1
|
Tran TT, Sánchez‐Zuno GA, Kulkarni RP, Kluger HM, Bucala R. MIF as an oncogenic driver of low-heterogeneity melanomas. Mol Oncol 2025; 19:1295-1298. [PMID: 40131169 PMCID: PMC12077282 DOI: 10.1002/1878-0261.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Identifying targets involved in tumor evolution and immune escape is an active area of research in oncology. Macrophage migration inhibitory factor (MIF) is an upstream immunoregulatory cytokine that promotes transformed cell proliferation and survival, and generates a tumor-permissive immune landscape of immunosuppressive myeloid and T cells. Shvefel and colleagues have identified a key role for MIF in tumor progression in melanoma clones with low tumor heterogeneity. These findings provide important insights into the potential therapeutic utility of MIF antagonists and support ongoing research to utilize MIF pathway inhibitors for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Thuy T. Tran
- Department of Internal MedicineYale Cancer Center, Yale School of MedicineNew HavenCTUSA
| | | | - Rajan P. Kulkarni
- Department of DermatologyOregon Health & Science UniversityPortlandORUSA
| | - Harriet M. Kluger
- Department of Internal MedicineYale Cancer Center, Yale School of MedicineNew HavenCTUSA
| | - Richard Bucala
- Department of Internal MedicineYale Cancer Center, Yale School of MedicineNew HavenCTUSA
- Section of Rheumatology, Allergy & Immunology, Department of Internal MedicineYale School of MedicineNew HavenCTUSA
| |
Collapse
|
2
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Yang S, Tang W, Azizian A, Gaedcke J, Ohara Y, Cawley H, Hanna N, Ghadimi M, Lal T, Sen S, Creighton CJ, Gao J, Putluri N, Ambs S, Hussain P. MIF/NR3C2 axis regulates glucose metabolism reprogramming in pancreatic cancer through MAPK-ERK and AP-1 pathways. Carcinogenesis 2024; 45:582-594. [PMID: 38629149 PMCID: PMC11317528 DOI: 10.1093/carcin/bgae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored. Earlier, we demonstrated that pro-inflammatory mediator macrophage migration inhibitory factor (MIF) enhances disease progression by inhibiting its downstream transcriptional factor nuclear receptor subfamily 3 group C member 2 (NR3C2). Here, we provide evidence that MIF and NR3C2 interactively regulate metabolic reprogramming, resulting in MIF-induced cancer growth and progression in PDAC. MIF positively correlates with the HK1 (hexokinase 1), HK2 (hexokinase 2) and LDHA (lactate dehydrogenase) expression and increased pyruvate and lactate production in PDAC patients. Additionally, MIF augments glucose uptake and lactate efflux by upregulating HK1, HK2 and LDHA expression in pancreatic cancer cells in vitro and in mouse models of PDAC. Conversely, a reduction in HK1, HK2 and LDHA expression is observed in tumors with high NR3C2 expression in PDAC patients. NR3C2 suppresses HK1, HK2 and LDHA expression, thereby inhibiting glucose uptake and lactate efflux in pancreatic cancer. Mechanistically, MIF-mediated regulation of glycolytic metabolism involves the activation of the mitogen-activated protein kinase-ERK signaling pathway, whereas NR3C2 interacts with the activator protein 1 to regulate glycolysis. Our findings reveal an interactive role of the MIF/NR3C2 axis in regulating glucose metabolism supporting tumor growth and progression and may be a potential target for designing novel approaches for improving disease outcome.
Collapse
Affiliation(s)
- Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Azadeh Azizian
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nader Hanna
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Trisha Lal
- Howard University College of Medicine, Washington, DC, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
5
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
6
|
Cui Z, Zhou L, An X, Liu W, Li J, Zhang Y, Zhang W. The Combination of circEPSTI1 and MIF Offers Diagnostic Value for Endometrial Cancer. Int J Gen Med 2024; 17:1395-1403. [PMID: 38617055 PMCID: PMC11011707 DOI: 10.2147/ijgm.s441861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
Background Circular RNAs (circRNAs) exhibit unique patterns of expression and high levels of stability in patient plasma samples such that they represent ideal non-invasive biomarkers that can be leveraged to detect a wide array of diseases including endometrial cancer (EC). This study was designed to identify circRNAs with potential diagnostic utility in serum samples from EC patients while also evaluating the utility of macrophage migration inhibitory factor (MIF) as a biomarker when screening for this form of cancer in the clinic. Methods Levels of circEPSTI1 and MIF were assessed in the plasma of EC patients and healthy subjects (n=186 each) through qPCR and ELISAs. The diagnostic utility of these biomarkers was assessed with receiver operating characteristic curve (ROC) analyses. Results Relative to healthy subjects, EC patient serum contained significantly elevated circEPSTI1 and MIF. An association was noted between circEPSTI1 expression in stages, histologic grade, and residual tumor. ROC curves confirmed that serum circEPSTI1 levels distinguished between controls and patients with EC with an Area of 0.835 and serum MIF levels distinguished between controls and patients with EC with an Area of 0.6646. When instead diagnosing patients based on the combination of MIF and circEPSTI1, the Area further rose to 0.8604. Conclusion Assessing the combination of circEPSTI1 and MIF may be a viable approach to reliably diagnosing EC.
Collapse
Affiliation(s)
- Zhili Cui
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Liyuan Zhou
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Xin An
- Department of Pathology, Handan First Hospital, Handan, Hebei, 056000, People’s Republic of China
| | - Wenli Liu
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Jingxia Li
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, People’s Republic of China
| | - Yueping Zhang
- Shexian Maternal and Child Health Hospital, Shexian, Hebei, 056004, People’s Republic of China
| | - Wei Zhang
- Department of Gynecology, Handan Traditional Chinese Medicine Hospital, Handan, Hebei, 056001, People’s Republic of China
| |
Collapse
|
7
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Rupp A, Bahlmann S, Trimpop N, von Pawel J, Holdenrieder S. Lack of clinical utility of serum macrophage migration inhibitory factor (MIF) for monitoring therapy response and estimating prognosis in advanced lung cancer. Tumour Biol 2024; 46:S341-S353. [PMID: 37545291 DOI: 10.3233/tub-230006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Lung cancer is a major burden to global health and is still among the most frequent and most lethal malignant diseases. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in a variety of processes including tumorigenesis, formation of a tumor microenvironment and metastasis. It is therefore a potential prognostic biomarker in malignant diseases. OBJECTIVE In this study, we investigated the applicability of MIF in serum samples as a biomarker in lung cancer. METHODS In a retrospective approach, we analyzed the sera of 79 patients with non-small-cell lung cancer (NSCLC) and 14 patients with small-cell lung cancer (SCLC) before the start of chemotherapy, as well as before the second and third chemotherapy cycle, respectively. Serum MIF levels were measured using a sandwich immunoassay with a sulfo-tag-labelled detection antibody, while pro-gastrin releasing peptide (proGRP) levels were determined with an enzyme-linked immunosorbent assay. RESULTS No difference in serum MIF levels between responders and non-responders to chemotherapy was observed at all time points, while proGRP levels were significantly lower in responders before the second chemotherapy cycle (p = 0.012). No differences in biomarker levels depending on the histopathological classification of NSCLC patients was found. Moreover, in ROC curve analyses MIF was not able to distinguish between responders and non-responders to therapy. proGRP could differentiate between responders and non-responders before the second chemotherapy cycle (p = 0.015) with sensitivities of 43% at 90% and 95% specificity, respectively. Likewise, proGRP yielded significantly longer survival times of patients with low proGRP concentrations before the second chemotherapy cycle (p = 0.015) in Kaplan-Meier analyses, yet MIF showed no significant differences in survival times at all time points. Comparison with the biomarkers CEA and CYFRA 21-1 in the same cohort showed that these established biomarkers clearly performed superior to MIF and proGRP. CONCLUSIONS From the present results, there is no indication that serum MIF may serve as a biomarker in prognosis and monitoring of response to therapy in lung cancer. Limitations of this study include its retrospective design, the inclusion of a larger NSCLC and a smaller SCLC subgroup, the classical chemotherapeutic treatment, the use of a non-diagnostic immunoassay (RUO-test) for MIF measurement and the lack of a validation cohort. Strengths of the study are its highly standardized procedures concerning sample collection, preanalytic treatment, measurements and quality control of the laboratory assays.
