1
|
Ge H, Guo N, Liu Y, Lang B, Yin X, Yu X, Zhang Z, Fu Y, Ding H, Hu Q, Han X, Geng W, Shang H, Jiang Y. The inhibitory receptor LAG3 affects NK cell IFN-γ production through glycolysis and the PSAT1/STAT1/IFNG pathway. mBio 2025:e0023025. [PMID: 40298450 DOI: 10.1128/mbio.00230-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025] Open
Abstract
Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4+ T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection. IMPORTANCE We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
Collapse
Affiliation(s)
- Hongchi Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Nan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Yufei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Bin Lang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xiaowan Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xiaowen Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Zining Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Yajing Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Haibo Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Qinghai Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xiaoxu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Wenqing Geng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Yongjun Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Chung DC, Shakfa N, Vakharia J, Warner K, Jacquelot N, Sayad A, Han S, Ghaedi M, Garcia-Batres CR, Sotty J, Azarmina A, Nowlan F, Chen EL, Zon M, Elford AR, Wang BX, Nguyen LT, Mrkonjic M, Clarke BA, Bernardini MQ, Haibe-Kains B, Ferguson SE, Crome SQ, Jackson HW, Ohashi PS. CD103+CD56+ ILCs Are Associated with an Altered CD8+ T-cell Profile within the Tumor Microenvironment. Cancer Immunol Res 2025; 13:527-546. [PMID: 40084939 PMCID: PMC11962407 DOI: 10.1158/2326-6066.cir-24-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/10/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Immunotherapies have had unprecedented success in the treatment of multiple cancer types, albeit with variable response rates. Unraveling the complex network of immune cells within the tumor microenvironment (TME) may provide additional insights to enhance antitumor immunity and improve clinical response. Many studies have shown that NK cells or innate lymphoid cells (ILC) have regulatory capacity. Here, we identified CD103 as a marker that was found on CD56+ cells that were associated with a poor proliferative capacity of tumor-infiltrating lymphocytes in culture. We further demonstrated that CD103+CD56+ ILCs isolated directly from tumors represented a distinct ILC population that expressed unique surface markers (such as CD49a and CD101), transcription factor networks, and transcriptomic profiles compared with CD103-CD56+ NK cells. Using single-cell multiomic and spatial approaches, we found that these CD103+CD56+ ILCs were associated with CD8+ T cells with reduced expression of granzyme B. Thus, this study identifies a population of CD103+CD56+ ILCs with potentially inhibitory functions that are associated with a TME that includes CD8+ T cells with poor antitumor activity. Further studies focusing on these cells may provide additional insights into the biology of an inhibitory TME.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Noor Shakfa
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
| | - Jehan Vakharia
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Kathrin Warner
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nicolas Jacquelot
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Azin Sayad
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - SeongJun Han
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Maryam Ghaedi
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Carlos R. Garcia-Batres
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jules Sotty
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arvin Azarmina
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ferris Nowlan
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Edward L.Y. Chen
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
| | - Michael Zon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Medical Biophysics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Alisha R. Elford
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ben X. Wang
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Linh T. Nguyen
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miralem Mrkonjic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Blaise A. Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
| | - Marcus Q. Bernardini
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Medical Biophysics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Sarah E. Ferguson
- Division of Gynecologic Oncology, University Health Network, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Hartland W. Jackson
- Systems Biology Program, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Zúñiga CH, Acosta BI, Menchaca R, Amescua CA, Hong S, Hui L, Gil M, Rhee YH, Yoon S, Kim M, Chang PY, Kim YM, Song PY, Betito K. Treatment of Alzheimer's Disease subjects with expanded non-genetically modified autologous natural killer cells (SNK01): a phase I study. Alzheimers Res Ther 2025; 17:40. [PMID: 39939891 PMCID: PMC11817217 DOI: 10.1186/s13195-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The importance of natural killer (NK) cells of the innate immune system in neurodegenerative disease has largely been overlooked despite studies demonstrating their ability to reduce neuroinflammation (thought to be mediated by the elimination of activated T cells, degradation of protein aggregates and secretion of anti-inflammatory cytokines). SNK01 is an autologous non-genetically modified NK cell product showing increased activity in vitro. We hypothesized that SNK01 can be safely infused to reduce neuroinflammation in Alzheimer's Disease (AD) patients. METHODS SNK01 was produced and characterized for its ability to eliminate activated T cells, degrade protein aggregates and secrete anti-inflammatory cytokines. In this phase 1 study, SNK01 was administered intravenously every three weeks for a total of 4 treatments using a 3 + 3 dose escalation design (1, 2 and 4 × 109 cells) in subjects with either mild, moderate, or severe AD (median CDR-SB 10.0). Cognitive assessments and cerebrospinal fluid biomarkers associated with protein aggregation, neurodegeneration and neuroinflammation including amyloid-β42 and 42/40, α-synuclein, total Tau, pTau217 and pTau181, neurofilament light, GFAP and YKL-40 analyses were performed at baseline, at 1 and 12 weeks after the last dose. The primary endpoint was safety; secondary endpoints included changes in cognitive assessments and biomarker levels. RESULTS In preclinical in vitro studies, SNK01 were able to uptake and degrade the protein aggregates of amyloid-β and α-synuclein, produce anti-inflammatory cytokines and eliminate activated T cells. In the phase 1 clinical study, eleven subjects were enrolled (10 evaluable). No drug-related adverse events were observed. Despite 70% of subjects being treated at relatively low doses of SNK01 (1 and 2 × 109 cells), 50-70% of all enrolled subjects had stable/improved CDR-SB, ADAS-Cog and/or MMSE scores and 90% had stable/improved ADCOMS at one-week after the last dose. SNK01 also appeared to have beneficial effects on protein aggregate levels and neuroinflammatory biomarkers in the cerebrospinal fluid, with decreases in pTau181 and GFAP appearing to be dose-dependent. CONCLUSIONS SNK01 was well tolerated and appeared to have clinical activity in AD while also having beneficial effects on cerebrospinal fluid protein and neuroinflammatory biomarker levels. A larger trial with a higher dosing/duration has been initiated in the USA in 2023. TRIAL REGISTRATION www. CLINICALTRIALS gov NCT04678453, date of registration: 2020-12-22.
