Th cells and plasma cells, as well as anti-nuclear Abs, in an inducible model of systemic lupus erythematosus. These findings suggest that the STING pathway could be manipulated to enable the rational design of immunotherapies that enhance or diminish antitumor and autoimmune responses, respectively.
Collapse
Affiliation(s)
- Jared Klarquist
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Cassandra M Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Rachel A Reboulet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Sonia Feau
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| |
Collapse
|
14
|
Gamrekelashvili J, Ormandy LA, Heimesaat MM, Kirschning CJ, Manns MP, Korangy F, Greten TF. Primary sterile necrotic cells fail to cross-prime CD8(+) T cells. Oncoimmunology 2014; 1:1017-1026. [PMID: 23170250 PMCID: PMC3494616 DOI: 10.4161/onci.21098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Necrotic cells are known to activate the innate immune system and trigger inflammation by releasing damage associated molecular patterns (DAMPs). However, how necrotic cells influence the induction of antigen-specific CD8(+) T cell-mediated adaptive immune responses under sterile conditions, in the absence of pathogen associated molecular patterns (PAMPs), remains poorly understood. Here, we examined antigen-specific CD8(+) T-cell responses to primary sterile necrotic tumor cells both in vitro and in vivo. We found that primary necrotic cells alone fail to generate CD8(+) T cell-dependent immune responses toward cell-associated antigens. We show that necrotic cells trigger CD8(+) T-cell immunity only in the presence of PAMPs or analogs, such as p(dI-dC) and/or unmethylated CpG DNA. The electroporation of tumor cells with these PAMPs prior to necrosis induction triggered antigen-specific CD8(+) T-cell responses through a TLR9/MyD88-dependent pathway. In addition, we found that necrotic cells contain factors that can block the cross-priming of CD8(+) T cells even under non-sterile conditions and can serve as a possible mechanism of immunosuppression. These results suggest that antigen-specific CD8(+) T-cell responses to primary necrotic tumor cells can be induced in the presence of PAMPs and thus have a substantial impact on the development of antitumor vaccination strategies.
Collapse
Affiliation(s)
- Jaba Gamrekelashvili
- Gastrointestinal Malignancy Section; Medical Oncology Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA ; Department of Gastroenterology; Hepatology and Endocrinology; Hannover Medical School; Hanover, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Gamrekelashvili J, Greten TF, Korangy F. Immunogenicity of necrotic cell death. Cell Mol Life Sci 2014; 72:273-83. [PMID: 25274062 DOI: 10.1007/s00018-014-1741-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
The mode of tumor cell death has significant effects on anti-tumor immunity. Although, previously it was thought that cell death is an inert effect, different investigators have clearly shown that dying tumors can attract, activate and mature professional antigen presenting cells and dendritic cells. In addition, others and we have shown that the type of tumor cell death not only controls the presence or absence of specific tumor antigens, but also can result in immunological responses ranging from immunosuppression to anti-tumor immunity. More importantly, it is possible to enhance anti-tumor immunity both in vitro and in vivo by targeting specific molecular mechanisms such as oligopeptidases and the proteasome. These studies not only extend our knowledge on basic immunological questions and the induction of anti-tumor immunity, but also have implications for all types of cancer treatments, in which rapid tumor cell death is induced. This review is a comprehensive summary of cell death and particularly necrosis and the pivotal role it plays in anti-tumor immunity.
Collapse
|
16
|
Gamrekelashvili J, Kapanadze T, Han M, Wissing J, Ma C, Jaensch L, Manns MP, Armstrong T, Jaffee E, White AO, Citrin DE, Korangy F, Greten TF. Peptidases released by necrotic cells control CD8+ T cell cross-priming. J Clin Invest 2014; 123:4755-68. [PMID: 24216478 DOI: 10.1172/jci65698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.
Collapse
|
17
|
Tabeta K, Hoebe K, Janssen EM, Xia Y, Beutler B. Respond to "No antigen-presentation defect in Unc93b13d/3d (3d) mice". Nat Immunol 2013; 14:1102-3. [DOI: 10.1038/ni.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Pletinckx K, Lutz MB. Dendritic cells generated with Flt3L and exposed to apoptotic cells lack induction of T cell anergy and Foxp3⁺ regulatory T cell conversion in vitro. Immunobiology 2013; 219:230-40. [PMID: 24252473 DOI: 10.1016/j.imbio.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022]
Abstract
Removal of apoptotic cells, which appear during the steady state, is a pre-requisite to prevent generation of secondary necrotic cells that may lead to autoimmunity. The recognition of apoptotic material by dendritic cells (DCs) has been proposed to convert them into tolerogenic DCs equipped with specialized tolerogenic mechanisms on T cells. However, comparative studies to demonstrate functional alterations of DCs upon exposure to apoptotic cells have not been performed so far. Here we show that immature murine bone marrow-derived DCs generated with GM-CSF (GM-DCs) or Flt3L (FL-DCs) interact with live or apoptotic syngeneic thymocytes. As expected, GM-DCs phagocytose apoptotic but not live cells, FL-DCs only show trogocytosis of membrane parts. Interaction with live or apoptotic thymocytes did not lead to DC maturation. Both GM-DCs and FL-DCs present OVA as protein, peptide and membrane-associated antigens. Interestingly, only GM-DCs were able to induce T cell anergy or convert naïve T cells into FoxP3⁺ regulatory T cells (Tregs) but FL-DCs did not show either of these effects. Unexpectedly, exposure of immature GM-DCs to live or apoptotic thymocytes did not improve DC functions in both types of in vitro T cell tolerance induction assays. Together, our data suggest that these tolerogenic in vitro measures of immature BM-DCs are not further enhanced by exposure to apoptotic cells and may depend on the generating cytokine.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Wuerzburg, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg, Germany.
