1
|
Kübelbeck T, Wichmann NO, Raj T, Raj C, Ohnmacht C, Hövelmeyer N, Kramer D, Heissmeyer V. Regulation and Function of the Atypical IκBs-Bcl-3, IκB NS, and IκBζ-in Lymphocytes and Autoimmunity. Eur J Immunol 2025; 55:e202451273. [PMID: 40359334 PMCID: PMC12074568 DOI: 10.1002/eji.202451273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Signaling pathways involving NF-κB transcription factors have essential roles in inflammation, immunity, cell proliferation, differentiation, and survival. Classical IκB proteins, such as IκBα and IκBβ, bind to NF-κB via ankyrin repeats to sequester NF-κB in the cytoplasm and thus suppress NF-κB activity. Unlike these constitutively expressed classical IκBs, the expression of the atypical IκBs Bcl-3, IκBNS, and IκBζ is induced in immune cells after recognition of antigens, pathogen-associated molecular patterns (PAMPs) or cytokines, upon which they localize to the nucleus and form complexes with transcription factors and regulators on the DNA. Atypical, nuclear IκBs have been proposed to modulate NF-κB activity in a context-dependent manner as they can either inhibit or increase gene expression of a subset of NF-κB target genes. This complexity may be related to the molecular function of atypical IκBs, which bind to different transcription factor complexes and form a bridge to different cofactors or epigenetic modifiers. Recent research has identified novel target genes of atypical IκBs that include chemokines, cytokines, and master regulators of lymphocyte differentiation, underscoring prominent roles in adaptive immune and autoimmune responses. Here, we summarize our current understanding of atypical IκBs in lymphocytes with a focus on their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Tanja Kübelbeck
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
| | - Nina Olivera Wichmann
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
| | - Cynthia Raj
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Daniela Kramer
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
- Research Unit Molecular Immune RegulationMolecular Targets and Therapeutics CenterHelmholtz Zentrum MünchenMunichGermany
| |
Collapse
|
2
|
Jayasinghe RG, Hollingsworth D, Schedler NC, Landy E, Boonchalermvichian C, Gupta B, Yan H, Baker J, Dejene B, Weinberg KI, Negrin RS, Mavers M. Single-cell transcriptomic profiling reveals diversity in human iNKT cells across hematologic tissues. Cell Rep 2025; 44:115587. [PMID: 40305288 DOI: 10.1016/j.celrep.2025.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Invariant natural killer T (iNKT) cells are evolutionarily conserved innate lymphocytes important for protection against pathogens, malignancies, and graft-versus-host disease, with potential for universal donor cellular therapies. While mouse studies reveal transcriptionally and functionally distinct subsets, a comprehensive understanding of human iNKT cell heterogeneity is limited. Herein, we delineate the transcriptomic diversity of human iNKT cells from multiple immunologically relevant hematologic tissues. Human iNKT cells express naive/precursor, transitional, and T helper (Th)1/17/NK-like transcriptional profiles, partially contrasting with findings in mice. Additionally, these data uncover transcription factor dynamics not previously described in mice and reveal a T effector memory RA+-like population. Further, two distinct expression patterns of human CD8+ iNKT cells are described-one resembling naive/precursor cells and another resembling Th1/17/NK-like cells, with predominant expression of CD8αα protein. These critical insights into the transcriptional heterogeneity of human iNKT cells will facilitate future functional studies and inform iNKT-based cellular therapy development.
Collapse
Affiliation(s)
- Reyka G Jayasinghe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Derek Hollingsworth
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan C Schedler
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Landy
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chaiyaporn Boonchalermvichian
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Biki Gupta
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Hao Yan
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Beruh Dejene
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S Negrin
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa Mavers
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Gao J, Lu W, Xin Y, Ma H, Sheng X, Gao G, Kang X, Jiang S, Zhao Y, Lv Y, Niu Y, Liang Y, Wang H. Liver-specific Bcl3 Knockout Alleviates Acetaminophen-induced Liver Injury by Activating Nrf2 Pathway in Male Mice. Cell Mol Gastroenterol Hepatol 2025; 19:101483. [PMID: 40015625 PMCID: PMC12003009 DOI: 10.1016/j.jcmgh.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with oxidative stress being a critical factor in this process. Glutathione (GSH) plays a vital defensive role. Activation of nuclear factor erythroid 2 like 2 (Nrf2) pathway mitigates APAP-induced liver damage by promoting GSH biosynthesis and enhancing drug detoxification. Although the role of B cell leukemia/lymphoma 3 (Bcl3) in regulating inflammatory responses, cellular oncogenesis, and immune balance is well-documented, its function in APAP-induced liver injury remains unclear. METHODS We employed liver-specific Bcl3 knockout (Bcl3hep-/-) mice and adeno-associated virus (AAV)-8-mediated Bcl3 overexpression (AAV-Bcl3) mice to model APAP-induced liver injury. Liver damage was assessed through hematoxylin and eosin staining and serum alanine aminotransferase and aspartate aminotransferase measurements. The interaction between Bcl3 and Nrf2 was examined using immunofluorescence and co-immunoprecipitation assays. RESULTS Our study reveals a significant upregulation of Bcl3 expression in the livers of male mice following APAP administration, suggesting Bcl3's potential involvement in this pathological process. In Bcl3hep-/- mice, a reduced severity of liver damage was observed at both 6 and 24 hours post-APAP treatment compared with controls. Notably, Bcl3-deficient mice exhibited accelerated GSH replenishment due to the rapid induction of Gclc and Gclm genes following 6 hours of APAP exposure. Through immunofluorescence and co-immunoprecipitation analyses, we identified an interaction between Bcl3 and Nrf2. The loss of Bcl3 enhanced Nrf2 translocation upon APAP challenge, leading to the upregulation of antioxidant gene expression. These findings suggest that Bcl3 knockout alleviates oxidative stress resulting from APAP overdose. CONCLUSION We uncovered a previously uncharacterized role of Bcl3 in APAP-induced liver injury, emphasizing the role of the Bcl3-Nrf2 axis in oxidative stress-related liver damage.