Collapse
Affiliation(s)
| | - Blanca Isaura Acosta
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Rufino Menchaca
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Cesar A Amescua
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Sean Hong
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Lucia Hui
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Minchan Gil
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Yong-Hee Rhee
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sangwook Yoon
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Minji Kim
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Paul Y Chang
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Yong Man Kim
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Paul Y Song
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Katia Betito
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA.
| |
Collapse
|
4
|
Pfnür A, Mayer B, Dörfer L, Tumani H, Spitzer D, Huber-Lang M, Kapapa T. Regulatory T Cell- and Natural Killer Cell-Mediated Inflammation, Cerebral Vasospasm, and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage-A Systematic Review and Meta-Analysis Approach. Int J Mol Sci 2025; 26:1276. [PMID: 39941044 PMCID: PMC11818301 DOI: 10.3390/ijms26031276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) involves a significant influx of blood into the cerebrospinal fluid, representing a severe form of stroke. Despite advancements in aneurysm closure and neuro-intensive care, outcomes remain impaired due to cerebral vasospasm and delayed cerebral ischemia (DCI). Previous pharmacological therapies have not successfully reduced DCI while improving overall outcomes. As a result, significant efforts are underway to better understand the cellular and molecular mechanisms involved. This review focuses on the activation and effects of immune cells after SAH and their interactions with neurotoxic and vasoactive substances as well as inflammatory mediators. Particular attention is given to clinical studies highlighting the roles of natural killer (NK) cells and regulatory T cells (Treg) cells. Alongside microglia, astrocytes, and oligodendrocytes, NK cells and Treg cells are key contributors to the inflammatory cascade following SAH. Their involvement in modulating the neuro-inflammatory response, vasospasm, and DCI underscores their potential as therapeutic targets and prognostic markers in the post-SAH recovery process. We conducted a systematic review on T cell- and natural killer cell-mediated inflammation and their roles in cerebral vasospasm and delayed cerebral ischemia. We conducted a meta-analysis to evaluate outcomes and mortality in studies focused on NK cell- and T cell-mediated mechanisms.
Collapse
Affiliation(s)
- Andreas Pfnür
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Lena Dörfer
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Daniel Spitzer
- Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
5
|
Roy T, Bernstein L, Keplinger HK, Fisk K, Ng SK, Denton SL, Gigley JP. CD4 Co-Receptor Regulates Sex-Specific NK Cell Responses to Acute Toxoplasma gondii Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627254. [PMID: 39713357 PMCID: PMC11661116 DOI: 10.1101/2024.12.06.627254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Immunity to Toxoplasma gondii ( T. gondii ) is sexually dimorphic in humans and mice, with females having higher morbidity and mortality during immune dysfunction and HIV-AIDS. The mechanisms underlying these sex differences are unclear. We investigated how a lack of CD4+ T cells (CD4 co-receptor KO) impacted T. gondii survival in mice. Female CD4 co-receptor KO mice succumbed to T. gondii much faster than males. To dissect why female CD4 co-receptor KO mice died faster, we tested their NK cell responses to acute T. gondii infection compared to males. Although in wild-type (WT) animals, both sexes had similar increases in total NK cells and IFNγ + NK cells, infected CD4 co-receptor KO female mice had 50% fewer IFNγ+ NK cells than infected WT female mice. Infected male CD4 co-receptor KO had a similar increase in IFNγ+ NK cells as WT male mice. Since CD4 co-receptor deficient mice still have functional helper T cells that are CD4-, we next tested survival and NK cell responses in female and male MHCII deficient (MHCIIKO) animals, which completely lack helper CD4+T cells. Surprisingly, survival, NK cell numbers, and IFNγ+ NK cells were not significantly different between WT or MHCIIKO female and male mice. These results suggest CD4 co-receptor expression is required for survival via optimal NK cell responses during acute T. gondii infection only in female mice and not in male mice. Our findings reveal an unappreciated sexual dimorphic role of CD4 co-receptor expression in regulating NK cell responses to acute T. gondii infection.
Collapse
|
6
|
Mora-Bitria L, Debebe BJ, Miners KL, Ladell K, Kaur C, Traherne JA, Jiang W, Price DA, Hadcocks L, McQuibban NAR, Trowsdale J, Wong FS, Pontikos N, Niederalt C, Asquith B. Inhibitory KIRs decrease HLA class II-mediated protection in Type 1 Diabetes. PLoS Genet 2024; 20:e1011456. [PMID: 39724143 PMCID: PMC11741628 DOI: 10.1371/journal.pgen.1011456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/17/2025] [Accepted: 10/09/2024] [Indexed: 12/28/2024] Open
Abstract
Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections. We hypothesized that in the context of autoimmunity, where an enhanced T cell response might be considered detrimental, iKIRs would have an opposite effect. We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. To investigate if iKIRs affect this T cell response, we asked whether HLA associations were modified by iKIR genes. We conducted an immunogenetic analysis of a case-control T1D dataset (N = 11,961) and found that iKIR genes, in the presence of genes encoding their ligands, have a consistent and significant effect on protective HLA class II genetic associations. Our results were validated in an independent data set. We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4+ T cell responses in T1D.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Systems Pharmacology and Medicine, Bayer AG, Leverkusen, Germany
| | - Bisrat J. Debebe
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Charandeep Kaur
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James A. Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Wei Jiang
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Linda Hadcocks
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Nicholas A. R. McQuibban
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics (CISBIO), Department of Life Sciences, Imperial College London, London, United Kingdom
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Mora-Bitria L, Asquith B. Germline natural killer cell receptors modulating the T cell response. Front Immunol 2024; 15:1477991. [PMID: 39559364 PMCID: PMC11570266 DOI: 10.3389/fimmu.2024.1477991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
In addition to their central role during innate responses, NK cells regulate adaptive immunity through various mechanisms. A wide array of innate receptors has been involved in the NK cell regulatory function. However, the clinical implications of these regulatory pathways are poorly understood. Here, we review the experimental evidence on the effects of NK cells on T cells and their positive and negative consequences for disease outcome during T cell responses in humans.