Collapse
Affiliation(s)
- Alexander Rupp
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| | - Sophie Bahlmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Nicolai Trimpop
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Olajuyin AM, Olajuyin AK, Zhang X, Hu Q. Immunomodulatory macrophages and Treg in pulmonary hypertension. COMPARATIVE CLINICAL PATHOLOGY 2023; 33:163-173. [DOI: 10.1007/s00580-023-03540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2025]
|
11
|
Guan S, Bai X, Ding J, Zhuang R. Circulating inflammatory cytokines and hypertensive disorders of pregnancy: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1297929. [PMID: 38035087 PMCID: PMC10687474 DOI: 10.3389/fimmu.2023.1297929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Background Hypertensive disorders of pregnancy (HDP) pose a significant risk to maternal and fetal well-being; however, the etiology and pathogenesis of HDP remain ambiguous. It is now widely acknowledged that inflammatory response and the immune system are closely related to HDP. Previous research has identified several inflammatory cytokines are associated with HDP. This study applied Mendelian randomization (MR) analysis to further assess causality. Methods Patients with HDP who participated in the MR analysis presented with four types of HDP: pre-eclampsia or eclampsia (PE); gestational hypertension (GH); pre-existing hypertension complicating pregnancy, childbirth and the puerperium (EH); and pre-eclampsia or poor fetal growth (PF). A two-sample MR analysis was used to analyze the data in the study. The causal relationship between exposure and outcome was analyzed with inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode methods, where IVW was the primary method employed. Results Our MR analysis demonstrated a reliable causative effect of Interleukin-9 (IL-9) and macrophage migration inhibitory factor (MIF) on reducing HDP risk, while macrophage inflammatory protein 1-beta (MIP1b), Interleukin-13 (IL-13), and Interleukin-16 (IL-16) were associated with promoting HDP risk. Conclusions This study demonstrated that IL-9, MIF, MIP1b, IL-13, and IL-16 may be cytokines associated with the etiology of HDP, and that a number of inflammatory cytokines are probably involved in the progression of HDP. Additionally, our study revealed that these inflammatory cytokines have causal associations with HDP and may likely be potential therapeutic targets for HDP.
Collapse
Affiliation(s)
| | | | | | - Rujin Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Dumas F, Mauro M, Vazzana M, Arizza V, Vizzini A. Ciona robusta macrophage migration inhibitory factor (Mif1 and Mif2) genes are differentially regulated in the lipopolysaccharide-challenged pharynx. JOURNAL OF FISH BIOLOGY 2023; 103:727-730. [PMID: 37148434 DOI: 10.1111/jfb.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
The effects of lipopolysaccharide (LPS) on Mif (macrophage migration inhibitory factor) gene expression in the pharynx (haemapoetic tissue) of Ciona robusta were investigated using quantitative reverse-transcription PCR (qRT-PCR) and in situ hybridisation (ISH). To verify the induction of an inflammatory response in the pharynx, a qRT-PCR analysis was performed to evaluate the change in the expression of proinflammatory marker genes such as Mbl, Ptx-like, Tnf-α and Nf-kb, which were shown to be upregulated 1 h post LPS challenge. The change in the expression of the two Mif paralogs in the pharynx was assessed before and after stimulation, and qRT-PCR and ISH results showed that, although Mif2 and Mif2 were expressed in clusters of haemocytes in pharynx vessels, only Mif1 expression increased after LPS stimulation. This indicates that the Mif genes are differently regulated and respond to different ambient inputs that need further analysis.