Collapse
Affiliation(s)
- Jingtao Gao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Xin
- Cardiac Center, Beijing Luhe Hospital Capital Medical University, Tongzhou, Beijing, China
| | - Haowen Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohang Sheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue Kang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China; Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
4
|
Artusa P, Nguyen Yamamoto L, Barbier C, Valbon SF, Aghazadeh Habashi Y, Djambazian H, Ismailova A, Lebel MÈ, Salehi-Tabar R, Sarmadi F, Ragoussis J, Goltzman D, Melichar HJ, White JH. Skewed epithelial cell differentiation and premature aging of the thymus in the absence of vitamin D signaling. SCIENCE ADVANCES 2024; 10:eadm9582. [PMID: 39321290 PMCID: PMC11423877 DOI: 10.1126/sciadv.adm9582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Central tolerance of thymocytes to self-antigen depends on the medullary thymic epithelial cell (mTEC) transcription factor autoimmune regulator (Aire), which drives tissue-restricted antigen (TRA) gene expression. Vitamin D signaling regulates Aire and TRA expression in mTECs, providing a basis for links between vitamin D deficiency and autoimmunity. We find that mice lacking Cyp27b1, which cannot produce hormonally active vitamin D, display profoundly reduced thymic cellularity, with a reduced proportion of Aire+ mTECs, attenuated TRA expression, and poorly defined cortical-medullary boundaries. Markers of T cell negative selection are diminished, and organ-specific autoantibodies are present in knockout (KO) mice. Single-cell RNA sequencing revealed that loss of Cyp27b1 skews mTEC differentiation toward Ccl21+ intertypical TECs and generates a gene expression profile consistent with premature aging. KO thymi display accelerated involution and reduced expression of thymic longevity factors. Thus, loss of thymic vitamin D signaling disrupts normal mTEC differentiation and function and accelerates thymic aging.
Collapse
Affiliation(s)
- Patricio Artusa
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Loan Nguyen Yamamoto
- Department of Medicine, McGill University, Montreal QC, Canada
- Calcium Research Laboratory, McGill University Health Centre, Montreal QC, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Stefanie F Valbon
- Department of Microbiology, Immunology and Infectious Disease, Université de Montréal, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | | | - Haig Djambazian
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Aiten Ismailova
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Marie-Ève Lebel
- Maisonneuve-Rosemont Hospital Research Center, McGill University, Montreal, QC, Canada
| | | | - Fatemeh Sarmadi
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Jiannis Ragoussis
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - David Goltzman
- Department of Medicine, McGill University, Montreal QC, Canada
- Calcium Research Laboratory, McGill University Health Centre, Montreal QC, Canada
| | - Heather J Melichar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal QC, Canada
- Department of Medicine, McGill University, Montreal QC, Canada
| |
Collapse
|
5
|
Li K, Wang J, Fang L, Lou Y, Li J, Li Q, Luo Q, Zheng X, Fang J. Chronic inhalation of H 2S in low concentration induces immunotoxicity and inflammatory effects in lung tissue of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116279. [PMID: 38581906 DOI: 10.1016/j.ecoenv.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.
Collapse
Affiliation(s)
- Kexian Li
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Jian Wang
- Shanghai Radio Equipment Research Institute, Shanghai 201109, China; Shanghai Shentian Industrial Co., Ltd. Shanghai, 200090
| | - Liben Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Yinghua Lou
- Hubei Zhijiang People's Hospital, Hubei 443200, China
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qihui Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qun Luo
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jingjing Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Kliem CV, Schaub B. The role of regulatory B cells in immune regulation and childhood allergic asthma. Mol Cell Pediatr 2024; 11:1. [PMID: 38172451 PMCID: PMC10764675 DOI: 10.1186/s40348-023-00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND As the most common chronic disease in childhood, asthma displays a major public health problem worldwide with the incidence of those affected rising. As there is currently no cure for allergic asthma, it is mandatory to get a better understanding of the underlying molecular mechanism. MAIN BODY By producing IgE antibodies upon allergen contact, B cells play a pivotal role in allergic asthma. Besides that, IL-10-secreting B cell subsets, namely regulatory B cells (Bregs), are reported in mice and humans to play a role in allergic asthma. In humans, several Breg subsets with distinct phenotypic and functional properties are identified among B cells at different maturational and differentiation stages that exert anti-inflammatory functions by expressing several suppressor molecules. Emerging research has focused on the role of Bregs in allergic asthma as well as their role for future diagnostic and preventive strategies. CONCLUSION Knowledge about the exact function of human Bregs in allergic asthma is still very limited. This review aims to summarize the current knowledge on Bregs. We discuss different human Breg subsets, several ways of Breg induction as well as the mechanisms through which they exert immunoregulatory functions, and their role in (childhood) allergic asthma.