| |
Collapse
|
19
|
Spel L, Boelens JJ, Nierkens S, Boes M. Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation. Oncoimmunology 2013; 2:e26403. [PMID: 24482744 PMCID: PMC3894247 DOI: 10.4161/onci.26403] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses.
Collapse
Affiliation(s)
- Lotte Spel
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Jaap-Jan Boelens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Stefan Nierkens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Marianne Boes
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| |
Collapse
|
20
|
Pelletier AN, Lesage S. The Idd13 congenic interval defines the number of merocytic dendritic cells, a novel trait associated with autoimmune diabetes susceptibility. J Autoimmun 2013; 43:70-7. [PMID: 23623717 DOI: 10.1016/j.jaut.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
When antigens derived from apoptotic cells are presented by conventional dendritic cells (cDC), T cell tolerance is induced. Surprisingly, the presentation of apoptotic cell antigens by an unconventional DC subset, termed merocytic dendritic cells (mcDC), can reverse T cell anergy. The potency of mcDC at breaking T cell tolerance has been demonstrated in the context of tumors and autoimmunity, suggesting that modulating the number of mcDC in vivo may be of clinical interest. To identify the genetic determinants that define the number of mcDC, we performed a linkage analysis between NOD and C57BL/6 mouse strains, where autoimmune-prone NOD mice show an increased proportion of mcDC relative to the non-autoimmune-prone C57BL/6 mice. We identified a locus on chromosome 2 significantly linked to both the proportion and the absolute number of mcDC in the spleen. Interestingly, the dominant interval on chromosome 2 overlaps with a locus previously associated with diabetes protection, namely Idd13. Using NOD.Idd13 congenic mice, we validate the impact of the Idd13 congenic interval in defining the proportion and number of mcDC in the spleen. These results show that the decreased number of mcDC is conferred by C57BL/6 alleles at the Idd13 locus, which is linked to diabetes resistance.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.
| | | |
Collapse
|
21
|
Nierkens S, Tel J, Janssen E, Adema GJ. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 2013; 34:361-70. [PMID: 23540650 DOI: 10.1016/j.it.2013.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Antigen cross-presentation describes the process through which dendritic cells (DCs) acquire exogenous antigens for presentation on MHC class I molecules. The ability to cross-present has been thought of as a feature of specialized DC subsets. Emerging data, however, suggest that the cross-presenting ability of each DC subset is tuned by and dependent on several factors, such as DC location and activation status, and the type of antigen and inflammatory signals. Thus, we argue that capacity of cross-presentation is not an exclusive trait of one or several distinct DC subtypes, but rather a common feature of the DC family in both mice and humans. Understanding DC subset activation and antigen-presentation pathways might yield improved tools and targets to exploit the unique cross-presenting capacity of DCs in immunotherapy.
Collapse
Affiliation(s)
- Stefan Nierkens
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumor Immunology Laboratory, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
22
|
Tardif V, Manenkova Y, Berger M, Hoebe K, Zuo JP, Yuan C, Kono DH, Theofilopoulos AN, Lawson BR. Critical role of transmethylation in TLR signaling and systemic lupus erythematosus. Clin Immunol 2013; 147:133-43. [PMID: 23583916 DOI: 10.1016/j.clim.2013.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Post-translational protein modifications can play a significant role in immune cell signaling. Recently, we showed that inhibition of transmethylation curtails experimental autoimmune encephalomyelitis, notably by reducing T cell receptor (TCR)-induced activation of CD4(+) T cells. Here, we demonstrate that transmethylation inhibition by a reversible S-adenosyl-l-homocysteine hydrolase inhibitor (DZ2002) led to immunosuppression by reducing TLR-, B cell receptor (BCR)- and TCR-induced activation of immune cells, most likely by blocking NF-κB activity. Moreover, prophylactic treatment with DZ2002 prevented lupus-like disease from developing in both BXSB and MRL-Fas(lpr) mouse models. DZ2002 treatment initiated during active disease significantly improved outcomes in both in vivo models, suggesting methylation inhibition as a novel approach for the treatment of autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Virginie Tardif
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN. Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:5976-84. [PMID: 23175700 DOI: 10.4049/jimmunol.1201477] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The demonstration in humans and mice that nucleic acid-sensing TLRs and type I IFNs are essential disease mediators is a milestone in delineating the mechanisms of lupus pathogenesis. In this study, we show that Ifnb gene deletion does not modify disease progression in NZB mice, thereby strongly implicating IFN-α subtypes as the principal pathogenic effectors. We further document that long-term treatment of male BXSB mice with an anti-IFN-α/β receptor Ab of mouse origin reduced serologic, cellular, and histologic disease manifestations and extended survival, suggesting that disease acceleration by the Tlr7 gene duplication in this model is mediated by type I IFN signaling. The efficacy of this treatment in BXSB mice was clearly evident when applied early in the disease process, but only partial reductions in some disease characteristics were observed when treatment was initiated at later stages. A transient therapeutic effect was also noted in the MRL-Fas(lpr) model, although overall mortality was unaffected. The combined findings suggest that IFN-α/β receptor blockade, particularly when started at early disease stages, may be a useful treatment approach for human systemic lupus erythematosus and other autoimmune syndromes.
