1
|
Huse M. Mechanoregulation of lymphocyte cytotoxicity. Nat Rev Immunol 2025:10.1038/s41577-025-01173-2. [PMID: 40312550 DOI: 10.1038/s41577-025-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Cytotoxic lymphocytes counter intracellular pathogens and cancer by recognizing and destroying infected or transformed target cells. The basis for their function is the cytolytic immune synapse, a structurally stereotyped cell-cell interface through which lymphocytes deliver toxic proteins to target cells. The immune synapse is a highly dynamic contact capable of exerting nanonewton-scale forces against the target cell. In recent years, it has become clear that the interplay between these forces and the biophysical properties of the target influences the entirety of the cytotoxic response, from the initial activation of cytotoxic lymphocytes to the release of dying target cells. As a result, cellular cytotoxicity has become an exemplar of the ways in which biomechanics can regulate immune cell activation and effector function. This Review covers recent progress in this area, which has prompted a reconsideration of target cell killing from a more mechanobiological perspective.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Wan Y, Hudson R, Smith J, Forman-Kay JD, Ditlev JA. Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes. Proc Natl Acad Sci U S A 2025; 122:e2424470122. [PMID: 40063811 PMCID: PMC11929494 DOI: 10.1073/pnas.2424470122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters. However, the contributions of multivalent protein and lipid interactions to cluster formation are not well understood. Using a combination of computational modeling and biochemical reconstitution assays, we demonstrate that multivalent interactions with CFTR protein binding partners, calcium, and membrane cholesterol can induce mesoscale CFTR cluster formation on model membranes. Phosphorylation of the intracellular domains of CFTR also promotes mesoscale cluster formation in the absence of calcium, indicating that multiple mechanisms can contribute to CFTR cluster formation. Our findings reveal that coupling of multivalent protein and lipid interactions promotes CFTR cluster formation consistent with membrane-associated biological phase separation.
Collapse
Affiliation(s)
- Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Rhea Hudson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jordyn Smith
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jonathon A. Ditlev
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Program in Cell and Systems Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
3
|
Kotzer HN, Capera J, Jainarayanan A, Mayya V, Zanin-Zhorov A, Valvo S, Macdonald J, Taylor PC, Dustin ML. STAT3 phosphorylation in the rheumatoid arthritis immunological synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633875. [PMID: 39896614 PMCID: PMC11785017 DOI: 10.1101/2025.01.20.633875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Targeting the JAK/STAT pathway has emerged as a key therapeutic strategy for managing Rheumatoid Arthritis (RA). JAK inhibitors suppress cytokine-mediated signaling, including the critical IL-6/STAT3 axis, thereby effectively targeting different aspects of the pathological process. However, despite their clinical efficacy, a subset of RA patients remains refractory to JAK inhibition, underscoring the need for alternative approaches. Here, we identify a novel JAK-independent mechanism of STAT3 activation, which is triggered by the formation of the immunological synapse (IS) in naïve CD4+ T cells. Our data demonstrates that Lck mediates the TCR-dependent phosphorylation of STAT3 at the IS, highlighting this pathway as a previously unrecognized hallmark of early T cell activation. Furthermore, we show that the synaptic Lck/TCR-STAT3 pathway is compromised in RA. This discovery highlights a new therapeutic target for RA beyond JAK inhibitors, offering potential avenues for treating patients resistant to current therapies.
Collapse
Affiliation(s)
- Hila Novak Kotzer
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Jesusa Capera
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Viveka Mayya
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Alexandra Zanin-Zhorov
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Joanne Macdonald
- Botnar Institute for Musculoskeletal Sciences, NDORMS, University of Oxford, Oxford, OX3 7LD UK
| | - Peter C. Taylor
- Botnar Institute for Musculoskeletal Sciences, NDORMS, University of Oxford, Oxford, OX3 7LD UK
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| |
Collapse
|
4
|
Wilander BA, Harris TL, Mandarano AH, Guy CS, Prater MS, Pruett-Miller SM, Ogden SK, McGargill MA. DRAK2 regulates myosin light chain phosphorylation in T cells. J Cell Sci 2024; 137:jcs261813. [PMID: 39421891 DOI: 10.1242/jcs.261813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2; also known as STK17B) is a serine/threonine kinase expressed in T cells. Drak2-deficient (Drak2-/-) mice respond effectively to tumors and pathogens while displaying resistance to T cell-mediated autoimmune disease. However, the molecular mechanisms by which DRAK2 impacts T cell function remain unclear. Gaining further insight into the function of DRAK2 in T cells will shed light on differentially regulated pathways in autoreactive and pathogen-specific T cells, which is crucial for improving autoimmune therapies. Here, we demonstrate that DRAK2 contributes to activation of myosin light chain (MLC2, encoded by Myl2) in both murine and human T cells. In the absence of Drak2, the amount of polymerized actin was decreased, suggesting that DRAK2 modulates actomyosin dynamics. We further show that myosin-dependent T cell functions, such as migration, T cell receptor microcluster accumulation, and conjugation to antigen presenting cells are decreased in the absence of Drak2. These findings reveal that DRAK2 plays an important role in regulating MLC activation within T cells.