Collapse
Affiliation(s)
- Caroline Vanessa Kliem
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany.
- Member of German Center for Lung Research - DZL, LMU, Munich, Germany.
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany.
| |
Collapse
|
7
|
Qian G, Jiang W, Sun D, Sun Z, Chen A, Fang H, Wang J, Liu Y, Yin Z, Wei H, Fang H, Zhang X. B-cell-derived IL-10 promotes allergic sensitization in asthma regulated by Bcl-3. Cell Mol Immunol 2023; 20:1313-1327. [PMID: 37653127 PMCID: PMC10616210 DOI: 10.1038/s41423-023-01079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.
Collapse
Affiliation(s)
- Guojun Qian
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, 200001, Shanghai, China.
| | - Wenxia Jiang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Anning Chen
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingyao Wang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Yongzhong Liu
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Zhinan Yin
- Zhuhai People's Hospital, Biomedical Translational Research Institute, Jinan University, 510632, Guangzhou, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, 230000, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Department of Anesthesiology, Minhang Hospital, Fudan University, 201100, Shanghai, China.
| | - Xiaoren Zhang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
8
|
Meng Y, Yang Z, Quan Y, Zhao S, Zhang L, Yang L. Regulation of IkappaB Protein Expression by Early Gestation in the Thymus of Ewes. Vet Sci 2023; 10:462. [PMID: 37505866 PMCID: PMC10384501 DOI: 10.3390/vetsci10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The thymus is an essential component of maternal immune systems that play key roles in recognizing the placenta as immunologically foreign. The inhibitor of the NF-κB (IκB) family has essential effects on the NF-κB pathway; however, it is unclear whether early pregnancy modulates the expression of the IκB family in the thymus. In this study, maternal thymuses were sampled on day 16 of nonpregnancy and different gestation stages in the ovine, and the expression of IκB proteins was analyzed. The data showed that B cell leukemia-3 and IκBβ increased; however, IκBα, IκBε, and IKKγ deceased during gestation. Furthermore, there was an increase in IκBNS and IκBζ expression values on day 13 of pregnancy; however, this decreased on day 25 of gestation. In summary, the expression of the IκB family was modulated in the thymus during early gestation, suggesting that the maternal thymus can be associated with maternal immunologic tolerance and pregnancy establishment in ewes.
Collapse
Affiliation(s)
- Yao Meng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaodong Quan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
9
|
NF kappa B regulator Bcl3 controls development and function of classical dendritic cells required for resistance to Toxoplasma gondii. PLoS Pathog 2022; 18:e1010502. [DOI: 10.1371/journal.ppat.1010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/11/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.
Collapse
|
10
|
Pan W, Deng L, Wang H, Wang VYF. Atypical IκB Bcl3 enhances the generation of the NF-κB p52 homodimer. Front Cell Dev Biol 2022; 10:930619. [PMID: 35990614 PMCID: PMC9389042 DOI: 10.3389/fcell.2022.930619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulate diverse biological functions. Their cellular expression profiles differ, which lead to different concentrations in different cell/tissue types. Although the activation mechanisms of different NF-κB dimers have been widely investigated, there is limited information on specific NF-κB dimers’ formation. The NF-κB p52:p52 homodimer regulates an important subset of target genes in cancer cells; however, the molecular mechanism of the generation of this specific homodimer remains unclear. Our study has revealed that the atypical IκB protein, Bcl3, plays an essential role in enhancing the p52:p52 homodimer population which is a unique mechanism to p52 within the NF-κB family. p52 was shown to heterodimerize with four other NF-κB subunits (RelA, RelB, cRel, and p50); all heterodimers, except p52:p50, are significantly more stable than the p52:p52 homodimer. Bcl3 is able to compete with all other NF-κB subunits in cells for efficient p52:p52 homodimer formation which consequently leads to the upregulation of target genes that are involved in cell proliferation, migration, and inflammation, which explain why aberrant activation of Bcl3 and p52 leads to cancer.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Limei Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Haitao Wang
- Thoracic Surgery Branch, Clinical Research, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Macau SAR, China
- *Correspondence: Vivien Ya-Fan Wang,
| |
Collapse
|
11
|
Hu Y, Zhang H, Xie N, Liu D, Jiang Y, Liu Z, Ye D, Liu S, Chen X, Li C, Wang Q, Huang X, Liu Y, Shi Y, Zhang X. Bcl-3 promotes TNF-induced hepatocyte apoptosis by regulating the deubiquitination of RIP1. Cell Death Differ 2022; 29:1176-1186. [PMID: 34853447 PMCID: PMC9177694 DOI: 10.1038/s41418-021-00908-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.