Collapse
Affiliation(s)
- Roberto Baccala
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Thacker RI, Janssen EM. Cross-presentation of cell-associated antigens by mouse splenic dendritic cell populations. Front Immunol 2012; 3:41. [PMID: 22566924 PMCID: PMC3342388 DOI: 10.3389/fimmu.2012.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/19/2012] [Indexed: 11/13/2022] Open
Abstract
Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8(+) T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8(+) T cells is highly restricted. Comparison of the main splenic DC populations in mice - including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) - reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8(+) T cell response.
Collapse
Affiliation(s)
- Robert I Thacker
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | | |
Collapse
|
25
|
Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proc Natl Acad Sci U S A 2012; 109:2072-7. [PMID: 22308317 DOI: 10.1073/pnas.1105771109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to induce humoral and cellular immunity via antigen delivery through the unbroken skin (epicutaneous immunization, EPI) has immediate relevance for vaccine development. However, it is unclear which adjuvants induce protective memory CD8 T-cell responses by this route, and the molecular and cellular requirements for priming through intact skin are not defined. We report that cholera toxin (CT) is superior to other adjuvants in its ability to prime memory CD8 T cells that control bacterial and viral challenges. Epicutaneous immunization with CT does not require engagement of classic toll-like receptor (TLR) and inflammasome pathways and, surprisingly, is independent of skin langerin-expressing cells (including Langerhans cells). However, CT adjuvanticity required type-I IFN sensitivity, participation of a Batf3-dependent dendritic cell (DC) population and engagement of CT with suitable gangliosides. Chemoenzymatic generation of CT-antigen fusion proteins led to efficient priming of the CD8 T-cell responses, paving the way for development of this immunization strategy as a therapeutic option.
Collapse
|
26
|
Griffith TS, Ferguson TA. Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 2011; 35:456-66. [PMID: 22035838 DOI: 10.1016/j.immuni.2011.08.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/11/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
The mammalian immune system continually faces death in the form of its own dead and dying cells that arise during normal tissue turnover, infections, cellular damage, and cancer. Complex decisions must then be made that will permit a protective response to pathogens, while at the same time destroying tumors but not attacking vital systems of the host that could lead to autoimmunity. By using an investigative technique termed the five Ws (who, what, when, where, and why), we will examine how the immune system responds to antigens generated via cell death. This analysis will give us a better understanding of the molecular differences fundamental to tolerogenic or immunogenic cell death, the cells that sense and react to the dead cells, and the consequences of these fundamental elements on the maintenance or abrogation of tolerance.
Collapse
Affiliation(s)
- Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
27
|
Theofilopoulos AN, Kono DH, Beutler B, Baccala R. Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31:867-86. [PMID: 22029446 DOI: 10.1089/jir.2011.0092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders.
Collapse
Affiliation(s)
- Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92137, USA.
| | | | | | | |
Collapse
|
28
|
Nierkens S, den Brok MH, Garcia Z, Togher S, Wagenaars J, Wassink M, Boon L, Ruers TJ, Figdor CG, Schoenberger SP, Adema GJ, Janssen EM. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 2011; 71:6428-37. [PMID: 21788345 DOI: 10.1158/0008-5472.can-11-2154] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The differences in function, location, and migratory pattern of conventional dendritic cells (cDC) and plasmacytoid DCs (pDC) not only point to specialized roles in immune responses but also signify additive and interdependent relationships required to clear pathogens. We studied the in vivo requirement of cross-talk between cDCs and pDCs for eliciting antitumor immunity against in situ released tumor antigens in the absence or presence of the Toll-like receptor (TLR) 9 agonist CpG. Previous data indicated that CpG boosted tumor-specific T-cell responses after in vivo tumor destruction and increased survival after tumor rechallenges. The present study shows that cDCs are indispensable for cross-presentation of ablation-released tumor antigens and for the induction of long-term antitumor immunity. Depletion of pDCs or applying this model in type I IFN receptor-deficient mice abrogated CpG-mediated responses. CD8α(+) cDCs and the recently identified merocytic cDCs were dependent on pDCs for CpG-induced upregulation of CD80. Moreover, DC transfer studies revealed that merocytic cDCs and CD8α(+) cDCs were most susceptible to pDC help and subsequently promoted tumor-free survival in a therapeutic setting. By transferring wild-type pDCs into TLR9-deficient mice, we finally showed that TLR9 expression in pDCs is sufficient to benefit from CpG as an adjuvant. These studies indicate that the efficacy of CpG in cancer immunotherapy is dependent on cross-talk between pDCs and specific subsets of cDCs.