Collapse
Affiliation(s)
- Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| |
Collapse
|
13
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
14
|
Lin J, Cai Y, Wang Z, Ma Y, Pan J, Liu Y, Zhao Z. Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 13:1005916. [PMID: 36686485 PMCID: PMC9849576 DOI: 10.3389/fendo.2022.1005916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background A huge focus is being placed on the development of novel signatures in the form of new combinatorial regimens to distinguish the neuroendocrine (NE) characteristics from castration resistant prostate cancer (CRPC) timely and accurately, as well as predict the disease-free survival (DFS) and progression-free survival (PFS) of prostate cancer (PCa) patients. Methods Single cell data of 4 normal samples, 3 CRPC samples and 3 CRPC-NE samples were obtained from GEO database, and CellChatDB was used for potential intercellular communication, Secondly, using the "limma" package (v3.52.0), we obtained the differential expressed genes between CRPC and CRPC-NE both in single-cell RNA seq and bulk RNA seq samples, and discovered 12 differential genes characterized by CRPC-NE. Then, on the one hand, the diagnosis model of CRPC-NE is developed by random forest algorithm and artificial neural network (ANN) through Cbioportal database; On the other hand, using the data in Cbioportal and GEO database, the DFS and PFS prognostic model of PCa was established and verified through univariate Cox analysis, least absolute shrinkage and selection operator (Lasso) regression and multivariate Cox regression in R software. Finally, somatic mutation and immune infiltration were also discussed. Results Our research shows that there exists specific intercellular communication in classified clusters. Secondly, a CRPC-NE diagnostic model of six genes (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and PTMA) has been established and verified, the area under the ROC curve (AUC) is as high as 0.952 (95% CI: 0.882-0.994). The mutation landscape shows that these six genes are rarely mutated in the CRPC and NEPC samples. In addition, NE-DFS signature (STMN1 and PCSK1N) and NE-PFS signature (STMN1, UBE2S and HMGN2) are good predictors of DFS and PFS in PCa patients and better than other clinical features. Lastly, the infiltration levels of plasma cells, T cells CD4 naive, Eosinophils and Monocytes were significantly different between the CRPC and NEPC groups. Conclusions This study revealed the heterogeneity between CRPC and CRPC-NE from different perspectives, and developed a reliable diagnostic model of CRPC-NE and robust prognostic models for PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Yoon K. Gastric Cancer: H. pylori and Macrophage Migration Inhibitory Factor. HELICOBACTER PYLORI 2023:321-326. [DOI: 10.1007/978-981-97-0013-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Mendoza-Reinoso V, Schnepp PM, Baek DY, Rubin JR, Schipani E, Keller ET, McCauley LK, Roca H. Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF-1α Stabilization. Cells 2022; 11:cells11233712. [PMID: 36496973 PMCID: PMC9737180 DOI: 10.3390/cells11233712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Patricia M. Schnepp
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dah Youn Baek
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - John R. Rubin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan T. Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| |
Collapse
|
17
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
18
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
19
|
Zheng L, Feng Z, Tao S, Gao J, Lin Y, Wei X, Zheng B, Huang B, Zheng Z, Zhang X, Liu J, Shan Z, Chen Y, Chen J, Zhao F. Destabilization of macrophage migration inhibitory factor by 4-IPP reduces NF-κB/P-TEFb complex-mediated c-Myb transcription to suppress osteosarcoma tumourigenesis. Clin Transl Med 2022; 12:e652. [PMID: 35060345 PMCID: PMC8777168 DOI: 10.1002/ctm2.652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an inflammatory factor and oncogenic driver protein, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) plays a crucial role in the osteosarcoma microenvironment. Although 4-iodo-6-phenylpyrimidine (4-IPP) can inactivate MIF biological functions, its anti-osteosarcoma effect and molecular mechanisms have not been investigated. In this study, we identified the MIF inhibitor 4-IPP as a specific double-effector drug for osteosarcoma with both anti-tumour and anti-osteoclastogenic functions. METHODS The anti-cancer effects of 4-IPP were evaluated by wound healing assay, cell cycle analysis, colony formation assay, CCK-8 assay, apoptosis analysis, and Transwell migration/invasion assays. Through the application of a luciferase reporter, chromatin immunoprecipitation assays, and immunofluorescence and coimmunoprecipitation analyses, the transcriptional regulation of the NF-κB/P-TEFb complex on c-Myb- and STUB1-mediated proteasome-dependent MIF protein degradation was confirmed. The effect of 4-IPP on tumour growth and metastasis was assessed using an HOS-derived tail vein metastasis model and subcutaneous and orthotopic xenograft tumour models. RESULTS In vitro, 4-IPP significantly reduced the proliferation and metastasis of osteosarcoma cells by suppressing the NF-κB pathway. 4-IPP hindered the binding between MIF and CD74 as well as p65. Moreover, 4-IPP inhibited MIF to interrupt the formation of downstream NF-κB/P-TEFb complexes, leading to the down-regulation of c-Myb transcription. Interestingly, the implementation of 4-IPP can mediate small molecule-induced MIF protein proteasomal degradation via the STUB1 E3 ligand. However, 4-IPP still interrupted MIF-mediated communication between osteosarcoma cells and osteoclasts, thus promoting osteoclastogenesis. Remarkably, 4-IPP strongly reduced HOS-derived xenograft osteosarcoma tumourigenesis and metastasis in an in vivo mouse model. CONCLUSIONS Our findings demonstrate that the small molecule 4-IPP targeting the MIF protein exerts an anti-osteosarcoma effect by simultaneously inactivating the biological functions of MIF and promoting its proteasomal degradation. Direct destabilization of the MIF protein with 4-IPP may be a promising therapeutic strategy for treating osteosarcoma.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jiawei Gao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Ye Lin
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| |
Collapse
|
20
|
Garai J, Krekó M, Őrfi L, Jakus PB, Rumbus Z, Kéringer P, Garami A, Vámos E, Kovács D, Bagóné Vántus V, Radnai B, Lóránd T. Tetralone derivatives are MIF tautomerase inhibitors and attenuate macrophage activation and amplify the hypothermic response in endotoxemic mice. J Enzyme Inhib Med Chem 2021; 36:1357-1369. [PMID: 34225560 PMCID: PMC8266241 DOI: 10.1080/14756366.2021.1916010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 10/30/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine playing crucial role in immunity. MIF exerts a unique tautomerase enzymatic activity that has relevance concerning its multiple functions and its small molecule inhibitors have been proven to block its pro-inflammatory effects. Here we demonstrate that some of the E-2-arylmethylene-1-tetralones and their heteroanalogues efficiently bind to MIF's active site and inhibit MIF tautomeric (enolase, ketolase activity) functions. A small set of the synthesised derivatives, namely compounds (4), (23), (24), (26) and (32), reduced inflammatory macrophage activation. Two of the selected compounds (24) and (26), however, markedly inhibited ROS and nitrite production, NF-κB activation, TNF-α, IL-6 and CCL-2 cytokine expression. Pre-treatment of mice with compound (24) exaggerated the hypothermic response to high dose of bacterial endotoxin. Our experiments suggest that tetralones and their derivatives inhibit MIF's tautomeric functions and regulate macrophage activation and thermal changes in severe forms of systemic inflammation.