Collapse
Affiliation(s)
- Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Haohao Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ningxia Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
| | - Dandan Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuhang Jiang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhi Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Deji Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Cuifeng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qi Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xingxu Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
12
|
Fang S, Zhang T, Qiao H, Hao S, Zhang L, Yang L. Expression of nuclear factor kappa B components in the ovine maternal liver in early pregnancy periods. Anim Sci J 2022; 93:e13724. [PMID: 35475589 DOI: 10.1111/asj.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023]
Abstract
There is a systemic immunological adaptation to maintaining tolerance towards the allogeneic fetus, and the liver participates in the adaptive immune tolerance during normal pregnancy. Nuclear factor kappa B (NF-κB) signalings contribute to immune regulation and liver homoeostasis. The objective of this study is to explore the effects of early pregnancy on expression of NF-κB components in the maternal liver in sheep. The maternal livers were sampled on Day 16 of the estrous cycle, and Days 13, 16, and 25 of gestation, and the expression of NF-κB components, including NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel, was detected by quantitative real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistochemical analysis. Our data revealed that early pregnancy inhibited the expression of NF-κB1 and c-Rel, but the expression of NF-κB1 and c-Rel was increased during early pregnancy. However, early pregnancy enhanced the expression of NF-κB2, RelA, and RelB with the pregnancy progress. In conclusion, early pregnancy regulates the expression of NF-κB components in the maternal livers, which may contribute to maintaining maternal liver homeostasis and immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Taipeng Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyun Qiao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shaopeng Hao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
13
|
Shao C, Jing Y, Zhao S, Yang X, Hu Y, Meng Y, Huang Y, Ye F, Gao L, Liu W, Sheng D, Li R, Zhang X, Wei L. LPS/Bcl3/YAP1 signaling promotes Sox9 +HNF4α + hepatocyte-mediated liver regeneration after hepatectomy. Cell Death Dis 2022; 13:277. [PMID: 35351855 PMCID: PMC8964805 DOI: 10.1038/s41419-022-04715-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
Recent reports have demonstrated that Sox9+HNF4α+ hepatocytes are involved in liver regeneration after chronic liver injury; however, little is known about the origin of Sox9+HNF4α+ hepatocytes and the regulatory mechanism. Employing a combination of chimeric lineage tracing, immunofluorescence, and immunohistochemistry, we demonstrate that Sox9+HNF4α+ hepatocytes, generated by transition from mature hepatocytes, play an important role in the initial phase after partial hepatectomy (PHx). Additionally, knocking down the expression of Sox9 suppresses hepatocyte proliferation and blocks the recovery of lost hepatic tissue. In vitro and in vivo assays demonstrated that Bcl3, activated by LPS, promotes hepatocyte conversion and liver regeneration. Mechanistically, Bcl3 forms a complex with and deubiquitinates YAP1 and further induces YAP1 to translocate into the nucleus, resulting in Sox9 upregulation and mature hepatocyte conversion. We demonstrate that Bcl3 promotes Sox9+HNF4α+ hepatocytes to participate in liver regeneration, and might therefore be a potential target for enhancing regeneration after liver injury.
Collapse
Affiliation(s)
- Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Shanmin Zhao
- Laboratory Animal Center of Second Military Medical University, Shanghai, 200433, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yihua Huang
- Department of Pathology, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Wenting Liu
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Dandan Sheng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
16
|
Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021; 13:210. [PMID: 34819170 PMCID: PMC8612001 DOI: 10.1186/s13148-021-01197-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. Main body Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. Conclusion Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Keyu Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
18
|
Wang HX, Zhang Q, Zhang J, Luan R, Liang Z, Tan L, Xu Y, Zhang P, Zheng L, Zhao Y, Qiu YR. CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway. FASEB J 2021; 35:e21535. [PMID: 33817835 DOI: 10.1096/fj.202100139r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/11/2022]
Abstract
Thymic epithelial cells (TECs) are indispensable for T cell development, T cell receptor (TCR) repertoire selection, and specific lineage differentiation. Medullary thymic epithelial cells (mTECs), which account for the majority of TECs in adults, are critical for thymocyte selection and self-tolerance. CD74 is a nonpolymorphic transmembrane glycoprotein of major histocompatibility complex class II (MHCII) that is expressed in TECs. However, the exact role of CD74 in regulating the development of mTEC is poorly defined. In this research, we found that loss of CD74 resulted in a significant diminution in the medulla, a selective reduction in the cell number of mature mTECs expressing CD80 molecules, which eventually led to impaired thymic CD4+ T cell development. Moreover, RNA-sequence analysis showed that CD74 deficiency obviously downregulated the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in mTECs. Our results suggest that CD74 positively controls mTEC cellularity and maturation partially by activating the canonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Luan
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanan Xu
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Tang W, Saret S, Tian R, Wang H, Claudio E, Murphy PM, Siebenlist U. Bcl-3 suppresses differentiation of RORγt + regulatory T cells. Immunol Cell Biol 2021; 99:586-595. [PMID: 33525048 PMCID: PMC11005920 DOI: 10.1111/imcb.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruxiao Tian
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Jaiswal H, Ciucci T, Wang H, Tang W, Claudio E, Murphy PM, Bosselut R, Siebenlist U. The NF-κB regulator Bcl-3 restricts terminal differentiation and promotes memory cell formation of CD8+ T cells during viral infection. PLoS Pathog 2021; 17:e1009249. [PMID: 33508001 PMCID: PMC7872245 DOI: 10.1371/journal.ppat.1009249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
Bcl-3 is an atypical member of the IκB family that acts in the nucleus to modulate transcription of many NF-κB targets in a highly context-dependent manner. Accordingly, complete Bcl-3-/- mice have diverse defects in both innate and adaptive immune responses; however, direct effects of Bcl-3 action in individual immune cell types have not been clearly defined. Here, we document a cell-autonomous role for Bcl-3 in CD8+ T cell differentiation during the response to lymphocytic choriomeningitis virus infection. Single-cell RNA-seq and flow cytometric analysis of virus-specific Bcl3-/- CD8+ T cells revealed that differentiation was skewed towards terminal effector cells at the expense of memory precursor effector cells (MPECs). Accordingly, Bcl3-/- CD8+ T cells exhibited reduced memory cell formation and a defective recall response. Conversely, Bcl-3-overexpression in transgenic CD8+ T cells enhanced MPEC formation but reduced effector cell differentiation. Together, our results establish Bcl-3 as an autonomous determinant of memory/terminal effector cell balance during CD8+ T cell differentiation in response to acute viral infection. Our results provide proof-of-principle for targeting Bcl-3 pharmacologically to optimize adaptive immune responses to infectious agents, cancer cells, vaccines and other stimuli that induce CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Hemant Jaiswal