Collapse
Affiliation(s)
- Stefan Nierkens
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K. Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 2011; 6:e21979. [PMID: 21760938 PMCID: PMC3131302 DOI: 10.1371/journal.pone.0021979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023] Open
Abstract
Using a small scale ENU mutagenesis approach we identified a recessive germline mutant, designated Lampe1 that exhibited growth retardation and spontaneous hepatosteatosis. Low resolution mapping based on 20 intercrossed Lampe1 mice revealed linkage to a ∼14 Mb interval on the distal site of chromosome 11 containing a total of 285 genes. Exons and 50 bp flanking sequences within the critical region were enriched with sequence capture microarrays and subsequently analyzed by next-generation sequencing. Using this approach 98.1 percent of the targeted DNA was covered with a depth of 10 or more reads per nucleotide and 3 homozygote mutations were identified. Two mutations represented intronic nucleotide changes whereas one mutation affected a splice donor site in intron 11–12 of Palmitoyl Acetyl-coenzyme A oxygenase-1 (Acox1), causing skipping of exon 12. Phenotyping of Acox1Lampe1 mutants revealed a progression from hepatosteatosis to steatohepatitis, and ultimately hepatocellular carcinoma. The current approach provides a highly efficient and affordable method to identify causative mutations induced by ENU mutagenesis and animal models relevant to human pathology.
Collapse
Affiliation(s)
- Rachel Sheridan
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristin Lampe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Shiva Kumar Shanmukhappa
- Division of Comparative Medicine and Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Patrick Putnam
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Mehdi Keddache
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Senad Divanovic
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Jorge Bezerra
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Kasper Hoebe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Katz JD, Janssen EM. Breaking T cell tolerance to beta cell antigens by merocytic dendritic cells. Cell Mol Life Sci 2011; 68:2873-83. [PMID: 21626409 DOI: 10.1007/s00018-011-0730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/28/2022]
Abstract
In type 1 diabetes (T1D), a break in central and peripheral tolerance results in antigen-specific T cells destroying insulin-producing, pancreatic beta cells. Herein, we discuss the critical sub-population of dendritic cells responsible for mediating both the cross-presentation of islet antigen to CD8(+) T cells and the direct presentation of beta cell antigen to CD4(+) T cells. These cells, termed merocytic dendritic cells (mcDC), are more numerous in non-obese diabetic (NOD), and antigen-loaded mcDC rescue CD8(+) T cells from peripheral anergy and deletion, and stimulate islet-reactive CD4(+) T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDC can break peripheral T cell tolerance to beta cell antigens in vivo and induce rapid onset T cell-mediated T1D in young NOD mouse. Thus, the mcDC subset appears to represent the long-sought critical antigen-presenting cell responsible for breaking peripheral tolerance to beta cell antigen in vivo.
Collapse
Affiliation(s)
- Jonathan D Katz
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
31
|
Bonnefoy F, Perruche S, Couturier M, Sedrati A, Sun Y, Tiberghien P, Gaugler B, Saas P. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation. THE JOURNAL OF IMMUNOLOGY 2011; 186:5696-705. [PMID: 21460208 DOI: 10.4049/jimmunol.1001523] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM Unité Mixte de Recherche 645, F-25020 Besançon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Apetoh L, Locher C, Ghiringhelli F, Kroemer G, Zitvogel L. Harnessing dendritic cells in cancer. Semin Immunol 2011; 23:42-9. [DOI: 10.1016/j.smim.2011.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/05/2011] [Indexed: 01/28/2023]
|
33
|
Ontiveros F, Wilson EB, Livingstone AM. Type I interferon supports primary CD8+ T-cell responses to peptide-pulsed dendritic cells in the absence of CD4+ T-cell help. Immunology 2011; 132:549-58. [PMID: 21255009 DOI: 10.1111/j.1365-2567.2010.03400.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
CD8(+) T-cell responses to non-pathogen, cell-associated antigens such as minor alloantigens or peptide-pulsed dendritic cells (DC) are usually strongly dependent on help from CD4(+) T cells. However, some studies have described help-independent primary CD8(+) T-cell responses to cell-associated antigens, using immunization strategies likely to trigger natural killer (NK) cell activation and inflammatory cytokine production. We asked whether NK cell activation by MHC I-deficient cells, or administration of inflammatory cytokines, could support CD4(+) T-cell help-independent primary responses to peptide-pulsed DC. Injection of MHC I-deficient cells cross-primed CD8(+) T-cell responses to the protein antigen ovalbumin (OVA) and the male antigen HY, but did not stimulate CD8(+) T-cell responses in CD4-depleted mice; hence NK cell stimulation by MHC I-deficient cells did not replace CD4(+) T-cell help in our experiments. Dendritic cells cultured with tumour necrosis factor-α (TNF-α) or type I interferon-α (IFN-α) also failed to prime CD8(+) T-cell responses in the absence of help. Injection of TNF-α increased lymph node cellularity, but did not generate help-independent CD8(+) T-cell responses. In contrast, CD4-depleted mice injected with IFN-α made substantial primary CD8(+) T-cell responses to peptide-pulsed DC. Mice deficient for the type I IFN receptor (IFNR1) made CD8(+) T-cell responses to IFNR1-deficient, peptide-pulsed DC; hence IFN-α does not appear to be a downstream mediator of CD4(+) T-cell help. We suggest that primary CD8(+) T-cell responses will become help-independent whenever endogenous IFN-α secretion is stimulated by tissue damage, infection, or autoimmune disease.