Collapse
Affiliation(s)
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College
London, London, United Kingdom
| |
Collapse
|
8
|
Waggoner S, Cox A, Canaday L, Katko A, Feldman H, Warrick K, Tselikova A, Seelamneni H, Roskin K. KLF2 determines the susceptibility of T cells to immunoregulatory NK cells. RESEARCH SQUARE 2024:rs.3.rs-4921081. [PMID: 39257976 PMCID: PMC11384801 DOI: 10.21203/rs.3.rs-4921081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells. The unique vulnerability of these CD4 T cells relative to other subsets of CD4 T cells was not associated with a pattern of NK-cell-receptor ligand expression that would favor activation of NK cells. Instead, susceptible CD4 T cells were skewed toward follicular helper T cell (Tfh) differentiation and exhibited intermediate expression of Klf2 and a related suite of KLF2-target genes (e.g. S1pr1) involved in cell migration and spatial positioning. NK-cell dependent suppression of the subset of Tfh exhibiting intermediate expression of KLF2 and S1PR1 was confirmed with single-cell proteomics. CRISPR targeting of KLF2 in CD4 T cells prevented suppression by NK cells. Thus, KLF2 regulation of spatial positioning of T cells is a key determinant of NK-cell immunoregulatory function and a possible target for strategies to enhance vaccine efficacy.
Collapse
Affiliation(s)
| | - Andrew Cox
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chung DC, Garcia-Batres CR, Millar DG, Wong SWY, Elford AR, Mathews JA, Wang BX, Nguyen LT, Shaw PA, Clarke BA, Bernardini MQ, Sacher AG, Crome SQ, Ohashi PS. Generation of an Inhibitory NK Cell Subset by TGF-β1/IL-15 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1904-1912. [PMID: 38668728 PMCID: PMC11149900 DOI: 10.4049/jimmunol.2300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-β1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-β1 could also induce immunosuppressive NK-like cells. First, we found that TGF-β1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-β-dependent manner. Interestingly, TGF-β1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-β1-rich environments.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carlos R. Garcia-Batres
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Douglas G. Millar
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie W. Y. Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alisha R. Elford
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A. Mathews
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Ben X. Wang
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh T. Nguyen
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patricia A. Shaw
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Blaise A. Clarke
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Adrian G. Sacher
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Ding J, Yan X, Zhao C, Zhao D, Jia Y, Ren K, Wang Y, Lu J, Sun T, Zhao S, Li H, Guo J. The ratio of circulating CD56 dim NK cells to follicular T helper cells as a promising predictor for disease activity of relapsing-remitting multiple sclerosis. Heliyon 2024; 10:e31533. [PMID: 38803865 PMCID: PMC11128518 DOI: 10.1016/j.heliyon.2024.e31533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system primarily mediated by CD4+ T helper cells. This study investigated the dynamic changes of natural killer (NK) cells and follicular T helper (Tfh) cells and their associations in relapsing-remitting MS patients. The findings revealed inverse relationships between NK cells and CD4+ T cells or Tfh cells. Specifically, CD56dim NK cells, not CD56bright NK cells, were negatively correlated with CD4+ T cells and Tfh cells. However, no significant correlations were found between NK cells and sNfL levels or EDSS scores. The ratio of CD56dim NK cells to circulating Tfh (cTfh) cells demonstrated superior discriminatory ability in distinguishing relapsing MS patients from healthy controls (HCs) and remitting patients, as determined by receiver operating characteristic (ROC) analysis. Following treatment with immunosuppressants or disease-modifying therapies (DMTs), a significant increase in the CD56dim NK/cTfh ratio was observed. These findings suggest that the CD56dim NK/cTfh ratio holds promise as a prognostic indicator for clinical relapse and treatment response in MS.
Collapse
Affiliation(s)
- Jiaqi Ding
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xu Yan
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, 100142, China
| | - Daidi Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Jia
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yao Wang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiarui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Tangna Sun
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Sijia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Hongzeng Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
11
|
Roe K. Immunoregulatory natural killer cells. Clin Chim Acta 2024; 558:117896. [PMID: 38583553 DOI: 10.1016/j.cca.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
This review discusses a broader scope of functional roles for NK cells. Despite the well-known cytolytic and inflammatory roles of NK cells against tumors and pathogenic diseases, extensive evidence demonstrates certain subsets of NK cells have defacto immunoregulatory effects and have a role in inducing anergy or lysis of antigen-activated T cells and regulating several autoimmune diseases. Furthermore, recent evidence suggests certain subsets of immunoregulatory NK cells can cause anergy or lysis of antigen-activated T cells to regulate hyperinflammatory diseases, including multisystem inflammatory syndrome. Several pathogens induce T cell and NK cell exhaustion and/or suppression, which impair the immune system's control of the replication speed of virulent pathogens and tumors and result in extensive antigens and antigen-antibody immune complexes, potentially inducing to some extent a Type III hypersensitivity immune reaction. The Type III hypersensitivity immune reaction induces immune cell secretion of proteinases, which can cleave specific proteins to create autoantigens which activate T cells to initiate autoimmune and/or hyperinflammatory diseases. Furthermore, pathogen induced NK cell exhaustion and/or suppression will inhibit NK cells which would have induced the anergy or lysis of activated T cells to regulate autoimmune and hyperinflammatory diseases. Autoimmune and hyperinflammatory diseases can be consequences of the dual lymphocyte exhaustion and/or suppression effects during infections, by creating autoimmune and/or hyperinflammatory diseases, while also impairing immunoregulatory lymphocytes which otherwise would have regulated these diseases.
Collapse
Affiliation(s)
- Kevin Roe
- Retired USPTO, San Jose, CA, United States of America.
| |
Collapse
|
12
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
14
|
Padoan B, Casar C, Krause J, Schultheiss C, Baumdick ME, Niehrs A, Zecher BF, Pujantell M, Yuki Y, Martin M, Remmerswaal EBM, Dekker T, van der Bom-Baylon ND, Noble JA, Carrington M, Bemelman FJ, van Lier RAW, Binder M, Gagliani N, Bunders MJ, Altfeld M. NKp44/HLA-DP-dependent regulation of CD8 effector T cells by NK cells. Cell Rep 2024; 43:114089. [PMID: 38615318 PMCID: PMC11416720 DOI: 10.1016/j.celrep.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.