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongshan Wang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wanhu Tang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Estefania Claudio
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich Siebenlist
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Zhao H, Chen S, Hu K, Zhang Z, Yan X, Gao H, Du W, Zheng H. 5-HTP decreases goat mammary epithelial cells apoptosis through MAPK/ERK/Bcl-3 pathway. Gene 2020; 769:145240. [PMID: 33068678 DOI: 10.1016/j.gene.2020.145240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 01/06/2023]
Abstract
Serotonin (5-HT) is a monoamine and it could regulate cell growth by its receptors working on signaling pathways. 5-HTP is the precursor of 5-HT that help 5-HT synthesis. B cell leukemia/lymphoma 3 (Bcl-3) involved in cell death and proliferation through mitogen activated protein kinase (MAPK) pathway. However, there is little information about the effects of MAPK/Bcl-3 on apoptosis of goat mammary gland epithelial cells (GMECs). The aim of this study is to explore the interaction among 5-HTP, MAPK and Bcl-3 in GMEC apoptosis. In this study, 5-HTP treatment decreased cell apoptosis and promoted phosphorylation of ERK1/2 in GMEC. We also found that the activation and inhibition of ERK1/2 could affect GMEC apoptosis. The Annexin V-FITC/PI staining and western blotting results suggested that 5-HTP decreased GMEC apoptosis through ERK1/2 signaling pathway. And the results of RT-qPCR and western blotting demonstrated that both 5-HTP and ERK1/2 positively regulated Bcl-3 expression. Sum up all the results, we could draw the conclusion that 5-HTP decreased GMEC apoptosis through MAPK/ERK/Bcl-3 pathway.
Collapse
Affiliation(s)
- Haiying Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shunxin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaizhao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijie Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Liu Z, Zhang H, Hu Y, Liu D, Li L, Li C, Wang Q, Huo J, Liu H, Xie N, Huang X, Liu Y, Chen CD, Shi Y, Zhang X. Critical role of histone H3 lysine 27 demethylase Kdm6b in the homeostasis and function of medullary thymic epithelial cells. Cell Death Differ 2020; 27:2843-2855. [PMID: 32346138 PMCID: PMC7493893 DOI: 10.1038/s41418-020-0546-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes. Moreover, mice lacking Kdm6b developed pathological autoimmune disorders. Mechanically, Kdm6b exerted its function by reducing repressive H3K27 trimethylation (H3K27me3) at the promoters of anti-apoptotic gene Bcl2 and a set of Aire-dependent TRA genes. Thus, our findings reveal a dual role of Kdm6b in the regulation of mTEC-mediated T cell central tolerance.
Collapse
Affiliation(s)
- Zhi Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haohao Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingling Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cuifeng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junhaohui Huo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanshao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ningxia Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingxu Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
23
|
Tang W, Wang H, Tian R, Saret S, Cheon H, Claudio E, Siebenlist U. Bcl-3 inhibits lupus-like phenotypes in BL6/lpr mice. Eur J Immunol 2020; 51:197-205. [PMID: 32652549 DOI: 10.1002/eji.202048584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Indexed: 11/06/2022]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates NF-κB activity in nuclei. lpr mice carry the lpr mutation in Fas, resulting in functional loss of this death receptor; they serve as models for lupus erythematosus and autoimmune lymphoproliferation syndrome (ALPS). To explore the biologic roles of Bcl-3 in this disease model, we generated BL6/lpr mice lacking Bcl-3. Unlike lpr mice on an MRL background, BL6/lpr mice present with very mild lupus- or ALPS-like phenotypes. Bcl-3 KO BL6/lpr mice, however, developed severe splenomegaly, dramatically increased numbers of double negative T cells - a hallmark of human lupus, ALPS, and MRL/lpr mice - and exhibited inflammation in multiple organs, despite low levels of autoantibodies, similar to those in BL6/lpr mice. Loss of Bcl-3 specifically in T cells exacerbated select lupus-like phenotypes, specifically organ infiltration. Mechanistically, elevated levels of Tnfα in Bcl-3 KO BL6/lpr mice may promote lupus-like phenotypes, since loss of Tnfα in these mice reversed the pathology due to loss of Bcl-3. Contrary to the inhibitory functions of Bcl-3 revealed here, this regulator has also been shown to promote inflammation in different settings. Our findings highlight the profound, yet highly context-dependent roles of Bcl-3 in the development of inflammation-associated pathology.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruxiao Tian
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - HeeJin Cheon
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2020; 10:3099. [PMID: 32082299 PMCID: PMC7005006 DOI: 10.3389/fimmu.2019.03099] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenrong Pan
- Department of General Surgery, Taihe Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingfeng Feng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Tao Y, Liu Z, Hou Y, Wang S, Liu S, Jiang Y, Tan D, Ge Q, Li C, Hu Y, Liu Z, Chen X, Wang Q, Wang M, Zhang X. Alternative NF-κB signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene 2018; 37:5887-5900. [PMID: 29973688 DOI: 10.1038/s41388-018-0363-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/25/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023]
Abstract
Multiple studies have shown that chronic inflammation is closely related to the occurrence and development of colorectal cancer (CRC). Classical NF-κB signaling, the key factor in controlling inflammation, has been found to be of great importance to CRC development. However, the role of alternative NF-κB signaling in CRC is still elusive. Here, we found aberrant constitutive activation of alternative NF-κB signaling both in CRC tissue and CRC cells. Knockdown of RelB downregulates c-Myc and upregulates p27Kip1 protein level, which inhibits CRC cell proliferation and retards CRC xenograft growth. Conversely, overexpression of RelB increases proliferation of CRC cells. In addition, we revealed a significant correlation between Bcl-3 and RelB in CRC tissues. The expression of RelB was consistent with the expression of Bcl-3 and the phosphorylation of Bcl-3 downstream proteins p-Akt (S473) and p-GSK3β (S9). Bcl-3 overexpression can restore the phenotype changes caused by RelB knockdown. Importantly, we demonstrated that alternative NF-κB transcriptional factor (p52:RelB) can directly bind to the promoter region of Bcl-3 gene and upregulate its transcription. Moreover, the expression of RelB, NF-κB2 p52, and Bcl-3 was associated with poor survival of CRC patients. Taken together, these results represent that alternative NF-κB signaling may function as an oncogenic driver in CRC, and also provide new ideas and research directions for the pathogenesis, prevention, and treatment of other inflammatory-related diseases.