Collapse
Affiliation(s)
- Fernando Ontiveros
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642-8609, USA
| | | | | |
Collapse
|
34
|
Hennies CM, Reboulet RA, Garcia Z, Nierkens S, Wolkers MC, Janssen EM. Selective expansion of merocytic dendritic cells and CD8DCs confers anti-tumour effect of Fms-like tyrosine kinase 3-ligand treatment in vivo. Clin Exp Immunol 2011; 163:381-91. [PMID: 21235535 DOI: 10.1111/j.1365-2249.2010.04305.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vaccination with autologous cancer cells aims to enhance adaptive immune responses to tumour-associated antigens. The incorporation of Fms-like tyrosine kinase 3-ligand (FLT3L) treatment to the vaccination scheme has been shown previously to increase the immunogenicity of cancer vaccines, thereby enhancing their therapeutic potential. While evidence has been provided that FLT3L confers its effect through the increase of absolute dendritic cell (DC) numbers, it is currently unknown which DC populations are responsive to FLT3L and which effect FLT3L treatment has on DC functions. Here we show that the beneficial effects of FLT3L treatment resulted predominantly from a marked increase of two specific DC populations, the CD8 DCs and the recently identified merocytic DC (mcDC). These two DC populations (cross)-present cell-associated antigens to T cells in a natural killer (NK)-independent fashion. FLT3L treatment augmented the absolute numbers of these DCs, but did not change their activation status nor their capacity to prime antigen-specific T cells. While both DC populations effectively primed CD8(+) T cell responses to cell-associated antigens, only mcDC were capable to prime CD4(+) T cells to cell-associated antigens. Consequentially, the transfer of tumour vaccine-pulsed mcDC, but not of CD8 DCs, protected mice from subsequent tumour challenge in a vaccination model and resulted in eradication of established tumours in a therapeutic approach. These results show that the beneficial effect of FLT3L is associated with the induction of mcDC and suggests that selective targeting to mcDC or instilling mcDC 'characteristics' into conventional DC populations could significantly enhance the efficacy of tumour vaccines.
Collapse
Affiliation(s)
- C M Hennies
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
35
|
de Brito C, Tomkowiak M, Ghittoni R, Caux C, Leverrier Y, Marvel J. CpG Promotes Cross-Presentation of Dead Cell-Associated Antigens by Pre-CD8α+Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:1503-11. [DOI: 10.4049/jimmunol.1001022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Bansal GP, Leitner WW. Innate immunity in HIV infection and implications for vaccine design: A summary of the workshop held at the National Institute of Allergy and Infectious Diseases, Bethesda on February 25–26, 2010. Vaccine 2010; 28:8229-35. [DOI: 10.1016/j.vaccine.2010.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
37
|
Reboulet RA, Hennies CM, Garcia Z, Nierkens S, Janssen EM. Prolonged antigen storage endows merocytic dendritic cells with enhanced capacity to prime anti-tumor responses in tumor-bearing mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:3337-47. [PMID: 20720209 DOI: 10.4049/jimmunol.1001619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor cell vaccination with irradiated autologous tumor cells is a promising approach to activate tumor-specific T cell responses without the need for tumor Ag identification. However, uptake of dying cells by dendritic cells (DCs) is generally a noninflammatory or tolerizing event to prevent the development of autoreactive immune responses. In this study, we describe the mechanisms that confer the potent T cell priming capacity of a recently identified a population of DCs (merocytic DCs [mcDCs]) that potently primes both CD8(+) and CD4(+) T cells to cell-associated Ags upon uptake of apoptotic cells. mcDCs acquired cell-associated materials through a process of merocytosis that is defined by the uptake of small particles that are stored in nonacidic compartments for prolonged periods, sustained Ag presentation, and the induction of type I IFN. T cells primed by mcDCs to cell-associated Ags exhibit increased primary expansion, enhanced effector function, and increased memory formation. By using transgenic T cell transfer models and endogenous models, we show that treatment of tumor-bearing mice with mcDCs that have been exposed to dying tumor cells results in tumor suppression and increased host survival through the activation of naive tumor-specific CD8(+) T cells as well as the reinvigoration of tumor-specific T cells that had been rendered nonresponsive by the tumor in vivo. The potent capacity of mcDCs to prime both CD4(+) and CD8(+) T cells to cell-associated Ags under immunosuppressive conditions makes this DC subset an attractive target for tumor therapies as well as interventional strategies for autoimmunity and transplantation.