Collapse
Affiliation(s)
- János Garai
- Department of Pathophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Marcell Krekó
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Balázs Jakus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Zoltán Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Patrik Kéringer
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - András Garami
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Eszter Vámos
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Tamás Lóránd
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
21
|
Longo V, Parrinello D, Longo A, Parisi MG, Parrinello N, Colombo P, Cammarata M. The conservation and diversity of ascidian cells and molecules involved in the inflammatory reaction: The Ciona robusta model. FISH & SHELLFISH IMMUNOLOGY 2021; 119:384-396. [PMID: 34687879 DOI: 10.1016/j.fsi.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response. The internal defense of ascidians mainly relies on hemocytes circulating in the hemolymph and pharynx. Hemocytes can be in vivo challenged by LPS injection and various granulocyte and vacuolated cell populations differentiated to produce and release inflammatory factors. Molecular biology and gene expression studies revealed complex defense mechanisms involving different inflammatory hemocytes. Furthermore, cloning procedures allowed sequence analyses and molecular studies disclose immune-related gene families including TOLL-like receptors, galectins, C-type lectins, collectins, interlectins, pentraxine-like, peroxinectins, complement factors-like, TNFα-like, IL-17-like, TGF-like, MIF-like. These genes are promptly upregulated by the inflammatory stimulus and show a time course of transcription similar to each other. Domains sequence similarity and phylogenetic relationships with the vertebrate counterparts are shedding some light on immune-related gene evolution. Selective bioassays as well as bioinformatic approaches have allowed the characterization of antimicrobial peptides and the identification of post transcriptional molecular mechanisms able of influencing dynamics of gene regulation are described. In synthesis, the purpose of this article is to further explore the topic of hemocyte and molecules related to internal defence of ascidians involved in the inflammatory reaction, as well as to discuss current and future study options through a detailed literature review.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicolò Parrinello
- Department of Earth and Marine Science, University of Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| | - Matteo Cammarata
- Department of Earth and Marine Science, University of Palermo, Italy
| |
Collapse
|
22
|
He Z, Wang Y, Zhuan L, Li Y, Tang ZO, Wu Z, Ma Y. MIF-mediated NF-κB signaling pathway regulates the pathogenesis of polycystic ovary syndrome in rats. Cytokine 2021; 146:155632. [PMID: 34242901 DOI: 10.1016/j.cyto.2021.155632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) resulting from abnormal glucose metabolism is a relatively common and complex endocrine disorder among women in their reproductive years, However, the pathogenesis of PCOS is still unclear. The purpose of this study is to investigate the macrophage migration inhibitory factor (MIF) involvement of the nuclear factor (NF)-κB in rats with PCOS. Results indicated that testosterone promoted the increase in the levels of MIF and luteinizing hormone (LH) but inhibited the increase in the level of follicular stimulating hormone (FSH). The MIF antibody could alleviate the process of PCOS to a certain extent. Testosterone promoted the expression of interleukin 1-beta (IL-1β), interleukin 6 (IL-6), Inducible nitric oxide synthase (iNOS), and tumor necrosis factor alpha (TNF-α); the MIF antibody could reverse this effect. Testosterone could inhibit the expression of NF-κB protein whereas MIF antibody could promote the expression in the ovarian cytoplasm. Testosterone promoted the expression of NF-κB protein in the nucleus, this effect also could be reversed by the MIF antibody. Hyperandrogenism activated the NF-κB pathway. After using the MIF antibody, this effect was reversed. This finding suggested that hyperandrogenism activated the NF-κB pathway through MIF. In short, increased MIF levels activated the NF-κB pathway in ovaries, leading to inflammation and the increase in the levels of relevant inflammatory indicators, which might be one of the important factors in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhenlin He
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, Kunming Medical University, 650000, China
| | - Yuelong Wang
- Department of Neurosurgery, Third Military Medical University, Chongqing 400038, China
| | - Li Zhuan
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Yunxiu Li
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Z-Ouyin Tang
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Ze Wu
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China
| | - Yanping Ma
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People(,)s Hospital of Yunnan Province, 650000, China.
| |
Collapse
|
23
|
Yang L, Guo D, Fan C. Identification and Structure-Activity Relationships of Dietary Flavonoids as Human Macrophage Migration Inhibitory Factor (MIF) Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10138-10150. [PMID: 34459191 DOI: 10.1021/acs.jafc.1c03367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary flavonoids are known to have anti-inflammatory and anticancer effects, but their influences on human macrophage migration inhibitory factor (MIF), a vital proinflammatory cytokine recognized as a therapeutic target for infectious diseases and cancers, have been rarely reported. Here, we identified 24 dietary flavonoids that could inhibit the tautomerase activity of MIF, five of which exerted IC50 values lower than the positive control ISO-1 in the micromolar range: morin (IC50 = 11.01 ± 0.45 μM) and amentoflavone (IC50 = 13.32 ± 0.64 μM) exhibited the most potent efficacy followed by apigenin (IC50 = 42.74 ± 4.20 μM), naringin (IC50 = 51.38 ± 2.12 μM), and fisetin (IC50 = 51.99 ± 0.63 μM). X-ray crystallography, molecular docking, and cellular experiments were utilized to illustrate the molecular binding details and structure-activity relationships. Scaffold modifications of flavonoids significantly influenced the potency. What stands out for morin is the unique 2'-OH substitution. In addition, amentoflavone situated at the MIF trimer pore may impact MIF-CD74 signaling. The results also showed that flavonoids could suppress cell chemotaxis and nitric oxide production in RAW264.7 cells. Our results elucidate the molecular mechanism of flavonoids acting on MIF and shed light on developing lead compounds against MIF-involved diseases.
Collapse
Affiliation(s)
- Liu Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
- Center for Infection & Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
24
|
Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti-Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021; 60:17514-17521. [PMID: 34018657 PMCID: PMC8362126 DOI: 10.1002/anie.202101864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | | | - Petra E. van der Wouden
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Barbro N. Melgert
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- University Medical Center GroningenGroningen Research Institute of Asthma and COPDUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
25
|
Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, Aguilar-Alonso P, Rodriguez-Sosa M, Maycotte P. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal 2021; 86:110075. [PMID: 34229086 DOI: 10.1016/j.cellsig.2021.110075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Oscar Nieto-Yañez
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Guadalupe Rojas-Sanchez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José Benito Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
26
|
Xiao Z, Song S, Chen D, Merkerk R, Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | | | - Petra E. Wouden
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N. Melgert
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- University Medical Center Groningen Groningen Research Institute of Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
27
|
Parol-Kulczyk M, Gzil A, Maciejewska J, Bodnar M, Grzanka D. Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS One 2021; 16:e0253112. [PMID: 34157052 PMCID: PMC8219170 DOI: 10.1371/journal.pone.0253112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
The chronic inflammation influences a microenvironment, where as a result of losing control over tissue homeostatic mechanisms, the carcinogenesis process may be induced. Inflammatory response cells can secrete a number of factors that support both initiation and progression of cancer and also they may consequently induct an epithelial-mesenchymal transition (EMT), the process responsible for development of distant metastasis. Macrophage migration inhibitory factor (MIF) acts as a pro-inflammatory cytokine that is considered as a link between chronic inflammation and tumor development. MIF can function as a modulator of important cancer-related genes expression, as well as an activator of signaling pathways that promotes the development of prostate cancer. The study was performed on FFPE tissues resected from patients who underwent radical prostatectomy. To investigate the relationship of studied proteins with involvement in tumor progression and initiation of epithelial-to-mesenchymal transition (EMT) process, we selected clinicopathological parameters related to tumor progression. Immunohistochemical analyses of MIF, SOX-4, β-catenin and E-cadherin were performed on TMA slides. We found a statistically significant correlation of overall β-catenin expression with the both lymph node metastasis (p<0.001) and presence of angioinvasion (p = 0.012). Membrane β-catenin expression was associated with distant metastasis (p = 0.021). In turn, nuclear MIF was correlated with lymph node metastasis (p = 0.003). The positive protein-protein correlations have been shown between the total β-catenin protein expression level with level of nuclear SOX-4 protein expression (r = 0.27; p<0.05) as well as negative correlation of β-catenin expression with level of nuclear MIF protein expression (r = -0.23; p<0.05). Our results seem promising and strongly highlight the potential role of MIF in development of nodal metastases as well as may confirm an involvement of β-catenin in disease spread in case of prostate cancer.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
28
|
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST, Anwer F. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol 2021; 17:193-208. [PMID: 32970929 DOI: 10.1111/ajco.13449] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
A hallmark feature of tumorigenesis is uncontrolled cell division. Autophagy is regulated by more than 30 genes and it is one of several mechanisms by which cells maintain homeostasis. Autophagy promotes cancer progression and drug resistance. Several genes play important roles in autophagy-induced tumorigenesis and drug resistance including Beclin-1, MIF, HMGB1, p53, PTEN, p62, RAC3, SRC3, NF-2, MEG3, LAPTM4B, mTOR, BRAF and c-MYC. These genes alter cell growth, cellular microenvironment and cell division. Mechanisms involved in tumorigenesis and drug resistance include microdeletions, genetic mutations, loss of heterozygosity, hypermethylation, microsatellite instability and translational modifications at a molecular level. Disrupted or altered autophagy has been reported in hematological malignancies like lymphoma, leukemia and myeloma as well as multiple solid organ tumors like colorectal, hepatocellular, gall bladder, pancreatic, gastric and cholangiocarcinoma among many other malignancies. In addition, defects in autophagy also play a role in drug resistance in cancers like osteosarcoma, ovarian and lung carcinomas following treatment with drugs such as doxorubicin, paclitaxel, cisplatin, gemcitabine and etoposide. Therapeutic approaches that modulate autophagy are a novel future direction for cancer drug development that may help to prevent issues with disease progression and overcome drug resistance.