Collapse
Affiliation(s)
- Yu Tao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Zhanjie Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shouli Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou, 215123, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Dan Tan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiulin Ge
- Department of Obstetrics and Gynecology, The Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Cuifeng Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Yiming Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Zhi Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Xi Chen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Qi Wang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200025, China.
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
26
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
27
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
28
|
Wang VYF, Li Y, Kim D, Zhong X, Du Q, Ghassemian M, Ghosh G. Bcl3 Phosphorylation by Akt, Erk2, and IKK Is Required for Its Transcriptional Activity. Mol Cell 2017; 67:484-497.e5. [PMID: 28689659 DOI: 10.1016/j.molcel.2017.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 01/02/2023]
Abstract
Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yidan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Daniel Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Xiangyang Zhong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Du
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
29
|
Riemann M, Andreas N, Fedoseeva M, Meier E, Weih D, Freytag H, Schmidt-Ullrich R, Klein U, Wang ZQ, Weih F. Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells. J Autoimmun 2017; 81:56-67. [DOI: 10.1016/j.jaut.2017.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|
30
|
Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, Wang Q, Liu Z, Liu S, Cheng C, Mao J, Hou Y, Wang M, Siebenlist U, Eugene Chin Y, Wang Y, Cao L, Hu G, Zhang X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 2016; 7:e2508. [PMID: 27906182 PMCID: PMC5261001 DOI: 10.1038/cddis.2016.405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.
Collapse
Affiliation(s)
- Xi Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xinwei Cao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xiaohua Sun
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Rong Lei
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Pengfei Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yongxu Zhao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Yin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Ran Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Deji Ye
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Qi Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Zhanjie Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Chunyan Cheng
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Mao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan
Hospital, Fudan University School of Medicine, Shanghai
200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin
Hospital, Shanghai Jiao-Tong University School of Medicine,
Shanghai
200025, China
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology,
National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD
20892, USA
| | - Y Eugene Chin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Ying Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Liu Cao
- Liaoning Province Collaborative
Innovation Center of Aging Related Disease Diagnosis and Treatment and
Prevention, Shenyang
110001, China
- Key laboratory of Medical Cell
Biology, China Medical University, Shenyang
110001, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| |
Collapse
|
31
|
Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3. Cells 2016; 5:cells5020014. [PMID: 27023613 PMCID: PMC4931663 DOI: 10.3390/cells5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023] Open
Abstract
Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology.
Collapse
|
32
|
Nitta T, Suzuki H. Thymic stromal cell subsets for T cell development. Cell Mol Life Sci 2016; 73:1021-37. [PMID: 26825337 PMCID: PMC11108406 DOI: 10.1007/s00018-015-2107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| |
Collapse
|
33
|
Boutaffala L, Bertrand MJM, Remouchamps C, Seleznik G, Reisinger F, Janas M, Bénézech C, Fernandes MT, Marchetti S, Mair F, Ganeff C, Hupalowska A, Ricci JE, Becher B, Piette J, Knolle P, Caamano J, Vandenabeele P, Heikenwalder M, Dejardin E. NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death Differ 2015; 22:2020-33. [PMID: 26045047 PMCID: PMC4816116 DOI: 10.1038/cdd.2015.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is well-known for its role in promoting p100/NF-κB2 processing into p52, a process defined as the alternative, or non-canonical, NF-κB pathway. Here we reveal an unexpected new role of NIK in TNFR1-mediated RIP1-dependent apoptosis, a consequence of TNFR1 activation observed in c-IAP1/2-depleted conditions. We show that NIK stabilization, obtained by activation of the non-death TNFRs Fn14 or LTβR, is required for TNFα-mediated apoptosis. These apoptotic stimuli trigger the depletion of c-IAP1/2, the phosphorylation of RIP1 and the RIP1 kinase-dependent assembly of the RIP1/FADD/caspase-8 complex. In the absence of NIK, the phosphorylation of RIP1 and the formation of RIP1/FADD/caspase-8 complex are compromised while c-IAP1/2 depletion is unaffected. In vitro kinase assays revealed that recombinant RIP1 is a bona fide substrate of NIK. In vivo, we demonstrated the requirement of NIK pro-death function, but not the processing of its substrate p100 into p52, in a mouse model of TNFR1/LTβR-induced thymus involution. In addition, we also highlight a role for NIK in hepatocyte apoptosis in a mouse model of virus-induced TNFR1/RIP1-dependent liver damage. We conclude that NIK not only contributes to lymphoid organogenesis, inflammation and cell survival but also to TNFR1/RIP1-dependent cell death independently of the alternative NF-κB pathway.