Collapse
Affiliation(s)
- Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Britta F Zecher
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pujantell
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janelle A Noble
- Department of Pediatrics UCSF, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
15
|
Weber S, Menees KB, Park J, Agin-Liebes J, Lin CC, Alcalay RN, Lee JK. Distinctive CD56 dim NK subset profiles and increased NKG2D expression in blood NK cells of Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:36. [PMID: 38360903 PMCID: PMC10869354 DOI: 10.1038/s41531-024-00652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Mounting data suggest an important role for the immune system in Parkinson's disease (PD). Previous evidence of increased natural killer (NK) cell populations in PD suggests a potential role of NK cells in the pathogenesis of the disease. Previous studies have analyzed NK cell populations using aggregation by variable expression of CD56 and CD16. It remains unknown what differences may exist between NK cell subpopulations when stratified using more nuanced classification. Here, we profile NK cell subpopulations and elucidate the expressions of activating, NKG2D, inhibitory, NKG2A, and homing, CX3CR1, receptors on NK cell subpopulations in PD and healthy controls (HC). We analyzed cryopreserved PMBC samples using a 10-color flow cytometry panel to evaluate NK cell subpopulations in 31 individuals with sporadic PD and 27 HC participants. Here we identified significant differences in the CD56dim NK subset that changes with disease severity in PD. Furthermore, the expressions of NKG2D in all three NK cell subsets were significantly elevated in PD patients compared to HC. Notably, NKG2A expression in the CD56bright NK subset increased in PD patients with longer disease duration but there were no changes in CX3CR1. In summary, our data suggests that changes in NK cells may be influenced by the clinical severity and duration of PD.
Collapse
Affiliation(s)
- Stephen Weber
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jieun Park
- Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Julian Agin-Liebes
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
16
|
Kim HJ, Nakagawa H, Choi JY, Che X, Divris A, Liu Q, Wight AE, Zhang H, Saad A, Solhjou Z, Deban C, Azzi JR, Cantor H. A narrow T cell receptor repertoire instructs thymic differentiation of MHC class Ib-restricted CD8+ regulatory T cells. J Clin Invest 2024; 134:e170512. [PMID: 37934601 PMCID: PMC10760956 DOI: 10.1172/jci170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - John Y. Choi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuchun Che
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Andrew Divris
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Qingshi Liu
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew E. Wight
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hengcheng Zhang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Anis Saad
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Christa Deban
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Harvey Cantor
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| |
Collapse
|
17
|
Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. Front Immunol 2023; 14:1275028. [PMID: 38022497 PMCID: PMC10652757 DOI: 10.3389/fimmu.2023.1275028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells, as fundamental components of innate immunity, can quickly react to abnormalities within the body. In-depth research has revealed that NK cells possess regulatory functions not only in innate immunity but also in adaptive immunity under various conditions. Multiple aspects of the adaptive immune process are regulated through NK cells. In our review, we have integrated multiple studies to illuminate the regulatory function of NK cells in regulating B cell and T cell responses during adaptive immune processes, focusing on aspects including viral infections and the tumor microenvironment (TME). These insights provide us with many new understandings on how NK cells regulate different phases of the adaptive immune response.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
19
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
20
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Geiger KM, Manoharan M, Coombs R, Arana K, Park CS, Lee AY, Shastri N, Robey EA, Coscoy L. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42:112317. [PMID: 36995940 PMCID: PMC10539480 DOI: 10.1016/j.celrep.2023.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.
Collapse
Affiliation(s)
- Kristina M Geiger
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Manoharan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel Coombs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathya Arana
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angus Y Lee
- Cancer Research Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen A Robey
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Laurent Coscoy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
23
|
Girdhar K, Dogru YD, Huang Q, Yang Y, Tolstikov V, Raisingani A, Chrudinova M, Oh J, Kelley K, Ludvigsson JF, Kiebish MA, Palm NW, Ludvigsson J, Altindis E. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. MICROBIOME 2023; 11:9. [PMID: 36639805 PMCID: PMC9840338 DOI: 10.1186/s40168-022-01429-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.
Collapse
Affiliation(s)
- Khyati Girdhar
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Qian Huang
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Amol Raisingani
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Jaewon Oh
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Kristina Kelley
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, SE, Sweden
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
24
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
25
|
Zhang Y, Vu T, Palmer DC, Kishton RJ, Gong L, Huang J, Nguyen T, Chen Z, Smith C, Livák F, Paul R, Day CP, Wu C, Merlino G, Aldape K, Guan XY, Jiang P. A T cell resilience model associated with response to immunotherapy in multiple tumor types. Nat Med 2022; 28:1421-1431. [PMID: 35501486 PMCID: PMC9406236 DOI: 10.1038/s41591-022-01799-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/24/2022] [Indexed: 01/10/2023]
Abstract