Collapse
Affiliation(s)
- Benjamin A Wilander
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tarsha L Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra H Mandarano
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mollie S Prater
- The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Neve-Oz Y, Sherman E, Raveh B. Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns. Front Immunol 2024; 15:1412221. [PMID: 39524449 PMCID: PMC11543436 DOI: 10.3389/fimmu.2024.1412221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
T cells respond swiftly, specifically, sensitively, and robustly to cognate antigens presented on the surface of antigen presenting cells. Existing microscopic models capture various aspects of early T-cell antigen receptor (TCR) signaling at the molecular level. However, none of these models account for the totality of the data, impeding our understanding of early T-cell activation. Here, we study early TCR signaling using Bayesian metamodeling, an approach for systematically integrating multiple partial models into a metamodel of a complex system. We inform the partial models using multiple published super-resolution microscopy datasets. Collectively, these datasets describe the spatiotemporal organization, activity, interactions, and dynamics of TCR, CD45 and Lck signaling molecules in the early-forming immune synapse, and the concurrent membrane alterations. The resulting metamodel accounts for a distinct nanoscale dynamic pattern that could not be accounted for by any of the partial models on their own: a ring of phosphorylated TCR molecules, enriched at the periphery of early T cell contacts and confined by a proximal ring of CD45 molecules. The metamodel suggests this pattern results from limited activity range for the Lck molecules, acting as signaling messengers between kinetically-segregated TCR and CD45 molecules. We assessed the potential effect of Lck activity range on TCR phosphorylation and robust T cell activation for various pMHC:TCR association strengths, in the specific setting of an initial contact. We also inspected the impact of localized Lck inhibition via Csk recruitment to pTCRs, and that of splicing isoforms of CD45 on kinetic segregation. Due to the inherent scalability and adaptability of integrating independent partial models via Bayesian metamodeling, this approach can elucidate additional aspects of cell signaling and decision making.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. Cell Rep 2024; 43:114761. [PMID: 39276348 PMCID: PMC11452322 DOI: 10.1016/j.celrep.2024.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close-contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
Affiliation(s)
- Fenglei Li
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Niculcea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Keith Gould
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Kaushik Choudhuri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Barton MI, Paterson RL, Denham EM, Goyette J, van der Merwe PA. Ligand requirements for immunoreceptor triggering. Commun Biol 2024; 7:1138. [PMID: 39271744 PMCID: PMC11399299 DOI: 10.1038/s42003-024-06817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Leukocytes interact with other cells using cell surface receptors. The largest group of such receptors are non-catalytic tyrosine phosphorylated receptors (NTRs), also called immunoreceptors. NTR signalling requires phosphorylation of cytoplasmic tyrosine residues by SRC-family tyrosine kinases. How ligand binding to NTRs induces this phosphorylation, also called NTR triggering, remains controversial, with roles suggested for size-based segregation, clustering, and mechanical force. Here we exploit a recently developed cell-surface generic ligand system to explore the ligand requirements for NTR triggering. We examine the effect of varying the ligand's length, mobility and valency on the activation of representative members of four NTR families: SIRPβ1, Siglec 14, NKp44 and TREM-1. Increasing the ligand length impairs activation via NTRs, despite enhancing cell-cell conjugation, while varying ligand mobility has little effect on either conjugation or activation. Increasing the valency of the ligand, while enhancing cell-cell conjugation, does not enhance activation at equivalent levels of conjugation. These findings are more consistent with a role for size-based segregation, rather than mechanical force or clustering, in NTR triggering, suggesting a role for the kinetic-segregation model.
Collapse
Affiliation(s)
- Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rachel L Paterson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Barco, Portugal
| | - Eleanor M Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Enara Bio, The Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, UK
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
8
|
Fritzsche M, Kruse K. Mechanical force matters in early T cell activation. Proc Natl Acad Sci U S A 2024; 121:e2404748121. [PMID: 39240966 PMCID: PMC11406235 DOI: 10.1073/pnas.2404748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Mechanical force has repeatedly been highlighted to be involved in T cell activation. However, the biological significance of mechanical force for T cell receptor signaling remains under active consideration. Here, guided by theoretical analysis, we provide a perspective on how mechanical forces between a T cell and an antigen-presenting cell can influence the bond of a single T cell receptor major histocompatibility complex during early T cell activation. We point out that the lifetime of T cell receptor bonds and thus the degree of their phosphorylation which is essential for T cell activation depends considerably on the T cell receptor rigidity and the average magnitude and frequency of an applied oscillatory force. Such forces could be, for example, produced by protrusions like microvilli during early T cell activation or invadosomes during full T cell activation. These features are suggestive of mechanical force being exploited by T cells to advance self-nonself discrimination in early T cell activation.