Collapse
Affiliation(s)
- Rana Muhammad Usman
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Arshia Akbar
- Department of Medical Intensive Care, Holy Family Hospital, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Azka Latif
- Department of Medicine, Crieghton University, Omaha, NE, USA
| | - Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Jianjun Zhao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Carew
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Wang Y, Chen Y, Wang C, Yang M, Wang Y, Bao L, Wang JE, Kim B, Chan KY, Xu W, Capota E, Ortega J, Nijhawan D, Li GM, Luo W, Wang Y. MIF is a 3' flap nuclease that facilitates DNA replication and promotes tumor growth. Nat Commun 2021; 12:2954. [PMID: 34012010 PMCID: PMC8134555 DOI: 10.1038/s41467-021-23264-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
How cancer cells cope with high levels of replication stress during rapid proliferation is currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3’ flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition, which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is significantly upregulated in breast tumors and correlates with poor overall survival in patients. We propose that MIF is a unique 3’ nuclease, excises flaps at the immediate 3’ end during DNA synthesis and favors cancer cells evading replication stress-induced threat for their growth. Replication stress is associated with cancer formation and progression. Here the authors reveal that the macrophage migration inhibitory factor (MIF) functions as 3’ flap nuclease involved in resolving replication stress affecting overall tumor progression.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenliang Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - BongWoo Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kara Y Chan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weizhi Xu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emanuela Capota
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janice Ortega
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Toldi J, Nemeth D, Hegyi P, Molnar Z, Solymar M, Farkas N, Alizadeh H, Rumbus Z, Pakai E, Garami A. Macrophage migration inhibitory factor as a diagnostic and predictive biomarker in sepsis: meta-analysis of clinical trials. Sci Rep 2021; 11:8051. [PMID: 33850259 PMCID: PMC8044150 DOI: 10.1038/s41598-021-87613-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
The hunt for useful sepsis biomarkers is ongoing. Macrophage migration inhibitory factor (MIF) was implicated as a biomarker in sepsis, but its diagnostic and prognostic value has remained unclear in human studies. Here, we aimed at clarifying the value of MIF as a sepsis biomarker with the meta-analysis of clinical trials. PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were searched until December 2019. From the included studies, blood MIF levels and indicators of disease severity were extracted in septic and control patient groups. Twenty-one eligible studies were identified, including data from 1876 subjects (of which 1206 had sepsis). In the septic patients, blood MIF levels were significantly higher than in healthy controls with a standardized mean difference (SMD) of 1.47 (95% confidence interval, CI: 0.96-1.97; p < 0.001) and also higher than in patient groups with nonseptic systemic inflammation (SMD = 0.94; CI: 0.51-1.38; p < 0.001). Markedly greater elevation in blood MIF level was found in the more severe forms of sepsis and in nonsurvivors than in less severe forms and in survivors with SMDs of 0.84 (CI: 0.45-1.24) and 0.75 (CI: 0.40-1.11), respectively (p < 0.001 for both). In conclusion, blood MIF level is more elevated in systemic inflammation caused by infection (i.e., sepsis) compared to noninfectious causes. In more severe forms of sepsis, including fatal outcome, MIF levels are higher than in less severe forms. These results suggest that MIF can be a valuable diagnostic and prognostic biomarker in sepsis given that well-designed clinical trials validate our findings.
Collapse
Affiliation(s)
- Janos Toldi
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Department of Anesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - David Nemeth
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Molnar
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Hussain Alizadeh
- Division of Hematology, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
31
|
Yao J, Leng L, Fu W, Li J, Bronner C, Bucala R. ICBP90 Regulates MIF Expression, Glucocorticoid Sensitivity, and Apoptosis at the MIF Immune Susceptibility Locus. Arthritis Rheumatol 2021; 73:1931-1942. [PMID: 33844457 DOI: 10.1002/art.41753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is an inflammatory and neurorendocrine mediator that counterregulates glucocorticoid immunosuppression. MIF polymorphisms, which comprise a variant promoter microsatellite (-794 CATT5-8 ), are linked genetically to autoimmune disease severity and to glucocorticoid resistance. While invasive stimuli increase MIF expression, MIF also is up-regulated by glucocorticoids, which serve as a physiologic regulator of inflammatory responses. This study was undertaken to define interactions between the MIF promoter, the glucocorticoid receptor (GR), and the transcription factor inverted CCAAT box binding protein 90 kd (ICBP90) (also referred to as UHRF1), which binds to the promoter in a -794 CATT5-8 length-dependent manner, to regulate MIF transcription. METHODS Interactions of ICBP90, GR, and activator protein 1 (AP-1) with MIF -794 CATT5-8 promoter constructs were assessed by coimmunoprecipitation, Western blotting, and genetic knockdown. Nuclear colocalization studies were performed using anti-transcription factor antibodies and confocal microscopy of glucocorticoid-treated cells. MIF transcription was studied in CEM-C7 T cells, and the impact of the MIF -794 CATT5-8 microsatellite variation confirmed in peripheral blood T cells and in rheumatoid synovial fibroblasts of defined MIF genotype. Functional interactions were quantified by apoptosis and apoptotic signaling in high- and low-genotypic MIF-expressing human cells. RESULTS We defined functional interactions between the transcription factors ICBP90, the GR, and AP-1 that up-regulated MIF transcription in a -794 CATT5-8 length-dependent manner. Experimental reduction of ICBP90, GR, or AP-1 decreased MIF expression and increased glucocorticoid sensitivity, leading to enhanced apoptosis in T lymphocytes and in rheumatoid synovial fibroblasts. CONCLUSION These findings suggest a mechanism for genetic variation of glucocorticoid-regulated MIF transcription, with implications for autoimmune disease severity and glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Jie Yao
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Lin Leng
- Yale University School of Medicine, New Haven, Connecticut
| | - Weiling Fu
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Yale University School of Medicine, New Haven, Connecticut
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Ligue Nationale Contre le Cancer Equipe Labellisée Illkirch, Alsace, France
| | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
MIF as a biomarker and therapeutic target for overcoming resistance to proteasome inhibitors in human myeloma. Blood 2021; 136:2557-2573. [PMID: 32582913 DOI: 10.1182/blood.2020005795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) remains largely incurable despite significant advances in biotherapy and chemotherapy. The development of drug resistance is a major problem in MM management. Macrophage migration inhibitory factor (MIF) expression was significantly higher in purified MM cells from relapsed patients than those with sustained response, and MM patients with high MIF had significantly shorter progression-free survival (PFS) and overall survival (OS). MM cell lines also express high levels of MIF, and knocking out MIF made them more sensitive to proteasome inhibitor (PI)-induced apoptosis not observed with other chemotherapy drugs. Mechanistic studies showed that MIF protects MM cells from PI-induced apoptosis by maintaining mitochondrial function via suppression of superoxide production in response to PIs. Specifically, MIF, in the form of a homotrimer, acts as a chaperone for superoxide dismutase 1 (SOD1) to suppress PI-induced SOD1 misfolding and to maintain SOD1 activity. MIF inhibitor 4-iodo-6-phenylpyrimidine and homotrimer disrupter ebselen, which do not kill MM cells, enhanced PI-induced SOD1 misfolding and loss of function, resulting in significantly more cell death in both cell lines and primary MM cells. More importantly, inhibiting MIF activity in vivo displayed synergistic antitumor activity with PIs and resensitized PI-resistant MM cells to treatment. In support of these findings, gene-profiling data showed a significantly negative correlation between MIF and SOD1 expression and response to PI treatment in patients with MM. This study shows that MIF plays a crucial role in MM sensitivity to PIs and suggests that targeting MIF may be a promising strategy to (re)sensitize MM to the treatment.