Despite breakthroughs in cancer immunotherapy, most tumor-reactive T cells cannot persist in solid tumors due to an immunosuppressive environment. We developed Tres (tumor-resilient T cell), a computational model utilizing single-cell transcriptomic data to identify signatures of T cells that are resilient to immunosuppressive signals, such as transforming growth factor-β1, tumor necrosis factor-related apoptosis-inducing ligand and prostaglandin E2. Tres reliably predicts clinical responses to immunotherapy in melanoma, lung cancer, triple-negative breast cancer and B cell malignancies using bulk T cell transcriptomic data from pre-treatment tumors from patients who received immune-checkpoint inhibitors (n = 38), infusion products for chimeric antigen receptor T cell therapies (n = 34) and pre-manufacture samples for chimeric antigen receptor T cell or tumor-infiltrating lymphocyte therapies (n = 84). Further, Tres identified FIBP, whose functions are largely unknown, as the top negative marker of tumor-resilient T cells across many solid tumor types. FIBP knockouts in murine and human donor CD8+ T cells significantly enhanced T cell-mediated cancer killing in in vitro co-cultures. Further, Fibp knockout in murine T cells potentiated the in vivo efficacy of adoptive cell transfer in the B16 tumor model. Fibp knockout T cells exhibit reduced cholesterol metabolism, which inhibits effector T cell function. These results demonstrate the utility of Tres in identifying biomarkers of T cell effectiveness and potential therapeutic targets for immunotherapies in solid tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Trang Vu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas C Palmer
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- AstraZeneca, Gaithersburg, MD, USA
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lyell Immunopharma, South San Francisco, CA, USA
| | - Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Jiao Huang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Thanh Nguyen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Gaia Foods, Singapore, Singapore
| | - Zuojia Chen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cari Smith
- Laboratory Animal Science Program, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Ferenc Livák
- Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rohit Paul
- Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Ghaffari S, Upchurch-Ange K, Gimlin S, Tripathi T, Sluijter M, Middelburg J, van Hall T, Weidanz J. A Single-Domain TCR-like Antibody Selective for the Qa-1 b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2246-2255. [PMID: 35418467 DOI: 10.4049/jimmunol.2100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The NKG2A/HLA-E axis is an immune checkpoint that suppresses immune effector activity in the tumor microenvironment. In mice, the ligand for the NKG2A/CD94 inhibitory receptor is the nonclassical MHC molecule Qa-1b, the HLA-E ortholog, which presents the peptide AMAPRTLLL, referred to as Qdm (for Qa-1 determinant modifier). This dominant peptide is derived from the leader sequences of murine classical MHC class I encoded by the H-2D and -L loci. To broaden our understanding of Qa-1b/Qdm peptide complex biology and its tumor protective role, we identified a TCR-like Ab from a single domain VHH library using yeast surface display. The TCR-like Ab (EXX-1) binds only to the Qa-1b/Qdm peptide complex and not to Qa-1b alone or Qa-1b loaded with control peptides. Conversely, currently available Abs to Qa-1b bind independent of peptide loaded. Flow cytometric results revealed that EXX-1 selectively bound to Qa-1b/Qdm-positive B16F10, RMA, and TC-1 mouse tumor cells but only after pretreatment with IFN-γ; no binding was observed following genetic knockdown of Qa-1b or Qdm peptide. Furthermore, EXX-1 Ab blockade promoted NK cell-mediated tumor cell lysis in vitro. Our findings show that EXX-1 has exquisite binding specificity for the Qa-1b/Qdm peptide complex, making it a valuable research tool for further investigation of the Qa-1b/Qdm peptide complex expression and regulation in healthy and diseased cells and for evaluation as an immune checkpoint blocking Ab in syngeneic mouse tumor models.
Collapse
Affiliation(s)
- Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX
| | | | | | | | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX;
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX
| |
Collapse
|
27
|
Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers (Basel) 2022; 14:2071. [PMID: 35565201 PMCID: PMC9102917 DOI: 10.3390/cancers14092071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| |
Collapse
|
28
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
29
|
Guo X, Fang Y, Guo C, Jia Q, Chi Z, Li J, Qin R, Tian J, Fan R. Qa-1b functions as an oncogenic factor in mouse melanoma cells. J Dermatol Sci 2022; 105:159-169. [DOI: 10.1016/j.jdermsci.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
|
30
|
Khani L, Jazayeri MH, Nedaeinia R, Bozorgmehr M, Nabavi SM, Ferns GA. The frequencies of peripheral blood CD5 +CD19 + B cells, CD3 -CD16 +CD56 + NK, and CD3 +CD56 + NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:5. [PMID: 35031055 PMCID: PMC8760701 DOI: 10.1186/s13223-021-00596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3-CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. METHODS CD19+CD5+ B, CD3- CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing-remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The percentage of CD3-CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3-CD16+ and CD3-CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). CONCLUSIONS The lower proportion of CD3-CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.
Collapse
Affiliation(s)
- Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Regenerative Biomedicine, Cell Science Research Center, Neuroscience and Cognition Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
31
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Sierra JM, Secchiari F, Nuñez SY, Iraolagoitia XLR, Ziblat A, Friedrich AD, Regge MV, Santilli MC, Torres NI, Gantov M, Trotta A, Ameri C, Vitagliano G, Pita HR, Rico L, Rovegno A, Richards N, Domaica CI, Zwirner NW, Fuertes MB. Tumor-Experienced Human NK Cells Express High Levels of PD-L1 and Inhibit CD8 + T Cell Proliferation. Front Immunol 2021; 12:745939. [PMID: 34616407 PMCID: PMC8488336 DOI: 10.3389/fimmu.2021.745939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Jessica M Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sol Y Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ximena L Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Cecilia Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Gantov
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | - Luis Rico
- Hospital Alemán, Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Nicolás Richards
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Webb TJ. Inclusion criteria: how NK cells gain access to T cells. J Clin Invest 2021; 131:e152054. [PMID: 34523608 DOI: 10.1172/jci152054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) cells play an important role in host defense against viral infections and malignancy, and their role for regulating other components of the antiviral response is being investigated. In this issue of the JCI, Ali et al. examine the mechanisms by which NK cells migrate into the white pulp and mediate suppression of virus-specific T cells. Herein, the authors show that an acute lymphocytic choriomeningitis virus (LCMV) infection induced a potent type I IFN (IFN-I) response that resulted in the expression of chemokine receptor CXCR3 ligands and permitted NK cell trafficking to T cell zones. Collectively, these findings have broad implications for vaccination strategies and warrant further investigation into the transcriptomic profiles of these regulatory NK cells.