Collapse
Affiliation(s)
- Marco Fritzsche
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX37FY, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
9
|
Mühlgrabner V, Peters T, Velasco Cárdenas RMH, Salzer B, Göhring J, Plach A, Höhrhan M, Perez ID, Goncalves VDR, Farfán JS, Lehner M, Stockinger H, Schamel WW, Schober K, Busch DH, Hudecek M, Dushek O, Minguet S, Platzer R, Huppa JB. TCR/CD3-based synthetic antigen receptors (TCC) convey superior antigen sensitivity combined with high fidelity of activation. SCIENCE ADVANCES 2024; 10:eadj4632. [PMID: 39231214 PMCID: PMC11373591 DOI: 10.1126/sciadv.adj4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Low antigen sensitivity and a gradual loss of effector functions limit the clinical applicability of chimeric antigen receptor (CAR)-modified T cells and call for alternative antigen receptor designs for effective T cell-based cancer immunotherapy. Here, we applied advanced microscopy to demonstrate that TCR/CD3-based synthetic constructs (TCC) outperform second-generation CAR formats with regard to conveyed antigen sensitivities by up to a thousandfold. TCC-based antigen recognition occurred without adverse nonspecific signaling, which is typically observed in CAR-T cells, and did not depend-unlike sensitized peptide/MHC detection by conventional T cells-on CD4 or CD8 coreceptor engagement. TCC-endowed signaling properties may prove critical when targeting antigens in low abundance and aiming for a durable anticancer response.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rubí M.-H. Velasco Cárdenas
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Benjamin Salzer
- St. Anna Children’s Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Höhrhan
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Iago Doel Perez
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | - Jesús Siller Farfán
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Manfred Lehner
- St. Anna Children’s Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - René Platzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes B. Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
10
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
11
|
Hong Y, Kwak K. Both sides now: evolutionary traits of antigens and B cells in tolerance and activation. Front Immunol 2024; 15:1456220. [PMID: 39185403 PMCID: PMC11341355 DOI: 10.3389/fimmu.2024.1456220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
B cells are the cornerstone of our body's defense system, producing precise antibodies and safeguarding immunological memory for future protection against pathogens. While we have a thorough understanding of how naïve B cells differentiate into plasma or memory B cells, the early B cell response to various antigens-whether self or foreign-remains a thrilling and evolving area of study. Advances in imaging have illuminated the molecular intricacies of B cell receptor (BCR) signaling, yet the dynamic nature of B cell activation continues to reveal new insights based on the nature of antigen exposure. This review explores the evolutionary journey of B cells as they adapt to the unique challenges presented by pathogens. We begin by examining the specific traits of antigens that influence their pathogenic potential, then shift our focus to the distinct characteristics of B cells that counteract these threats. From foundational discoveries to the latest cutting-edge research, we investigate how B cells are effectively activated and distinguish between self and non-self antigens, ensuring a balanced immune response that defends against pathogenic diseases but not self-antigens.
Collapse
Affiliation(s)
- Youngjae Hong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
13
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
14
|
Saed B, Ramseier NT, Perera T, Anderson J, Burnett J, Gunasekara H, Burgess A, Jing H, Hu YS. Increased vesicular dynamics and nanoscale clustering of IL-2 after T cell activation. Biophys J 2024; 123:2343-2353. [PMID: 38532626 PMCID: PMC11331045 DOI: 10.1016/j.bpj.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy. Live-cell imaging revealed that in vitro activation resulted in increased vesicular dynamics. Direct stochastic optical reconstruction microscopy and 3D structured illumination microscopy revealed nanoscale clustering of IL-2. In vitro activation correlated with spatial accumulation of IL-2 nanoclusters into more pronounced and elongated clusters. These observations provide visual evidence that accelerated vesicular transport and spatial concatenation of IL-2 clusters at the nanoscale may constitute a potential mechanism for modulating cytokine release by Jurkat T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Neal T Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | | | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
16
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
Hamid MHBA, Cespedes PF, Jin C, Chen JL, Gileadi U, Antoun E, Liang Z, Gao F, Teague R, Manoharan N, Maldonado-Perez D, Khalid-Alham N, Cerundolo L, Ciaoca R, Hester SS, Pinto-Fernández A, Draganov SD, Vendrell I, Liu G, Yao X, Kvalvaag A, Dominey-Foy DCC, Nanayakkara C, Kanellakis N, Chen YL, Waugh C, Clark SA, Clark K, Sopp P, Rahman NM, Verrill C, Kessler BM, Ogg G, Fernandes RA, Fisher R, Peng Y, Dustin ML, Dong T. Unconventional human CD61 pairing with CD103 promotes TCR signaling and antigen-specific T cell cytotoxicity. Nat Immunol 2024; 25:834-846. [PMID: 38561495 PMCID: PMC11065694 DOI: 10.1038/s41590-024-01802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Apyrase
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Integrin alpha Chains/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Megat H B A Hamid
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pablo F Cespedes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chen Jin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Li Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elie Antoun
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zhu Liang
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Fei Gao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Renuka Teague
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nikita Manoharan
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Maldonado-Perez
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nasullah Khalid-Alham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raul Ciaoca
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Svenja S Hester
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Adán Pinto-Fernández
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Simeon D Draganov
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Guihai Liu
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Molecular Cell Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Charunya Nanayakkara
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Kanellakis
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Yi-Ling Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Najib M Rahman
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Clare Verrill
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Benedikt M Kessler
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graham Ogg
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fisher
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Yanchun Peng
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Yang C, Wang X, To KKW, Cui C, Luo M, Wu S, Huang L, Fu K, Pan C, Liu Z, Fan T, Yang C, Wang F, Fu L. Circulating tumor cells shielded with extracellular vesicle-derived CD45 evade T cell attack to enable metastasis. Signal Transduct Target Ther 2024; 9:84. [PMID: 38575583 PMCID: PMC10995208 DOI: 10.1038/s41392-024-01789-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Caimei Cui
- LABVIV Technology (Shenzhen) Co., Ltd, Shenzhen, 518057, China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Lamei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Teng Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Caibo Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
19
|
Mumford TR, Rae D, Brackhahn E, Idris A, Gonzalez-Martinez D, Pal AA, Chung MC, Guan J, Rhoades E, Bugaj LJ. Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter. Cell Syst 2024; 15:166-179.e7. [PMID: 38335954 PMCID: PMC10947474 DOI: 10.1016/j.cels.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diarmid Rae
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Brackhahn
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abbas Idris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ayush Aditya Pal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Chung
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Juan Guan
- Department of Physics, University of Florida, Gainesville, FL 32611, USA; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
21
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
22
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Dustin ML. Recent advances in understanding TCR signaling: a synaptic perspective. Fac Rev 2023; 12:25. [PMID: 37900153 PMCID: PMC10608137 DOI: 10.12703/r/12-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
The T cell receptor is a multi-subunit complex that carries out a range of recognition tasks for multiple lymphocyte types and translates recognition into signals that regulate survival, growth, differentiation, and effector functions for innate and adaptive host defense. Recent advances include the cryo-electron microscopy-based structure of the extracellular and transmembrane components of the complex, new information about coupling to intracellular partners, lateral associations in the membrane that all add to our picture of the T cell signaling machinery, and how signal termination relates to effector function. This review endeavors to integrate structural and biochemical information through the lens of the immunological synapse- the critical interface with the antigen-presenting cell.