Collapse
|
33
|
Wirtz TH, Loosen SH, Schulze-Hagen M, Gorgulho J, Kandler J, Joerdens M, Demir M, Mohr R, Bruners P, Kuhl C, Trautwein C, Berres ML, Tacke F, Luedde T, Roderburg C. Macrophage migration inhibitory factor predicts an unfavorable outcome after transarterial chemoembolization for hepatic malignancies. Clin Transl Sci 2021; 14:1853-1863. [PMID: 33787014 PMCID: PMC8504849 DOI: 10.1111/cts.13033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transarterial chemoembolization (TACE) is a therapeutic option for patients with intermediate-stage hepatocellular carcinoma (HCC) or metastatic liver cancers. Identifying those patients who particularly benefit from TACE remains challenging. Macrophage migration inhibitory factor (MIF) represents is an inflammatory protein described in patients with liver cancer, but no data on its prognostic relevance in patients undergoing TACE exist. Here, we evaluate MIF serum concentrations as a potential biomarker in patients undergoing TACE for primary and secondary hepatic malignancies. MIF serum concentrations were measured by multiplex immunoassay in 50 patients (HCC: n = 39, liver metastases: n = 11) before and 1 day after TACE as well as in 51 healthy controls. Serum concentrations of MIF did not differ between patients and healthy controls. Interestingly, in the subgroup of patients with larger tumor size, significantly more patients had increased MIF concentrations. Patients with an objective tumor response to TACE therapy showed comparable concentrations of serum MIF compared to patients who did not respond. MIF concentrations at day 1 after TACE were significantly higher compared to baseline concentrations. Importantly, baseline MIF concentrations above the optimal cutoff value (0.625 ng/ml) turned out as a significant and independent prognostic marker for a reduced overall survival (OS) following TACE: patients with elevated MIF concentrations showed a significantly reduced median OS of only 719 days compared to patients below the cutoff value (median OS: 1430 days, p = 0.021). Baseline MIF serum concentrations are associated with tumor size of intrahepatic malignancies and predict outcome of patients with liver cancer receiving TACE.
Collapse
Affiliation(s)
- Theresa H Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven H Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Max Schulze-Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jennis Kandler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus Joerdens
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
34
|
Schulz R, Dobbelstein M, Moll UM. HSP90 inhibitor antagonizing MIF: The specifics of pleiotropic cancer drug candidates. Oncoimmunology 2021; 1:1425-1426. [PMID: 23243616 PMCID: PMC3518525 DOI: 10.4161/onci.21173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Constitutively stabilized HSP90 client proteins are crucial for cancer cell survival and proliferation. Thus, despite-or perhaps because of-their pleiotropic effects on variety of critical oncoproteins, HSP90 inhibitors represent a promising new class of anticancer drugs. We identified MIF as an essential HSP90 client protein in a murine model of Her2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Ramona Schulz
- Department of Molecular Oncology; Göttingen Center of Molecular Biosciences; University of Göttingen; Göttingen, Germany
| | | | | |
Collapse
|
35
|
Todros T, Paulesu L, Cardaropoli S, Rolfo A, Masturzo B, Ermini L, Romagnoli R, Ietta F. Role of the Macrophage Migration Inhibitory Factor in the Pathophysiology of Pre-Eclampsia. Int J Mol Sci 2021; 22:1823. [PMID: 33673075 PMCID: PMC7917653 DOI: 10.3390/ijms22041823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.
Collapse
Affiliation(s)
- Tullia Todros
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | | | - Leonardo Ermini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| |
Collapse
|
36
|
Schindler L, Zwissler L, Krammer C, Hendgen-Cotta U, Rassaf T, Hampton MB, Dickerhof N, Bernhagen J. Macrophage migration inhibitory factor inhibits neutrophil apoptosis by inducing cytokine release from mononuclear cells. J Leukoc Biol 2021; 110:893-905. [PMID: 33565160 DOI: 10.1002/jlb.3a0420-242rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) is a pivotal driver of acute and chronic inflammatory conditions, cardiovascular disease, autoimmunity, and cancer. MIF modulates the early inflammatory response through various mechanisms, including regulation of neutrophil recruitment and fate, but the mechanisms and the role of the more recently described MIF homolog MIF-2 (D-dopachrome tautomerase; D-DT) are incompletely understood. Here, we show that both MIF and MIF-2/D-DT inhibit neutrophil apoptosis. This is not a direct effect, but involves the activation of mononuclear cells, which secrete CXCL8 and other prosurvival mediators to promote neutrophil survival. Individually, CXCL8 and MIF (or MIF-2) did not significantly inhibit neutrophil apoptosis, but in combination they elicited a synergistic response, promoting neutrophil survival even in the absence of mononuclear cells. The use of receptor-specific inhibitors provided evidence for a causal role of the noncognate MIF receptor CXCR2 expressed on both monocytes and neutrophils in MIF-mediated neutrophil survival. We suggest that the ability to inhibit neutrophil apoptosis contributes to the proinflammatory role ascribed to MIF, and propose that blocking the interaction between MIF and CXCR2 could be an important anti-inflammatory strategy in the early inflammatory response.