Collapse
|
35
|
Koppe C, Hoene A, Walschus U, Finke B, Testrich H, Pohl C, Brandt N, Patrzyk M, Meichsner J, Nebe B, Schlosser M. Local Inflammatory Response after Intramuscularly Implantation of Anti-Adhesive Plasma-Fluorocarbon-Polymer Coated Ti6AI4V Discs in Rats. Polymers (Basel) 2021; 13:polym13162684. [PMID: 34451224 PMCID: PMC8399026 DOI: 10.3390/polym13162684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic implants and temporary osteosynthesis devices are commonly based on Titanium (Ti). For short-term devices, cell-material contact should be restricted for easy removal after bone healing. This could be achieved with anti-adhesive plasma-fluorocarbon-polymer (PFP) films created by low-temperature plasma processes. Two different PFP thin film deposition techniques, microwave (MW) and radiofrequency (RF) discharge plasma, were applied to receive smooth, hydrophobic surfaces with octafluoropropane (C3F8) or hexafluorohexane (C6F6) as precursors. This study aimed at examining the immunological local tissue reactions after simultaneous intramuscular implantation of four different Ti samples, designated as MW-C3F8, MW-C6F6, RF-C3F8 and Ti-controls, in rats. A differentiated morphometric evaluation of the inflammatory reaction was conducted by immunohistochemical staining of CD68+ macrophages, CD163+ macrophages, MHC class II-positive cells, T lymphocytes, CD25+ regulatory T lymphocytes, NK cells and nestin-positive cells in cryosections of surrounding peri-implant tissue. Tissue samples were obtained on days 7, 14 and 56 for investigating the acute and chronical inflammation (n = 8 rats/group). Implants with a radiofrequency discharge plasma (RF-C3F8) coating exhibited a favorable short- and long-term immune/inflammatory response comparable to Ti-controls. This was also demonstrated by the significant decrease in pro-inflammatory CD68+ macrophages, possibly downregulated by significantly increasing regulatory T lymphocytes.
Collapse
Affiliation(s)
- Charlotte Koppe
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Andreas Hoene
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Uwe Walschus
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Birgit Finke
- Leibniz Institute for Plasma Science and Technology (INP), 17487 Greifswald, Germany; (B.F.); (H.T.)
| | - Holger Testrich
- Leibniz Institute for Plasma Science and Technology (INP), 17487 Greifswald, Germany; (B.F.); (H.T.)
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Nico Brandt
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Maciej Patrzyk
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
| | - Jürgen Meichsner
- Institute of Physics, University of Greifswald, 17487 Greifswald, Germany;
| | - Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, 17487 Greifswald, Germany; (C.K.); (A.H.); (U.W.); (C.P.); (N.B.); (M.P.)
- Correspondence: ; Tel.: +49-3834-8680422
| |
Collapse
|
36
|
Ferez M, Knudson CJ, Lev A, Wong EB, Alves-Peixoto P, Tang L, Stotesbury C, Sigal LJ. Viral infection modulates Qa-1b in infected and bystander cells to properly direct NK cell killing. J Exp Med 2021; 218:e20201782. [PMID: 33765134 PMCID: PMC8006856 DOI: 10.1084/jem.20201782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.
Collapse
Affiliation(s)
- Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, PA
| | - Eric B. Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Research Group in Biomaterials, Biodegradables and Biomimetics-Portugal Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
37
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Liu M, Liang S, Zhang C. NK Cells in Autoimmune Diseases: Protective or Pathogenic? Front Immunol 2021; 12:624687. [PMID: 33777006 PMCID: PMC7994264 DOI: 10.3389/fimmu.2021.624687] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the immune system to distinguish self from non-self), and are characterized by autoantibody production and hyperactivation of T cells, which leads to damage of specific or multiple organs. Thus, autoimmune diseases can be classified as organ-specific or systemic. Genetic and environmental factors contribute to the development of autoimmunity. Recent studies have demonstrated the contribution of innate immunity to the onset of autoimmune diseases. Natural killer (NK) cells, which are key components of the innate immune system, have been implicated in the development of multiple autoimmune diseases such as systemic lupus erythematosus, type I diabetes mellitus, and autoimmune liver disease. However, NK cells have both protective and pathogenic roles in autoimmunity depending on the NK cell subset, microenvironment, and disease type or stage. In this work, we review the current knowledge of the varied roles of NK cell subsets in systemic and organic-specific autoimmune diseases and their clinical potential as therapeutic targets.
Collapse
Affiliation(s)
- Meifang Liu
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
39
|
Sugawara S, Manickam C, Reeves K. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021; 35:165-176. [PMID: 33116071 PMCID: PMC7775286 DOI: 10.1097/qad.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells are one of the critical innate immune effector cells that directly kill tumors and virus-infected cells, and modulate other immune cells including dendritic cells, CD4+ and CD8+ T cells. Signals from activating and inhibitory surface receptors orchestrate the regulatory and cytotoxic functions of NK cells. Although a number of surface receptors are involved, multiple signaling molecules are shared so that NK cell responses are synergistically regulated. Many pathogens and tumors evade NK cell responses by targeting NK cell signaling. Particularly in HIV/simian immunodeficiency virus (SIV) infection, the NK cell repertoire is diminished by changes in subsets of NK cells, expression of activating and inhibitory receptors, and intracellular signaling molecules. However, in-depth studies on intracellular signaling in NK cells in HIV/SIV infections remain limited. Checkpoint blockade and chimeric antigen receptor (CAR)-NK cells have demonstrated enhanced NK cell activities against tumors and viral infections. In addition, targeting intracellular signaling molecules by small molecules could also improve NK cell responses towards HIV/SIV infection in vivo. Therefore, further understanding of NK cell signaling including identification of key signaling molecules is crucial to maximize the efficacy of NK cell-based treatments. Herein, we review the current state of the literature and outline potential future avenues where optimized NK cells could be utilized in HIV-1 cure strategies and other immunotherapeutics in PLWH.