Collapse
Affiliation(s)
- Michael L Dustin
- Kennedy Institute of Rheumatology, The University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Ockfen E, Filali L, Pereira Fernandes D, Hoffmann C, Thomas C. Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both? Front Immunol 2023; 14:1276602. [PMID: 37869010 PMCID: PMC10585106 DOI: 10.3389/fimmu.2023.1276602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.
Collapse
Affiliation(s)
- Elena Ockfen
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Diogo Pereira Fernandes
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
26
|
Mandal S, Melo M, Gordiichuk P, Acharya S, Poh YC, Li N, Aung A, Dane EL, Irvine DJ, Kumari S. WASP facilitates tumor mechanosensitivity in T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560434. [PMID: 37873483 PMCID: PMC10592916 DOI: 10.1101/2023.10.02.560434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear. We find that CTL's mechanosensitive ability requires the activity of the actin-organizing protein Wiskott-Aldrich Syndrome Protein (WASP). WASP activation is modulated by the mechanical properties of antigen-presenting contexts across a wide range of target cell stiffnesses and activated WASP then mediates mechanosensitive activation of early TCR signaling markers in the CTL. Our results provide a molecular link between antigen mechanosensing and CTL immune response and suggest that CTL-intrinsic cytoskeletal organizing principles enable the processing of mechanical information from diverse target cells.
Collapse
Affiliation(s)
| | - Mariane Melo
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | | | | | - Yeh-Chuin Poh
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Na Li
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Aereas Aung
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Eric L. Dane
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Darrell J. Irvine
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
- Department of Biological Engineering, MIT, Cambridge, USA
- Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sudha Kumari
- Indian Institute of Science, Bengaluru, India
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| |
Collapse
|
27
|
Li F, Choudhuri K. Membrane positioning across antigen-induced synaptic contacts tunes CAR-T cell signaling and effector responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560371. [PMID: 37873179 PMCID: PMC10592847 DOI: 10.1101/2023.10.01.560371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tumor antigen recognition by chimeric antigen receptors (CAR) triggers phosphorylation of their cytoplasmic portions resulting in CAR-T cell activation. We and others have shown that immunoreceptor triggering depends on the formation of close synaptic contacts, determined by the span of immunoreceptor-ligand complexes, from which large inhibitory phosphatases such as CD45 are sterically excluded. Here, we show, varying CAR-antigen complex span, that CAR-T cell activation depends on a formation of close contacts with target cells. CAR-antigen complexes with a span of 4 immunoglobulin superfamily (IgSF) domains maximize CAR-T cell activation, closely matching the span of endogenous TCR-pMHC complexes. Longer CAR-antigen complexes precipitously reduced triggering and cytokine production, but notably, anti-tumor cytotoxicity was largely preserved due to a ∼10-fold lower signaling threshold for mobilization of cytolytic effector function. Increased intermembrane spacing disrupted short-spanned PD-1-PD- L1 interactions, reducing CAR-T cell exhaustion. Together, our results show that membrane positioning across the immunological synapse can be engineered to generate CAR-T cells with clinically desirable functional profiles in vitro and in vivo .
Collapse
|
28
|
Jaeger M, Anastasio A, Chamy L, Brustlein S, Vincentelli R, Durbesson F, Gigan J, Thépaut M, Char R, Boussand M, Lechelon M, Argüello RJ, Marguet D, He HT, Lasserre R. Light-inducible T cell engagers trigger, tune, and shape the activation of primary T cells. Proc Natl Acad Sci U S A 2023; 120:e2302500120. [PMID: 37722050 PMCID: PMC10523538 DOI: 10.1073/pnas.2302500120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR). The LiTE system constitutes a reversible molecular switch displaying exquisite reactivity. As proof of concept, we dissect how specific temporal patterns of TCR stimulation shape T cell activation. We established that CD4+ T cells respond to intermittent TCR stimulation more efficiently than their CD8+ T cells counterparts and provide evidence that distinct sequences of TCR stimulation encode different cytokine programs. Finally, we show that the LiTE system could be exploited to create light-activated bispecific T cell engagers and manipulate tumor cell killing. Overall, the LiTE system provides opportunities to understand how T cells integrate TCR stimulations and to trigger T cell cytotoxicity with high spatiotemporal control.