Collapse
Affiliation(s)
- L Boutaffala
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - M J M Bertrand
- The Inflammation Research Center IRC, VIB, DMBR, Ghent University, Ghent, Belgium
| | - C Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - G Seleznik
- Institute of Neuropathology, University Hospital Zürich, Zürich, Switzerland
| | | | - M Janas
- Institute of Molecular Immunology and Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - C Bénézech
- School of Immunity and Infection, IBR-MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - M T Fernandes
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - S Marchetti
- INSERM U1065, Centre Méditéranéen de Médecine Moléculaire, Nice, France
| | - F Mair
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - C Ganeff
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - A Hupalowska
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - J-E Ricci
- INSERM U1065, Centre Méditéranéen de Médecine Moléculaire, Nice, France
| | - B Becher
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - J Piette
- Laboratory of Virology, GIGA-Research, University of Liège, Liège, Belgium
| | - P Knolle
- Institute of Molecular Immunology and Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - J Caamano
- School of Immunity and Infection, IBR-MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - P Vandenabeele
- The Inflammation Research Center IRC, VIB, DMBR, Ghent University, Ghent, Belgium
| | - M Heikenwalder
- Institute of Virology, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Sher A, Jankovic D, Siebenlist U. Adaptive immune-mediated host resistance to Toxoplasma gondii is governed by the NF-κB regulator Bcl-3 in dendritic cells. Eur J Immunol 2015; 45:1972-9. [PMID: 25884683 PMCID: PMC11042791 DOI: 10.1002/eji.201445045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
The atypical IκB family member Bcl-3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, thereby either positively or negatively modulating transcription in a context-dependent manner. Previously we reported that Bcl-3 was critical for host resistance to Toxoplasma gondii. Bcl-3-deficient mice succumbed within 3-5 weeks after infection, correlating with an apparently impaired Th1-type adaptive immune response. However in which cell type(s) Bcl-3 functioned to assure resistance remained unknown. We now show that Bcl-3 expression in dendritic cells is required to generate a protective Th1-type immune response and confer resistance to T. gondii. Surprisingly, mice lacking Bcl-3 in dendritic cells were as susceptible as mice globally deficient for Bcl-3. Furthermore, early innate defenses were not compromised by the absence of Bcl-3, as initial production of IL-12 by dendritic cells and IFN-γ by NK cells were preserved. However, subsequent production of IFN-γ by CD4(+) and CD8(+) T-cells was compromised when dendritic cells lacked Bcl-3, and these mice succumbed at a time when T-cell-mediated IFN-γ production was essential for host resistance. These findings demonstrate that Bcl-3 is required in dendritic cells to prime protective T-cell-mediated immunity to T. gondii.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Weighardt H, Förster I. Bcl-3 puts the brakes on contact hypersensitivity. Eur J Immunol 2015; 45:971-4. [PMID: 25707546 DOI: 10.1002/eji.201545524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
Abstract
B-cell lymphoma (Bcl)-3 is a nonclassical member of the IκB protein family known to interact with transcriptionally inactive NF-κB1 and NF-κB2 homodimers to modulate gene expression. Besides its action as an oncoprotein, Bcl-3 has been shown to have both proinflammatory and anti-inflammatory functions depending on the cell-type affected. In this issue of the European Journal of Immunology, Tassi et al. [Eur. J. Immunol. 2015. 45: 1059-1068] report that Bcl-3 inhibits the production of the proinflammatory chemokines CXCL9 and CXCL10 in keratinocytes, thereby restricting the influx of CD8(+) effector T cells in a mouse model of allergic contact dermatitis. In addition, mice with a global deficiency of Bcl-3 show enhanced ear swelling responses in the late phase of contact hypersensitivity responses. Besides keratinocytes, other radioresistant cell types appear to also utilize Bcl-3 to dampen the inflammatory response. This Commentary will discuss the evidence supporting Bcl-3 as a critical player in limiting inflammation during the later stages of contact hypersensitivity.