Collapse
Affiliation(s)
- Lisa Schindler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Leon Zwissler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christine Krammer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ulrike Hendgen-Cotta
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Cardiovascular Diseases (DZHK), Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
37
|
Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, Conradi LC, Schulz-Heddergott R. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis 2021; 12:155. [PMID: 33542244 PMCID: PMC7862487 DOI: 10.1038/s41419-021-03426-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
Collapse
Affiliation(s)
- Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Daria Witt
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
38
|
Juárez-Avelar I, Rodríguez T, García-García AP, Rodríguez-Sosa M. Macrophage migration inhibitory factor (MIF): Its role in the genesis and progression of colorectal cancer. IMMUNOTHERAPY IN RESISTANT CANCER: FROM THE LAB BENCH WORK TO ITS CLINICAL PERSPECTIVES 2021:173-193. [DOI: 10.1016/b978-0-12-822028-3.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Jovanović Krivokuća M, Stefanoska I, Vilotić A, Ćujić D, Vrzić Petronijević S, Vićovac L. Macrophage migration inhibitory factor modulates cytokine expression in the trophoblast cell line HTR-8/SVneo. Reprod Fertil Dev 2020; 32:RD20138. [PMID: 33323165 DOI: 10.1071/rd20138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/26/2020] [Indexed: 02/24/2024] Open
Abstract
Extravillous trophoblasts are specific placental cells that invade the uterine stroma and spiral arteries modifying and adjusting them to pregnancy. Many pregnancy pathologies are associated with impairment of this process, including preeclampsia and intrauterine growth restriction, among others. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that is abundant at the fetomaternal interface. Previous results from our group showed that MIF participates in trophoblast invasion and modulates the expression of molecules known to mediate stromal and endovascular trophoblast invasion. In this study we investigated the possibility that MIF could act as a regulator of cytokines known to modulate trophoblast invasion using the normal extravillous trophoblast-derived cell line HTR-8/SVneo. Expression of trophoblast MIF was attenuated by MIF mRNA-specific small interfering RNAs. Cytokine expression was assessed at the mRNA and protein levels using real-time quantitative polymerase chain reaction and flow cytometry respectively. Knockdown of MIF led to a significant decrease in mRNA for IL-1β (IL1B) and IL-8 (CXCL8) and interleukin (IL)-8 protein. The addition of recombinant human MIF to cell culture medium increased IL-6 after 24h treatment and IL-6 and IL-8 after 72h treatment. Cell viability was not affected by MIF silencing or rhMIF treatment. The results of this study imply that at least some of the effects of MIF on trophoblast invasion could be mediated through autocrine or paracrine modulation of trophoblast cytokine production.
Collapse
|
40
|
Xiao Z, Chen D, Song S, van der Vlag R, van der Wouden PE, van Merkerk R, Cool RH, Hirsch AKH, Melgert BN, Quax WJ, Poelarends GJ, Dekker FJ. 7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. J Med Chem 2020; 63:11920-11933. [PMID: 32940040 PMCID: PMC7586407 DOI: 10.1021/acs.jmedchem.0c01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Macrophage
migration inhibitory factor (MIF) is a cytokine with
key roles in inflammation and cancer, which qualifies it as a potential
drug target. Apart from its cytokine activity, MIF also harbors enzyme
activity for keto–enol tautomerization. MIF enzymatic activity
has been used for identification of MIF binding molecules that also
interfere with its biological activity. However, MIF tautomerase activity
assays are troubled by irregularities, thus creating a need for alternative
methods. In this study, we identified a 7-hydroxycoumarin fluorophore
with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching
of its fluorescence. This property enabled development of a novel
competition-based assay format to quantify MIF binding. We also demonstrated
that the 7-hydroxycoumarin fluorophore interfered with the MIF–CD74
interaction and inhibited proliferation of A549 cells. Thus, we provide
a high-affinity MIF binder as a novel tool to advance MIF-oriented
research.
Collapse
Affiliation(s)
- Zhangping Xiao
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Shanshan Song
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Petra E van der Wouden
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Robbert H Cool
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Barbro N Melgert
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J Poelarends
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
41
|
Arizza V, Bonura A, La Paglia L, Urso A, Pinsino A, Vizzini A. Transcriptional and in silico analyses of MIF cytokine and TLR signalling interplay in the LPS inflammatory response of Ciona robusta. Sci Rep 2020; 10:11339. [PMID: 32647255 PMCID: PMC7347617 DOI: 10.1038/s41598-020-68339-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023] Open
Abstract
The close phylogenetic relationship between Ciona robusta and vertebrates makes it a powerful model for studying innate immunity and the evolution of immune genes. To elucidate the nature and dynamics of the immune response, the molecular mechanisms by which bacterial infection is detected and translated into inflammation and how potential pattern recognition receptors (PRRs) are involved in pathogen recognition in tunicate C. robusta (formerly known as Ciona intestinalis), we applied an approach combining bacterial infections, next-generation sequencing, qRT-PCR, bioinformatics and in silico analyses (criteria of a p-value < 0.05 and FDR < 0.05). A STRING analysis indicated a functional link between components of the Tlr/MyD88-dependent signalling pathway (Tlr2, MyD88, and Irak4) and components of the Nf-κB signalling pathway (Nf-κB, IκBα, and Ikkα) (p-value < 0.05, FDR < 0.05). A qRT-PCR analysis of immune genes selected from transcriptome data revealed Mif as more frequently expressed in the inflammatory response than inflammation mediator or effector molecules (e.g., Il-17s, Tnf-α, Tgf-β, Mmp9, Tlrs, MyD88, Irak4, Nf-κB, and galectins), suggesting close interplay between Mif cytokines and Nf-κB signalling pathway components in the biphasic activation of the inflammatory response. An in silico analyses of the 3′-UTR of Tlr2, MyD88, IκBα, Ikk, and Nf-κB transcripts showed the presence of GAIT elements, which are known to play key roles in the regulation of immune gene-specific translation in humans. These findings provide a new level of understanding of the mechanisms involved in the regulation of the C. robusta inflammatory response induced by LPS and suggest that in C. robusta, as in humans, a complex transcriptional and post-transcriptional control mechanism is involved in the regulation of several inflammatory genes.
Collapse
Affiliation(s)
- Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, Palermo, Italy
| | - Angela Bonura
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, Palermo, Italy.
| |
Collapse
|
42
|
Farr L, Ghosh S, Moonah S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Front Immunol 2020; 11:1273. [PMID: 32655566 PMCID: PMC7325688 DOI: 10.3389/fimmu.2020.01273] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Wound healing after an injury is essential for life. An in-depth understanding of the healing process is necessary to ultimately improve the currently limited treatment options for patients suffering as a result of damage to various organs and tissues. Injuries, even the most minor, trigger an inflammatory response that protects the host and activates repair pathways. In recent years, substantial progress has been made in delineating the mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair and regeneration. This mini review focuses on emerging literature on the role of the cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor CD74, in protecting against injury and promoting healing in different parts of the body.