Collapse
Affiliation(s)
- Morgane Jaeger
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Amandine Anastasio
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Léa Chamy
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Sophie Brustlein
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de neurobiologie de la Méditerranée, Turing Center for Living Systems, 13 273Marseille, France
| | - Renaud Vincentelli
- Aix Marseille Université, Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, 13 288Marseille, France
| | - Fabien Durbesson
- Aix Marseille Université, Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, 13 288Marseille, France
| | - Julien Gigan
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Morgane Thépaut
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Rémy Char
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Maud Boussand
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Mathias Lechelon
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Rafael J. Argüello
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Didier Marguet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Hai-Tao He
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| | - Rémi Lasserre
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille Luminy, Turing Center for Living Systems, 13 288Marseille, France
| |
Collapse
|
29
|
Abstract
T cell activation is initiated by the recognition of specific antigenic peptides and subsequently accomplished by complex signaling cascades. These aspects have been extensively studied for decades as pivotal factors in the establishment of adaptive immunity. However, how receptors or signaling molecules are organized in the resting state prior to encountering antigens has received less attention. Recent advancements in super-resolution microscopy techniques have revealed topographically controlled pre-formed organization of key molecules involved in antigen recognition and signal transduction on microvillar projections of T cells before activation and substantial effort has been dedicated to characterizing the topological structure of resting T cells over the past decade. This review will summarize our current understanding of how key surface receptors are pre-organized on the T-cell plasma membrane and discuss the potential role of these receptors, which are preassembled prior to ligand binding in the early activation events of T cells.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Nano-Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
30
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
31
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554524. [PMID: 37662246 PMCID: PMC10473748 DOI: 10.1101/2023.08.23.554524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gamma/delta (γδ) T cells are unconventional adaptive lymphocytes that recognize structurally diverse ligands via somatically-recombined antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive, and do not require coreceptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
|
32
|
Barr VA, Piao J, Balagopalan L, McIntire KM, Schoenberg FP, Samelson LE. Heterogeneity of Signaling Complex Nanostructure in T Cells Activated Via the T Cell Antigen Receptor. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1503-1522. [PMID: 37488826 PMCID: PMC11230849 DOI: 10.1093/micmic/ozad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Activation of the T cell antigen receptor (TCR) is a key step in initiating the adaptive immune response. Single-molecule localization techniques have been used to investigate the arrangement of proteins within the signaling complexes formed around activated TCRs, but a clear picture of nanoscale organization in stimulated T cells has not emerged. Here, we have improved the examination of T cell nanostructure by visualizing individual molecules of six different proteins in a single sample of activated Jurkat T cells using the multiplexed antibody-size limited direct stochastic optical reconstruction microscopy (madSTORM) technique. We formally define irregularly shaped regions of interest, compare areas where signaling complexes are concentrated with other areas, and improve the statistical analyses of the locations of molecules. We show that nanoscale organization of proteins is mainly confined to the areas with dense concentrations of TCR-based signaling complexes. However, randomly distributed molecules are also found in some areas containing concentrated signaling complexes. These results are consistent with the view that the proteins within signaling complexes are connected by numerous weak interactions, leading to flexible, dynamic, and mutable structures which produce large variations in the nanostructure found in activated T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Juan Piao
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Katherine M McIntire
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Frederic P Schoenberg
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| |
Collapse
|
33
|
Chen H, Xu X, Hu W, Wu S, Xiao J, Wu P, Wang X, Han X, Zhang Y, Zhang Y, Jiang N, Liu W, Lou C, Chen W, Xu C, Lou J. Self-programmed dynamics of T cell receptor condensation. Proc Natl Acad Sci U S A 2023; 120:e2217301120. [PMID: 37399423 PMCID: PMC10334747 DOI: 10.1073/pnas.2217301120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Songfang Wu
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Jianhui Xiao
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Peng Wu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310012, China
| | - Xiaowen Wang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuling Han
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150001, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang310012, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang311121, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
34
|
Sadhu L, Tsopoulidis N, Hasanuzzaman M, Laketa V, Way M, Fackler OT. ARPC5 isoforms and their regulation by calcium-calmodulin-N-WASP drive distinct Arp2/3-dependent actin remodeling events in CD4 T cells. eLife 2023; 12:e82450. [PMID: 37162507 PMCID: PMC10171864 DOI: 10.7554/elife.82450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
CD4 T cell activation induces nuclear and cytoplasmic actin polymerization via the Arp2/3 complex to activate cytokine expression and strengthen T cell receptor (TCR) signaling. Actin polymerization dynamics and filament morphology differ between nucleus and cytoplasm. However, it is unclear how the Arp2/3 complex mediates distinct nuclear and cytoplasmic actin polymerization in response to a common stimulus. In humans, the ARP3, ARPC1, and ARPC5 subunits of the Arp2/3 complex exist as two different isoforms, resulting in complexes with different properties. Here, we show that the Arp2/3 subunit isoforms ARPC5 and ARPC5L play a central role in coordinating distinct actin polymerization events in CD4 T cells. While ARPC5L is heterogeneously expressed in individual CD4 T cells, it specifically drives nuclear actin polymerization upon T cell activation. In contrast, ARPC5 is evenly expressed in CD4 T cell populations and is required for cytoplasmic actin dynamics. Interestingly, nuclear actin polymerization triggered by a different stimulus, DNA replication stress, specifically requires ARPC5 but not ARPC5L. TCR signaling but not DNA replication stress induces nuclear actin polymerization via nuclear calcium-calmodulin signaling and N-WASP. Diversity in the molecular properties and individual expression patterns of ARPC5 subunit isoforms thus tailors Arp2/3-mediated actin polymerization to different physiological stimuli.