Collapse
Affiliation(s)
- Rachel A Reboulet
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
38
|
Katz JD, Ondr JK, Opoka RJ, Garcia Z, Janssen EM. Cutting edge: merocytic dendritic cells break T cell tolerance to beta cell antigens in nonobese diabetic mouse diabetes. THE JOURNAL OF IMMUNOLOGY 2010; 185:1999-2003. [PMID: 20644171 DOI: 10.4049/jimmunol.1001398] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In type 1 diabetes, the breach of central and peripheral tolerance results in autoreactive T cells that destroy insulin-producing, pancreatic beta cells. In this study, we identify a critical subpopulation of dendritic cells responsible for mediating both the cross-presentation of islet Ags to CD8(+) T cells and the direct presentation of beta cell Ags to CD4(+) T cells. These cells, termed merocytic dendritic cells (mcDCs), are more numerous in the NOD mouse and, when Ag-loaded, rescue CD8(+) T cells from peripheral anergy and deletion while stimulating islet-reactive CD4(+) T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDCs break peripheral T cell tolerance to beta cells in vivo and induce rapid onset type 1 diabetes in the young NOD mouse. Thus, the mcDC subset appears to represent the long-sought APC responsible for breaking peripheral tolerance to beta cell Ags in vivo.
Collapse
Affiliation(s)
- Jonathan D Katz
- Division of Endocrinology, Diabetes Research Center, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
39
|
Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 2010; 70:2697-706. [PMID: 20215523 DOI: 10.1158/0008-5472.can-09-2982] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation therapy is one of the primary treatment modalities for cancer along with chemotherapy and surgical therapy. The main mechanism of the tumor reduction after irradiation has been considered to be damage to the tumor DNA. However, we found that tumor-specific CTL, which were induced in the draining lymph nodes (DLN) and tumor tissue of tumor-bearing mice, play a crucial role in the inhibition of tumor growth by radiation. Indeed, the therapeutic effect of irradiation was almost completely abolished in tumor-bearing mice by depleting CD8(+) T cells through anti-CD8 monoclonal antibody administration. In mice whose DLN were surgically ablated or genetically defective (Aly/Aly mice), the generation of tetramer(+) tumor-specific CTL at the tumor site was greatly reduced in parallel with the attenuation of the radiation-induced therapeutic effect against the tumor. This indicates that DLN are essential for the activation and accumulation of radiation-induced CTL, which are essential for inhibition of the tumor. A combined therapy of local radiation with Th1 cell therapy augmented the generation of tumor-specific CTL at the tumor site and induced a complete regression of the tumor, although radiation therapy alone did not exhibit such a pronounced therapeutic effect. Thus, we conclude that the combination treatment of local radiation therapy and Th1 cell therapy is a rational strategy to augment antitumor activity mediated by tumor-specific CTL.
Collapse
Affiliation(s)
- Tsuguhide Takeshima
- Department of Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Evidence strongly suggests that excessive or protracted signaling, or both, by cell-surface or intracellular innate immune receptors is central to the pathogenesis of most autoimmune and autoinflammatory rheumatic diseases. The initiation of aberrant innate and adaptive immune responses in autoimmune diseases can be triggered by microbes and, at times, by endogenous molecules--particularly nucleic acids and related immune complexes--under sterile conditions. By contrast, most autoinflammatory syndromes are generally dependent on germline or de novo gene mutations that cause or facilitate inflammasome assembly. The consequent production of proinflammatory cytokines, principally interferon-alpha/beta and tumor necrosis factor in autoimmune diseases, and interleukin-1beta in autoinflammatory diseases, leads to the creation of autoamplification feedback loops and chronicity of these syndromes. These findings have resulted in a critical reappraisal of pathogenetic mechanisms, and provide a basis for the development of novel diagnostic and therapeutic modalities for these diseases.
Collapse
|
41
|
van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, Larma I, Prosser A, Robinson BWS, Smyth MJ, Scalzo AA, Degli-Esposti MA, Lake RA. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 2009; 4:e6982. [PMID: 19746156 PMCID: PMC2734989 DOI: 10.1371/journal.pone.0006982] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/19/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. CONCLUSION The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.
Collapse
Affiliation(s)
- Robbert G. van der Most
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| | - Andrew J. Currie
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amanda L. Cleaver
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Joanne Salmons
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Sathish Mahendran
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Irma Larma
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amy Prosser
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Bruce W. S. Robinson
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Mark J. Smyth
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Mariapia A. Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Richard A. Lake
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| |
Collapse
|
42
|
Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 2009; 458:899-903. [PMID: 19219027 PMCID: PMC2671489 DOI: 10.1038/nature07750] [Citation(s) in RCA: 579] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/16/2009] [Accepted: 12/23/2008] [Indexed: 02/06/2023]
Abstract
Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.