Collapse
Affiliation(s)
- Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
40
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
41
|
Mimpen M, Muris AH, Rolf L, Gerlach O, Kuhle J, Hupperts R, Smolders J, Damoiseaux J. Prognostic value of natural killer cell/T cell ratios for disease activity in multiple sclerosis. Eur J Neurol 2020; 28:901-909. [PMID: 33326677 PMCID: PMC7898592 DOI: 10.1111/ene.14680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
Background and purpose Natural killer (NK) cells may play a role in multiple sclerosis (MS). Ratios of NK cells to CD4+ T cells have been proposed as a biomarker for the therapeutic effect of stem cell transplantation in MS. The objectives here were to explore the relevance of this ratio in MS patients by analysing NK and T cell subsets, as well as their prognostic value for disease activity. Methods Baseline peripheral blood mononuclear cells of 50 relapsing–remitting MS patients, participating in our vitamin D supplementation study (SOLARIUM), were analysed with flow cytometry. Disease activity was measured as new magnetic resonance imaging lesions, relapses and mean plasma neurofilament light chain levels after 48 weeks of follow‐up. Results The proportion of NK cells correlated negatively with CD4+ T cells (R = −0.335, p = 0.001) and interleukin 17A (IL‐17A+) CD4+ T cells (R = −0.203, p = 0.043). Participants with magnetic resonance imaging activity or relapses displayed lower NK/IL‐17A+ CD4+ T cell ratios (p =0.025 and p = 0.006, respectively). The NK/IL‐17A+ CD4+ T cell ratio correlated negatively with neurofilament light chain levels (R = −0.320, p = 0.050). Vitamin D supplementation did not affect these ratios. Conclusions Our data suggest a protective role of an expanded NK cell compartment compared to the CD4+ T cell subset fractions in relapsing–remitting MS patients. NK/CD4+ T cell ratios may be a prognostic biomarker for disease activity in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anne-Hilde Muris
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Linda Rolf
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oliver Gerlach
- Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Raymond Hupperts
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
42
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
43
|
Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol 2020; 109:185-194. [PMID: 33095941 DOI: 10.1002/jlb.3mr0820-685r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.
Collapse
Affiliation(s)
- Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Reighard SD, Krishnamurthy D, Cevik H, Ochayon DE, Ali A, Seelamneni H, Brunner HI, Waggoner SN. Immunomodulatory effects of cytokine-induced expansion of cytotoxic lymphocytes in a mouse model of lupus-like disease. Cytotherapy 2020; 23:37-45. [PMID: 33092988 DOI: 10.1016/j.jcyt.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/09/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS Certain therapies (e.g., daclizumab) that promote expansion of natural killer (NK) cells are associated with clinical amelioration of disease in the context of multiple sclerosis and associated mouse models. The clinical benefits are putatively attributable to an enhanced capacity of NK cells to kill activated pathogenic T cells. Whether a parallel approach will also be effective in systemic lupus erythematosus (lupus), a multi-organ autoimmune disease driven by aberrant responses of self-reactive T and B cells, is unclear. METHODS In the present study, the authors assess the therapeutic impact of IL-2- and IL-15-based strategies for expanding NK cells on measures of lupus-like disease in a mouse model. RESULTS Unexpectedly, cytokine-mediated expansion of cytotoxic lymphocytes aggravated immunological measures of lupus-like disease. Depletion studies revealed that the negative effects of these cytokine-based regimens can largely be attributed to expansion of CD8 T cells rather than NK cells. CONCLUSIONS These results provoke caution in the use of cytokine-based therapeutics to treat co-morbid cancers in patients with lupus and highlight the need for new methods to selectively expand NK cells to further assess their clinical value in autoimmune disease.
Collapse
Affiliation(s)
- Seth D Reighard
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Training Program, Cincinnati, Ohio, USA
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, Cincinnati, Ohio, USA
| | - David E Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Training Program, Cincinnati, Ohio, USA
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hermine I Brunner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Training Program, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
45
|
Sheng L, Mu Q, Wu X, Yang S, Zhu H, Wang J, Lai Y, Wu H, Sun Y, Hu Y, Fu H, Wang Y, Xu K, Sun Y, Zhang Y, Zhang P, Zhou M, Lai B, Xu Z, Gao M, Zhang Y, Ouyang G. Cytotoxicity of Donor Natural Killer Cells to Allo-Reactive T Cells Are Related With Acute Graft-vs.-Host-Disease Following Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1534. [PMID: 32849519 PMCID: PMC7411138 DOI: 10.3389/fimmu.2020.01534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: The mechanism and immunoregulatory role of human natural killer (NK) cells in acute graft-vs.-host-disease (aGVHD) remains unclear. This study quantitatively analyzed the cytotoxicity of donor NK cells toward allo-reactive T cells, and investigated their relationship with acute GVHD (aGVHD). Methods: We evaluated NK dose, subgroup, and receptor expression in allografts from 98 patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). A CD107a degranulating assay was used as a quantitative detection method for the cytotoxic function of donor NK cells to allo-reactive T cells. In antibody-blocking assay, NK cells were pre-treated with anti-DNAM-1(CD226), anti-NKG2D, anti-NKP46, or anti-NKG-2A monoclonal antibodies (mAbs) before the degranulating assay. Results: NK cells in allografts effectively inhibited auto-T cell proliferation following alloantigen stimulation, selectively killing alloantigen activated T cells. NKG2A− NK cell subgroups showed higher levels of CD107a degranulation toward activated T cells, when compared with NKG2A− subgroups. Blocking NKG2D or CD226 (DNAM-1) led to significant reductions in degranulation, whereas NKG2A block resulted in increased NK degranulation. Donor NK cells in the aGVHD group expressed lower levels of NKG2D and CD226, higher levels of NKG2A, and showed higher CD107a degranulation levels when compared with NK cells in the non-aGVHD group. Using univariate analysis, higher NK degranulation activities in allografts (CD107ahigh) were correlated with a decreased risk in grade I–IV aGVHD (hazard risk [HR] = 0.294; P < 0.0001), grade III–IV aGVHD (HR = 0.102; P < 0.0001), and relapse (HR = 0.157; P = 0.015), and improved overall survival (HR = 0.355; P = 0.028) after allo-HSCT. Multivariate analyses showed that higher NK degranulation activities (CD107ahigh) in allografts were independent risk factors for grades, I–IV aGVHD (HR = 0.357; P = 0.002), and grades III–IV aGVHD (HR = 0.13; P = 0.009). Conclusions: These findings reveal that the degranulation activity of NK in allografts toward allo-activated T cells was associated with the occurrence and the severity of aGVHD, after allogeneic stem cell transplantation. This suggested that cytotoxicity of donor NK cells to allo-reactive T cells have important roles in aGVHD regulation.