Collapse
Affiliation(s)
- Lopamudra Sadhu
- Department of Infectious Diseases, Integrative Virology, University Hospital HeidelbergHeidelbergGermany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital HeidelbergHeidelbergGermany
| | - Md Hasanuzzaman
- Department of Infectious Diseases, Integrative Virology, University Hospital HeidelbergHeidelbergGermany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital HeidelbergHeidelbergGermany
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Infectious Disease, Imperial CollegeLondonUnited Kingdom
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital HeidelbergHeidelbergGermany
| |
Collapse
|
35
|
Pettmann J, Awada L, Różycki B, Huhn A, Faour S, Kutuzov M, Limozin L, Weikl TR, van der Merwe PA, Robert P, Dushek O. Mechanical forces impair antigen discrimination by reducing differences in T-cell receptor/peptide-MHC off-rates. EMBO J 2023; 42:e111841. [PMID: 36484367 PMCID: PMC10068313 DOI: 10.15252/embj.2022111841] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity foreign peptide major-histocompatibility-complexes (pMHCs) based on the TCR/pMHC off-rate. It is now appreciated that T cells generate mechanical forces during this process but how force impacts the TCR/pMHC off-rate remains debated. Here, we measured the effect of mechanical force on the off-rate of multiple TCR/pMHC interactions. Unexpectedly, we found that lower-affinity TCR/pMHCs with faster solution off-rates were more resistant to mechanical force (weak slip or catch bonds) than higher-affinity interactions (strong slip bonds). This was confirmed by molecular dynamics simulations. Consistent with these findings, we show that the best-characterized catch bond, involving the OT-I TCR, has a low affinity and an exceptionally fast solution off-rate. Our findings imply that reducing forces on the TCR/pMHC interaction improves antigen discrimination, and we suggest a role for the adhesion receptors CD2 and LFA-1 in force-shielding the TCR/pMHC interaction.
Collapse
Affiliation(s)
| | - Lama Awada
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | | | - Anna Huhn
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sara Faour
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | - Mikhail Kutuzov
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Laurent Limozin
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | - Thomas R Weikl
- Max Planck Institute of Colloids and InterfacesPotsdamGermany
| | | | - Philippe Robert
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Omer Dushek
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
36
|
Hyun J, Kim SJ, Cho SD, Kim HW. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023; 297:122101. [PMID: 37023528 DOI: 10.1016/j.biomaterials.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.
Collapse
|
37
|
Thomas C, Tampé R. Structure and mechanism of immunoreceptors: New horizons in T cell and B cell receptor biology and beyond. Curr Opin Struct Biol 2023; 80:102570. [PMID: 36940642 DOI: 10.1016/j.sbi.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Immunoreceptors, also named non-catalytic tyrosine-phosphorylated receptors, are a large class of leukocyte cell-surface proteins critically involved in innate and adaptive immune responses. Their most characteristic defining feature is a shared signal transduction machinery where binding events of cell surface-anchored ligands to the small extracellular receptor domains are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs initiating downstream signal transduction cascades. Despite their central importance to immunology, the molecular mechanism of how ligand binding activates the receptors and results in robust intracellular signaling has remained enigmatic. Recent breakthroughs in our understanding of the architecture and triggering mechanism of immunoreceptors come from cryogenic electron microscopy studies of the B cell and T cell antigen receptors.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
38
|
Beppler C, Eichorst J, Marchuk K, Cai E, Castellanos CA, Sriram V, Roybal KT, Krummel MF. Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors. J Cell Biol 2023; 222:e202205118. [PMID: 36520493 PMCID: PMC9757849 DOI: 10.1083/jcb.202205118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.
Collapse
Affiliation(s)
- Casey Beppler
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - John Eichorst
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Marchuk
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - En Cai
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Kvalvaag A, Valvo S, Céspedes PF, Saliba DG, Kurz E, Korobchevskaya K, Dustin ML. Clathrin mediates both internalization and vesicular release of triggered T cell receptor at the immunological synapse. Proc Natl Acad Sci U S A 2023; 120:e2211368120. [PMID: 36730202 PMCID: PMC9963302 DOI: 10.1073/pnas.2211368120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/24/2022] [Indexed: 02/03/2023] Open
Abstract
Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.