Collapse
|
43
|
Barnes MJ, Krebs P, Harris N, Eidenschenk C, Gonzalez-Quintial R, Arnold CN, Crozat K, Sovath S, Moresco EM, Theofilopoulos AN, Beutler B, Hoebe K. Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 2009; 7:e51. [PMID: 19260764 PMCID: PMC2650725 DOI: 10.1371/journal.pbio.1000051] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 01/19/2009] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells expressing forkhead box P3 (Foxp3) arise during thymic selection among thymocytes with modestly self-reactive T cell receptors. In vitro studies suggest Foxp3 can also be induced among peripheral CD4+ T cells in a cytokine dependent manner. Treg cells of thymic or peripheral origin may serve different functions in vivo, but both populations are phenotypically indistinguishable in wild-type mice. Here we show that mice with a Carma1 point mutation lack thymic CD4+Foxp3+ Treg cells and demonstrate a cell-intrinsic requirement for CARMA1 in thymic Foxp3 induction. However, peripheral Carma1-deficient Treg cells could be generated and expanded in vitro in response to the cytokines transforming growth factor beta (TGFβ) and interleukin-2 (IL-2). In vivo, a small peripheral Treg pool existed that was enriched at mucosal sites and could expand systemically after infection with mouse cytomegalovirus (MCMV). Our data provide genetic evidence for two distinct mechanisms controlling regulatory T cell lineage commitment. Furthermore, we show that peripheral Treg cells are a dynamic population that may expand to limit immunopathology or promote chronic infection. In mammals, CD4+ T cells are essential for controlling infections, but have the potential to attack host tissues as well, resulting in autoimmune disease. A subset of CD4+ T cells, regulatory T cells (Treg)—identified by the expression of the forkhead transcription factor Foxp3—serve to prevent immunopathology by dampening immune responses. These cells are unique among CD4+ T cell subsets, as only the Treg lineage can develop in both the thymus and periphery. Using a genetic approach, we identified a mutation in the gene Carma1, a key component of T and B cell signaling, which in mice distinguishes Treg cells derived from the periphery from thymic-derived regulatory T cells. The mutation caused an absence of thymic Treg cells. However, a small population of Treg cells was observed in the spleen, lymph nodes, and colon of Carma1-mutant mice that expanded after viral infection, suggesting that peripheral development of Treg cells could still occur. Indeed, Carma1-mutant CD4+ T cells could be converted into the Treg lineage in vitro. Our results demonstrate an organ-specific requirement for the CARMA1 signaling pathway that developing thymocytes need in order to become Treg cells, but that naïve CD4+ T cells can bypass in the periphery. This dichotomy suggests that Treg cells of thymic or peripheral origin may have different specificities or functions in vivo. The organ-specific requirement for CARMA1-dependent signaling in the thymus suggests that regulatory T cells of thymic or peripheral origin may have different roles in vivo.
Collapse
Affiliation(s)
- Michael J Barnes
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (MJB); (KH)
| | - Philippe Krebs
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathaniel Harris
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Celine Eidenschenk
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rosana Gonzalez-Quintial
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carrie N Arnold
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Karine Crozat
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sosathya Sovath
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eva Marie Moresco
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bruce Beutler
- Department of Genetics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kasper Hoebe
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail: (MJB); (KH)
| |
Collapse
|
44
|
NK-cell-mediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses. Blood 2009; 113:6593-602. [PMID: 19406986 DOI: 10.1182/blood-2009-01-201467] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work showed that administration of antigen-expressing apoptotic cells in vivo results in antigen-specific CD8+ T-cell responses independent of Toll-like receptor signaling. We report here that natural killer (NK) cells can serve a function directly upstream of this pathway and initiate robust adaptive immune responses via killing of antigen-expressing target cells. This pathway is highly sensitive, in that administration of as few as 10(4) target cells induced detectable antigen-specific CD8+ T-cell responses. Importantly, NK cell-mediated cytotoxicity of target cells could also induce robust antigen-specific CD4+ T-cell responses, which were critical for subsequent CD8+ T-cell priming and IgG responses. Unlike adaptive immune responses induced by gamma-irradiated cells, the NK-cell pathway required myeloid differentiating factor 88 (MyD88) and Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-beta (Trif) signaling. NK cells have previously been shown to detect and kill pathogen-infected host cells, as well as neoplastic cells and tissue allografts. The present data provide further evidence that they also discharge a strong tie with their relatives in the adaptive immune system. We think that the recognition and killing of target cells by NK cells represents an important pathway for the generation of robust CD8+ T and humoral responses that may be exploited for vaccine development.
Collapse
|
45
|
Lohmann C, Muschaweckh A, Kirschnek S, Jennen L, Wagner H, Häcker G. Induction of Tumor Cell Apoptosis or Necrosis by Conditional Expression of Cell Death Proteins: Analysis of Cell Death Pathways and In Vitro Immune Stimulatory Potential. THE JOURNAL OF IMMUNOLOGY 2009; 182:4538-46. [DOI: 10.4049/jimmunol.0803989] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance. Proc Natl Acad Sci U S A 2009; 106:3901-6. [PMID: 19234128 DOI: 10.1073/pnas.0810427106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autoimmune diseases tend to be chronic and progressive, but how these responses are sustained is not clear. One cell type that might contribute to autoimmunity is the cytotoxic T lymphocyte (CTL), which, as a consequence of causing tissue destruction and production of cytokines, could provide a sustained supply of antigen and inflammatory signals for dendritic cells to maintain immune stimulation. Here we examined whether such CTL-mediated tissue damage alone could provide antigen in the right context to recruit immune effectors and sustain autoimmunity. We show that while CTL-mediated tissue damage caused the release of self-antigens that stimulated the proliferation of naive autoreactive CD8(+) T cells, such responses failed to precipitate disease and, instead, led to deletional tolerance. These findings indicate that despite the capacity of CTLs to produce inflammatory cytokines and to cause tissue damage, their responses are not sustaining, but instead favor induction of self-tolerance.