Collapse
Affiliation(s)
- Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Xiaoqing Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Jiaping Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yanli Lai
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Hao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Ye Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yongcheng Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Binbin Lai
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Zhijuan Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Minjie Gao
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yi Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
46
|
Ivanova DL, Krempels R, Denton SL, Fettel KD, Saltz GM, Rach D, Fatima R, Mundhenke T, Materi J, Dunay IR, Gigley JP. NK Cells Negatively Regulate CD8 T Cells to Promote Immune Exhaustion and Chronic Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020; 10:313. [PMID: 32733814 PMCID: PMC7360721 DOI: 10.3389/fcimb.2020.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
NK cells regulate CD4+ and CD8+ T cells in acute viral infection, vaccination, and the tumor microenvironment. NK cells also become exhausted in chronic activation settings. The mechanisms causing these ILC responses and their impact on adaptive immunity are unclear. CD8+ T cell exhaustion develops during chronic Toxoplasma gondii (T. gondii) infection resulting in parasite reactivation and death. How chronic T. gondii infection impacts the NK cell compartment is not known. We demonstrate that NK cells do not exhibit hallmarks of exhaustion. Their numbers are stable and they do not express high PD1 or LAG3. NK cell depletion with anti-NK1.1 is therapeutic and rescues chronic T. gondii infected mice from CD8+ T cell exhaustion dependent death, increases survival after lethal secondary challenge and alters cyst burdens in brain. Anti-NK1.1 treatment increased polyfunctional CD8+ T cell responses in spleen and brain and reduced CD8+ T cell apoptosis in spleen. Chronic T. gondii infection promotes the development of a modified NK cell compartment, which does not exhibit normal NK cell characteristics. NK cells are Ly49 and TRAIL negative and are enriched for expression of CD94/NKG2A and KLRG1. These NK cells are found in both spleen and brain. They do not produce IFNγ, are IL-10 negative, do not increase PDL1 expression, but do increase CD107a on their surface. Based on the NK cell receptor phenotype we observed NKp46 and CD94-NKG2A cognate ligands were measured. Activating NKp46 (NCR1-ligand) ligand increased and NKG2A ligand Qa-1b expression was reduced on CD8+ T cells. Blockade of NKp46 rescued the chronically infected mice from death and reduced the number of NKG2A+ cells. Immunization with a single dose non-persistent 100% protective T. gondii vaccination did not induce this cell population in the spleen, suggesting persistent infection is essential for their development. We hypothesize chronic T. gondii infection induces an NKp46 dependent modified NK cell population that reduces functional CD8+ T cells to promote persistent parasite infection in the brain. NK cell targeted therapies could enhance immunity in people with chronic infections, chronic inflammation and cancer.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ryan Krempels
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Giandor M Saltz
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - David Rach
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Rida Fatima
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Tiffany Mundhenke
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joshua Materi
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
47
|
Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020; 108:397-417. [PMID: 32557732 DOI: 10.1002/jlb.4mir0420-500rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a relatively new class of innate immune cells with phenotypical characters of lymphocytes but genotypically or functionally behave as typical innate immune cells. They have been classically divided into 3 groups (group 1 ILCs or ILC1s, group 2 ILCs or ILC2s, and group 3 ILCs or ILC3s). They serve as the first line of defense against invading pathogens and allergens at mucosal surfaces. The adaptive immune response works effectively in association with innate immunity as innate immune cells serve as APCs to directly stimulate the adaptive immune cells (various sets of T and B cells). Additionally, innate immune cells also secrete various effector molecules, including cytokines or chemokines impacting the function, differentiation, proliferation, and reprogramming among adaptive immune cells to maintain immune homeostasis. Only superantigens do not require their processing by innate immune cells as they are recognized directly by T cells and B cells. Thus, a major emphasis of the current article is to describe the cross-talk between different ILCs and adaptive immune cells during different conditions varying from normal physiological situations to different infectious diseases to allergic asthma.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Ebihara T. Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells 2020; 9:cells9051193. [PMID: 32403291 PMCID: PMC7290502 DOI: 10.3390/cells9051193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
The concept of innate lymphoid cells (ILCs) includes both conventional natural killer (NK) cells and helper ILCs, which resemble CD8+ killer T cells and CD4+ helper T cells in acquired immunity, respectively. Conventional NK cells are migratory cytotoxic cells that find tumor cells or cells infected with microbes. Helper ILCs are localized at peripheral tissue and are responsible for innate helper-cytokine production. Helper ILCs are classified into three subpopulations: TH1-like ILC1s, TH2-like ILC2s, and TH17/TH22-like ILC3s. Because of the functional similarities between ILCs and T cells, ILCs can serve as an innate component that augments each corresponding type of acquired immunity. However, the physiological functions of ILCs are more plastic and complicated than expected and are affected by environmental cues and types of inflammation. Here, we review recent advances in understanding the interaction between ILCs and acquired immunity, including T- and B-cell responses at various conditions. Immune suppressive activities by ILCs in particular are discussed in comparison to their immune stimulatory effects to gain precise knowledge of ILC biology and the physiological relevance of ILCs in human diseases.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine Affiliation, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
49
|
Regulatory CD8 T cells that recognize Qa-1 expressed by CD4 T-helper cells inhibit rejection of heart allografts. Proc Natl Acad Sci U S A 2020; 117:6042-6046. [PMID: 32111690 DOI: 10.1073/pnas.1918950117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Induction of longstanding immunologic tolerance is essential for survival of transplanted organs and tissues. Despite recent advances in immunosuppression protocols, allograft damage inflicted by antibody specific for donor organs continues to represent a major obstacle to graft survival. Here we report that activation of regulatory CD8 T cells (CD8 Treg) that recognize the Qa-1 class Ib major histocompatibility complex (MHC), a mouse homolog of human leukocyte antigen-E (HLA-E), inhibits antibody-mediated immune rejection of heart allografts. We analyzed this response using a mouse model that harbors a point mutation in the class Ib MHC molecule Qa-1, which disrupts Qa-1 binding to the T cell receptor (TCR)-CD8 complex and impairs the CD8 Treg response. Despite administration of cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig), Qa-1 mutant mice developed robust donor-specific antibody responses and accelerated heart graft rejection. We show that these allo-antibody responses reflect diminished Qa-1-restricted CD8 Treg-mediated suppression of host follicular helper T cell-dependent antibody production. These findings underscore the critical contribution of this Qa-1/HLA-E-dependent regulatory pathway to maintenance of transplanted organs and suggest therapeutic approaches to ameliorate allograft rejection.
Collapse
|
50
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|