Collapse
Affiliation(s)
- Audun Kvalvaag
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo0379, Norway
| | - Salvatore Valvo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
| | - Pablo F Céspedes
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
| | - David G Saliba
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
- Department of Applied Biomedical Science, Faculty of Health Science, University of Malta, MsidaMSD 2080, Malta
| | - Elke Kurz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
| | - Kseniya Korobchevskaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
| | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, OxfordOX3 7FY, UK
| |
Collapse
|
40
|
Mørch AM, Schneider F. Investigating Diffusion Dynamics and Interactions with Scanning Fluorescence Correlation Spectroscopy (sFCS). Methods Mol Biol 2023; 2654:61-89. [PMID: 37106176 DOI: 10.1007/978-1-0716-3135-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Activation of immune cells and formation of immunological synapses (IS) rely critically on the reorganization of the plasma membrane. These highly orchestrated processes are driven by diffusion and oligomerization dynamics, as well as by single molecule interactions. While slow macro- and meso-scale changes in organization can be observed with conventional imaging, fast nano-scale dynamics are often missed with traditional approaches, but resolving them is, nonetheless, essential to understand the underlying biological mechanisms at play. Here, we describe the use of scanning fluorescence correlation spectroscopy (sFCS) and scanning fluorescence cross-correlation spectroscopy (sFCCS) to study reorganization and changes in molecular diffusion dynamics and interactions during IS formation and in other biological settings. We focus on the practical aspects of the measurements including calibration and alignment of the optical setup, present a comprehensive protocol to perform the measurements, and provide data analysis pipelines and strategies. Finally, we show an exemplary application of the technology to studying Lck diffusion during T-cell signaling.
Collapse
Affiliation(s)
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
41
|
Gómez-Morón A, Requena S, Roda-Navarro P, Martín-Cófreces NB. Activation kinetics of regulatory molecules during immunological synapse in T cells. Methods Cell Biol 2023. [PMID: 37516524 DOI: 10.1016/bs.mcb.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.
Collapse
|
42
|
Alatoom A, ElGindi M, Sapudom J, Teo JCM. The T Cell Journey: A Tour de Force. Adv Biol (Weinh) 2023; 7:e2200173. [PMID: 36190140 DOI: 10.1002/adbi.202200173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Indexed: 11/07/2022]
Abstract
T cells act as the puppeteers in the adaptive immune response, and their dysfunction leads to the initiation and progression of pathological conditions. During their lifetime, T cells experience myriad forces that modulate their effector functions. These forces are imposed by interacting cells, surrounding tissues, and shear forces from fluid movement. In this review, a journey with T cells is made, from their development to their unique characteristics, including the early studies that uncovered their mechanosensitivity. Then the studies pertaining to the responses of T cell activation to changes in antigen-presenting cells' physical properties, to their immediate surrounding extracellular matrix microenvironment, and flow conditions are highlighted. In addition, it is explored how pathological conditions like the tumor microenvironment can hinder T cells and allow cancer cells to escape elimination.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
43
|
Bispecific Antibody Format and the Organization of Immunological Synapses in T Cell-Redirecting Strategies for Cancer Immunotherapy. Pharmaceutics 2022; 15:pharmaceutics15010132. [PMID: 36678761 PMCID: PMC9863865 DOI: 10.3390/pharmaceutics15010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
T cell-redirecting strategies have emerged as effective cancer immunotherapy approaches. Bispecific antibodies (bsAbs) are designed to specifically recruit T cells to the tumor microenvironment and induce the assembly of the immunological synapse (IS) between T cells and cancer cells or antigen-presenting cells. The way that the quality of the IS might predict the effectiveness of T cell-redirecting strategies, including those mediated by bsAbs or by chimeric antigen receptors (CAR)-T cells, is currently under discussion. Here we review the organization of the canonical IS assembled during natural antigenic stimulation through the T cell receptor (TCR) and to what extent different bsAbs induce T cell activation, canonical IS organization, and effector function. Then, we discuss how the biochemical parameters of different formats of bsAbs affect the effectivity of generating an antigen-induced canonical IS. Finally, the quality of the IS assembled by bsAbs and monoclonal antibodies or CAR-T cells are compared, and strategies to improve bsAb-mediated T cell-redirecting strategies are discussed.
Collapse
|
44
|
Teppert K, Wang X, Anders K, Evaristo C, Lock D, Künkele A. Joining Forces for Cancer Treatment: From "TCR versus CAR" to "TCR and CAR". Int J Mol Sci 2022; 23:14563. [PMID: 36498890 PMCID: PMC9739809 DOI: 10.3390/ijms232314563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades, on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engineering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors and the type of antigen that is encountered, the requirements for proper antigen engagement and downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduction of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowledge about the molecular differences in CAR and TCR T cell signaling would greatly advance the further optimization of CAR designs and elucidate under which circumstances a combination of both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide a comprehensive review about similarities and differences by directly comparing the architecture, synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the second part of the review, we discuss the current status of combining CAR and TCR technologies, encouraging a change in perspective from "TCR versus CAR" to "TCR and CAR".
Collapse
Affiliation(s)
- Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Xueting Wang
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kathleen Anders
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - César Evaristo
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Annette Künkele
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
45
|
Wallace Z, Kopycinski J, Yang H, McCully ML, Eggeling C, Chojnacki J, Dorrell L. Immune mobilising T cell receptors redirect polyclonal CD8 + T cells in chronic HIV infection to form immunological synapses. Sci Rep 2022; 12:18366. [PMID: 36319836 PMCID: PMC9626491 DOI: 10.1038/s41598-022-23228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
Collapse
Affiliation(s)
- Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK. .,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK.