Collapse
|
47
|
Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 2009; 16:991-1005. [PMID: 19229247 DOI: 10.1038/cdd.2009.8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cross-presentation of cell-associated antigen is important in the priming of CD8(+) T-cell responses to proteins that are not expressed by antigen-presenting cells (APCs). In vivo, dendritic cells are the main cross-presenting APC, and much is known regarding their ability to capture and process cell-associated antigen. In contrast, little is known about the way death effector pathways influence the efficiency of cross-priming. Here, we compared two important mechanisms of programmed cell death: classical apoptosis, as it occurs in wild-type (WT) fibroblasts, and caspase-independent cell death, which occurs with increased features of autophagy in Bax/Bak(-/-) fibroblasts. We assessed virally infected WT and Bax/Bak(-/-) fibroblasts as a source of cell-associated antigen. We found that immunization with cells undergoing autophagy before cell death was superior in facilitating the cross-priming of antigen-specific CD8(+) T cells. Strikingly, silencing of Atg5 expression inhibited priming. We interpret this to be a novel form of 'immunogenic death' with the enhanced priming efficiency being a result of persistent MHC I cross-presentation and the induction of type I interferons. These results offer the first molecular evidence that catabolic pathways, including autophagy, influence the efficiency of cross-priming. We predict that targeting the autophagy cascade may provide a therapeutic strategy for achieving robust cross-priming of viral and tumor-specific CD8(+) T cells.
Collapse
|
48
|
Cerovic V, McDonald V, Nassar MA, Paulin SM, Macpherson GG, Milling SWF. New insights into the roles of dendritic cells in intestinal immunity and tolerance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:33-105. [PMID: 19121816 DOI: 10.1016/s1937-6448(08)01602-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a critical key role in the initiation of immune responses to pathogens. Paradoxically, they also prevent potentially damaging immune responses being directed against the multitude of harmless antigens, to which the body is exposed daily. These roles are particularly important in the intestine, where only a single layer of epithelial cells provides a barrier against billions of commensal microorganisms, pathogens, and food antigens, over a huge surface area. In the intestine, therefore, DCs are required to perform their dual roles very efficiently to protect the body from the dual threats of invading pathogens and unwanted inflammatory reactions. In this review, we first describe the biology of DCs and their interactions with other cells types, paying particular attention to intestinal DCs. We, then, examine the ways in which this biology may become misdirected, resulting in inflammatory bowel disease. Finally, we discuss how DCs potentiate immune responses against viral, bacterial, parasitic infections, and their importance in the pathogenesis of prion diseases. We, therefore, provide an overview of the complex cellular interactions that affect intestinal DCs and control the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Vuk Cerovic
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Livingstone AM, Wilson EB, Ontiveros F, Wang JCE. Unravelling the mechanisms of help for CD8+ T cell responses. Immunol Res 2009; 45:209-17. [PMID: 19224140 DOI: 10.1007/s12026-009-8102-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CD8+ T cells are critically important for immune defense against many viral and bacterial pathogens, and are also key components of cancer immunotherapy. Help from CD4+ T cells is usually essential for optimal CD8+ T cell responses, driving the primary response, the survival of memory cells, and the generation of protective and therapeutic immunity. Understanding the mechanisms of help is thus essential for vaccine design, and for restoring protective immunity in immunosuppressed individuals. Our laboratory has developed an immunization protocol using peptide-pulsed dendritic cells to stimulate help-dependent primary, memory, and secondary CD8+ T cell responses. We have used gene-targeted and T cell receptor transgenic mice to identify two distinct pathways that generate help-dependent and help-independent CD8+ T cell responses, respectively, and are now starting to define the molecular mechanisms underlying these two pathways.
Collapse
Affiliation(s)
- Alexandra M Livingstone
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Rochester, NY, USA.
| | | | | | | |
Collapse
|
50
|
Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP. Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:8120-32. [PMID: 19018005 DOI: 10.4049/jimmunol.181.11.8120] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
More than 20 years ago clinical investigations in the immunotherapy of cancer revealed that infusion of certain immunotherapeutic mAbs directed to tumor cells induced loss of targeted epitopes. This phenomenon, called antigenic modulation, can compromise mAb-based therapies. Recently we reported that rituximab (RTX) treatment of chronic lymphocytic leukemia patients induced substantial loss of targeted CD20 on B cells found in the circulation after RTX infusion; this "shaving" of RTX-CD20 complexes from B cells is also promoted in vitro by THP-1 monocytes and by PBMC in a reaction mediated by Fcgamma receptors. The mechanism responsible for shaving appears to be trogocytosis, a process in which receptors on effector cells remove and internalize cognate ligands and cell membrane fragments from target cells. We now report that three therapeutic mAbs approved by the U.S. Food and Drug Administration for the treatment of cancer, RTX, cetuximab, and trastuzumab, as well as mAb T101, which has been shown to induce antigenic modulation in the clinic, promote trogocytosis in vitro upon binding to their respective target cells. Trogocytosis of the mAb-opsonized cells is mediated by THP-1 monocytes and by primary monocytes isolated from PBMC. In view of these results, it is likely that these mAbs and possibly other anticancer mAbs now used in the clinic may promote trogocytic removal of the therapeutic mAbs and their cognate Ags from tumor cells in vivo. Our findings may have important implications with respect to the use of mAbs in cancer immunotherapy.
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|