Collapse
Affiliation(s)
- Laura Farr
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Swagata Ghosh
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
43
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
44
|
Cotzomi-Ortega I, Rosas-Cruz A, Ramírez-Ramírez D, Reyes-Leyva J, Rodriguez-Sosa M, Aguilar-Alonso P, Maycotte P. Autophagy Inhibition Induces the Secretion of Macrophage Migration Inhibitory Factor (MIF) with Autocrine and Paracrine Effects on the Promotion of Malignancy in Breast Cancer. BIOLOGY 2020; 9:E20. [PMID: 31963754 PMCID: PMC7169388 DOI: 10.3390/biology9010020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the main cause of cancer-related death in women in the world. Because autophagy is a known survival pathway for cancer cells, its inhibition is currently being explored in clinical trials for treating several types of malignancies. In breast cancer, autophagy has been shown to be necessary for the survival of cancer cells from the triple negative subtype (TNBC), which has the worst prognosis among breast cancers and currently has limited therapeutic options. Autophagy has also been involved in the regulation of protein secretion and, of importance for this work, the inhibition of autophagy is known to promote the secretion of proinflammatory cytokines from distinct cell types. We found that the inhibition of autophagy in TNBC cell lines induced the secretion of the macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine involved in breast cancer invasion and immunomodulation. MIF secretion was dependent on an increase in reactive oxygen species (ROS) induced by the inhibition of autophagy. Importantly, MIF secreted from autophagy-deficient cells increased the migration of cells not treated with autophagy inhibitors, indicating that autophagy inhibition in cancer cells promoted malignancy in neighboring cells through the release of secreted factors, and that a combinatorial approach should be evaluated for cancer therapy.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; (I.C.-O.); (A.R.-C.); (D.R.-R.); (J.R.-L.)
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Arely Rosas-Cruz
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; (I.C.-O.); (A.R.-C.); (D.R.-R.); (J.R.-L.)
| | - Dalia Ramírez-Ramírez
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; (I.C.-O.); (A.R.-C.); (D.R.-R.); (J.R.-L.)
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; (I.C.-O.); (A.R.-C.); (D.R.-R.); (J.R.-L.)
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico;
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Paola Maycotte
- Consejo Nacional de Ciencia y Tecnología (CONACYT)—Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla 74360, Mexico
| |
Collapse
|
45
|
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019; 23:733-744. [PMID: 31414920 DOI: 10.1080/14728222.2019.1656718] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction. Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity and is implicated in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Several classes of MIF inhibitors such as small molecule inhibitors and peptide inhibitors are in clinical development. Areas covered. The role of MIF in the pathogenesis of RA and SLE is examined; the authors review the structure, physiology and signaling characteristics of MIF and the related cytokine D-DT/MIF-2. The preclinical and clinical trial data for MIF inhibitors are also reviewed; information was retrieved from PubMed and ClinicalTrials.gov using the keywords MIF, D-DT/MIF-2, CD74, CD44, CXCR2, CXCR4, Jab-1, rheumatoid arthritis, systemic lupus erythematosus, MIF inhibitor, small molecule, anti-MIF, anti-CD74, and peptide inhibitor. Expert opinion. Studies in mice and in humans demonstrate the therapeutic potential of MIF inhibition for RA and SLE. MIF- directed approaches could be particularly efficacious in patients with high expression MIF genetic polymorphisms. In patients with RA and SLE and high expression MIF alleles, targeted MIF inhibition could be a precision medicine approach to treatment. Anti-MIF pharmacotherapies could also be steroid-sparing in patients with chronic glucocorticoid dependence or refractory autoimmune disease.
Collapse
Affiliation(s)
- Joshua B Bilsborrow
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Edward Doherty
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
46
|
Macrophage Migration Inhibitory Factor Promotes the Interaction between the Tumor, Macrophages, and T Cells to Regulate the Progression of Chemically Induced Colitis-Associated Colorectal Cancer. Mediators Inflamm 2019; 2019:2056085. [PMID: 31360118 PMCID: PMC6652048 DOI: 10.1155/2019/2056085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Colitis-associated colorectal cancer (CRC) development has been shown to be related to chronically enhanced inflammation. Macrophage migration inhibitory factor (MIF) is an inflammatory mediator that favors inflammatory cytokine production and has chemotactic properties for the recruitment of macrophages (Møs) and T cells. Here, we investigated the role of MIF in the inflammatory response and recruitment of immune cells in a murine model of chemical carcinogenesis to establish the impact of MIF on CRC genesis and malignancy. We used BALB/c MIF-knockout (MIF-/-) and wild-type (WT) mice to develop CRC by administering intraperitoneal (i.p.) azoxymethane and dextran sodium sulfate in drinking water. Greater tumor burdens were observed in MIF-/- mice than in WT mice. Tumors from MIF-/- mice were histologically identified to be more aggressive than tumors from WT mice. The localization of MIF suggests that it is also involved in cell differentiation. The relative gene expression of il-17, measured by real-time PCR, was higher in MIF-/- CRC mice, compared to the WT CRC and healthy MIF-/- mice. Importantly, compared to the WT intestinal epithelium, lower percentages of tumor-associated Møs were found in the MIF-/- intestinal epithelium. These results suggest that MIF plays a role in controlling the initial development of CRC by attracting Møs to the tumor, which is a condition that favors the initial antitumor responses.
Collapse
|
47
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
48
|
Wang S, Zheng M, Pang X, Zhang M, Yu X, Wu J, Gao X, Wu J, Yang X, Tang Y, Tang Y, Liang X. Macrophage migration inhibitory factor promotes the invasion and metastasis of oral squamous cell carcinoma through matrix metalloprotein‐2/9. Mol Carcinog 2019; 58:1809-1821. [PMID: 31219646 DOI: 10.1002/mc.23067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sha‐Sha Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Min Zheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Stomatolog, Zhoushan HospitalWenzhou Medical University Zhoushan Zhejiang China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiang‐Hua Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Jing‐Biao Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiao‐Lei Gao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Jia‐Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of Technology Wuhan China
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| |
Collapse
|
49
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
50
|
Zhang M, Li Z, Wang H, Wang S, Yu X, Wu J, Pang X, Wu J, Yang X, Tang Y, Li L, Liang X, Zheng M, Tang Y. MIF promotes perineural invasion through EMT in salivary adenoid cystic carcinoma. Mol Carcinog 2019; 58:898-912. [PMID: 30667094 DOI: 10.1002/mc.22979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Zhu‐feng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Hao‐fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Sha‐sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xiang‐hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jing‐biao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jia‐shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xiao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ya‐jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Provincial Cooperative Innovation Center of Industrial FermentationHubei Key Laboratory of Industrial MicrobiologyHubei University of TechnologyWuhanChina
| | - Li Li
- Department of StomatologyZhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Xin‐hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Min Zheng
- Department of StomatologyZhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Ya‐ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|