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Leibniz Institute of Photonic Technology & Institute of Applied Optics and Biophysics, Friedrich-Schiller University, Jena, Germany
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK
| |
Collapse
|
46
|
Palmer DC, Webber BR, Patel Y, Johnson MJ, Kariya CM, Lahr WS, Parkhurst MR, Gartner JJ, Prickett TD, Lowery FJ, Kishton RJ, Gurusamy D, Franco Z, Vodnala SK, Diers MD, Wolf NK, Slipek NJ, McKenna DH, Sumstad D, Viney L, Henley T, Bürckstümmer T, Baker O, Hu Y, Yan C, Meerzaman D, Padhan K, Lo W, Malekzadeh P, Jia L, Deniger DC, Patel SJ, Robbins PF, McIvor RS, Choudhry M, Rosenberg SA, Moriarity BS, Restifo NP. Internal checkpoint regulates T cell neoantigen reactivity and susceptibility to PD1 blockade. MED 2022; 3:682-704.e8. [PMID: 36007524 PMCID: PMC9847506 DOI: 10.1016/j.medj.2022.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/28/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.
Collapse
Affiliation(s)
- Douglas C Palmer
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA.
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Yogin Patel
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Christine M Kariya
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Maria R Parkhurst
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Zulmarie Franco
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Suman K Vodnala
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Miechaleen D Diers
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Natalie K Wolf
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Darin Sumstad
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, MN, USA
| | | | - Tom Henley
- Intima Bioscience, Inc., New York, NY, USA
| | | | | | - Ying Hu
- The Center for Biomedical Informatics and Information Technology (CBIIT), National Institutes of Health, Bethesda, MD, USA
| | - Chunhua Yan
- The Center for Biomedical Informatics and Information Technology (CBIIT), National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- The Center for Biomedical Informatics and Information Technology (CBIIT), National Institutes of Health, Bethesda, MD, USA
| | - Kartik Padhan
- National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Winnie Lo
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Parisa Malekzadeh
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Li Jia
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Drew C Deniger
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Shashank J Patel
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - R Scott McIvor
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Waldman MM, Rahkola JT, Sigler AL, Chung JW, Willett BAS, Kedl RM, Friedman RS, Jacobelli J. Ena/VASP Protein-Mediated Actin Polymerization Contributes to Naïve CD8 + T Cell Activation and Expansion by Promoting T Cell-APC Interactions In Vivo. Front Immunol 2022; 13:856977. [PMID: 35757762 PMCID: PMC9222560 DOI: 10.3389/fimmu.2022.856977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Naïve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types, but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell–APC interactions, T cell activation, and T cell expansion in vivo. Our results showed that naïve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect, we analyzed T cell–APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient naïve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell–APC synapse, and that these conjugates were less stable than their WT counterparts. Finally, we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell–APC synapse. Thus, we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell–APC interactions, which promotes the initiation of stable T cell conjugates during APC scanning. Therefore, Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo.
Collapse
Affiliation(s)
- Monique M Waldman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeremy T Rahkola
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashton L Sigler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
48
|
Frazzette N, Cruz AC, Wu X, Hammer JA, Lippincott-Schwartz J, Siegel RM, Sengupta P. Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment. Cells 2022; 11:cells11121908. [PMID: 35741037 PMCID: PMC9221696 DOI: 10.3390/cells11121908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas–Fas and Fas–FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.
Collapse
Affiliation(s)
- Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
| | - Anthony C. Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.W.); (J.A.H.)
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.W.); (J.A.H.)
| | | | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; (N.F.); (A.C.C.)
- Correspondence: (R.M.S.); (P.S.)
| | - Prabuddha Sengupta
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA;
- Correspondence: (R.M.S.); (P.S.)
| |
Collapse
|
49
|
Göhring J, Schrangl L, Schütz GJ, Huppa JB. Mechanosurveillance: Tiptoeing T Cells. Front Immunol 2022; 13:886328. [PMID: 35693808 PMCID: PMC9178122 DOI: 10.3389/fimmu.2022.886328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.
Collapse
Affiliation(s)
- Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Institute of Applied Physics, TU Wien, Vienna, Austria
- *Correspondence: Janett Göhring,
| | | | | | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Jensen LG, Hoh TY, Williamson DJ, Griffié J, Sage D, Rubin-Delanchy P, Owen DM. Correction of multiple-blinking artifacts in photoactivated localization microscopy. Nat Methods 2022; 19:594-602. [PMID: 35545712 DOI: 10.1038/s41592-022-01463-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
Photoactivated localization microscopy (PALM) produces an array of localization coordinates by means of photoactivatable fluorescent proteins. However, observations are subject to fluorophore multiple blinking and each protein is included in the dataset an unknown number of times at different positions, due to localization error. This causes artificial clustering to be observed in the data. We present a 'model-based correction' (MBC) workflow using calibration-free estimation of blinking dynamics and model-based clustering to produce a corrected set of localization coordinates representing the true underlying fluorophore locations with enhanced localization precision, outperforming the state of the art. The corrected data can be reliably tested for spatial randomness or analyzed by other clustering approaches, and descriptors such as the absolute number of fluorophores per cluster are now quantifiable, which we validate with simulated data and experimental data with known ground truth. Using MBC, we confirm that the adapter protein, the linker for activation of T cells, is clustered at the T cell immunological synapse.
Collapse
Affiliation(s)
- Louis G Jensen
- Department of Mathematics, Aarhus University, Aarhus, Denmark.
| | - Tjun Yee Hoh
- Institute for Statistical Science, School of Mathematics, University of Bristol, Bristol, UK
| | - David J Williamson
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Rubin-Delanchy
- Institute for Statistical Science, School of Mathematics, University of Bristol, Bristol, UK.
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK.
| |
Collapse
|