Collapse
Affiliation(s)
- Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
36
|
Williams JA, Tai X, Hodes RJ. CD28-CD80/86 and CD40-CD40L Interactions Promote Thymic Tolerance by Regulating Medullary Epithelial Cell and Thymocyte Development. Crit Rev Immunol 2015; 35:59-76. [PMID: 25746048 DOI: 10.1615/critrevimmunol.2015012501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development and central tolerance of T lymphocytes in the thymus requires both TCR signals and collaboration with signals generated through costimulatory molecule interactions. In this review, we discuss the importance of CD28-CD80/86 and CD40-CD40L costimulatory interactions in promoting normal thymic development. This discussion includes roles in the generation of a normal thymic medulla, in the development of specific T-cells subsets, including iNKT and T regulatory cells, and in the generation of a tolerant mature T-cell repertoire. We discuss recent contributions to the understanding of CD28-CD80/86 and CD40-CD40L costimulatory interactions in thymic development, and we highlight the ways in which the many important roles mediated by these interactions collaborate to promote normal thymic development.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Tassi I, Rikhi N, Claudio E, Wang H, Tang W, Ha HL, Saret S, Kaplan DH, Siebenlist U. The NF-κB regulator Bcl-3 modulates inflammation during contact hypersensitivity reactions in radioresistant cells. Eur J Immunol 2015; 45:1059-1068. [PMID: 25616060 DOI: 10.1002/eji.201444994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Bcl-3 is an atypical member of the IκB family. Bcl-3 functions as a cofactor of p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, where it modulates NF-κB-regulated transcription in a context-dependent way. Bcl-3 has tumorigenic potential, is critical in host defense of pathogens, and has been reported to ameliorate or exacerbate inflammation, depending on disease model. However, cell-specific functions of Bcl-3 remain largely unknown. Here, we explored the role of Bcl-3 in a contact hypersensitivity (CHS) mouse model, which depends on the interplay between keratinocytes and immune cells. Bcl-3-deficient mice exhibited an exacerbated and prolonged CHS response to oxazolone. Increased inflammation correlated with higher production of chemokines CXCL2, CXCL9, and CXCL10, and consequently increased recruitment of neutrophils and CD8(+) T cells. BM chimera experiments indicated that the ability of Bcl-3 to reduce the CHS response depended on Bcl-3 activity in radioresistant cells. Specific ablation of Bcl-3 in keratinocytes resulted in increased production of CXCL9 and CXCL10 and sustained recruitment of specifically CD8(+) T cells. These findings identify Bcl-3 as a critical player during the later stage of the CHS reaction to limit inflammation via actions in radioresistant cells, including keratinocytes.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nimisha Rikhi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hye-Lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S, Siebenlist U. The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 2015; 41:555-66. [PMID: 25367572 DOI: 10.1016/j.immuni.2014.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates transcription in the nucleus via association with p50 (NF-κB1) or p52 (NF-κB2) homodimers. Despite evidence attesting to the overall physiologic importance of Bcl-3, little is known about its cell-specific functions or mechanisms. Here we demonstrate a T-cell-intrinsic function of Bcl-3 in autoimmunity. Bcl-3-deficient T cells failed to induce disease in T cell transfer-induced colitis and experimental autoimmune encephalomyelitis. The protection against disease correlated with a decrease in Th1 cells that produced the cytokines IFN-γ and GM-CSF and an increase in Th17 cells. Although differentiation into Th1 cells was not impaired in the absence of Bcl-3, differentiated Th1 cells converted to less-pathogenic Th17-like cells, in part via mechanisms involving expression of the RORγt transcription factor. Thus, Bcl-3 constrained Th1 cell plasticity and promoted pathogenicity by blocking conversion to Th17-like cells, revealing a unique type of regulation that shapes adaptive immunity.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Ramaswamy M, Siegel R, Siebenlist U. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:4303-11. [PMID: 25246497 DOI: 10.4049/jimmunol.1401505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report in the present study that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs blunted their ability to expand and promote effector functions of T cells upon Ag/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon Ag/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several antiapoptotic genes. Loss of Bcl-3 accelerated apoptosis of bone marrow-derived DCs during Ag presentation to T cells, and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective overexpression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DC survival and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
40
|
Gerondakis S, Fulford TS, Messina NL, Grumont RJ. NF-κB control of T cell development. Nat Immunol 2014; 15:15-25. [PMID: 24352326 DOI: 10.1038/ni.2785] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
The NF-κB signal transduction pathway is best known as a major regulator of innate and adaptive immune responses, yet there is a growing appreciation of its importance in immune cell development, particularly of T lineage cells. In this Review, we discuss how the temporal regulation of NF-κB controls the stepwise differentiation and antigen-dependent selection of conventional and specialized subsets of T cells in response to T cell receptor and costimulatory, cytokine and growth factor signals.
Collapse
Affiliation(s)
- Steve Gerondakis
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Thomas S Fulford
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Nicole L Messina
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Raelene J Grumont
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Williams JA, Zhang J, Jeon H, Nitta T, Ohigashi I, Klug D, Kruhlak MJ, Choudhury B, Sharrow SO, Granger L, Adams A, Eckhaus MA, Jenkinson SR, Richie ER, Gress RE, Takahama Y, Hodes RJ. Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. THE JOURNAL OF IMMUNOLOGY 2013; 192:630-40. [PMID: 24337745 DOI: 10.4049/jimmunol.1302550] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A critical process during thymic development of the T cell repertoire is the induction of self-tolerance. Tolerance in developing T cells is highly dependent on medullary thymic epithelial cells (mTEC), and mTEC development in turn requires signals from mature single-positive thymocytes, a bidirectional relationship termed thymus crosstalk. We show that CD28-CD80/86 and CD40-CD40L costimulatory interactions, which mediate negative selection and self-tolerance, upregulate expression of LTα, LTβ, and receptor activator for NF-κB in the thymus and are necessary for medullary development. Combined absence of CD28-CD80/86 and CD40-CD40L results in profound deficiency in mTEC development comparable to that observed in the absence of single-positive thymocytes. This requirement for costimulatory signaling is maintained even in a TCR transgenic model of high-affinity TCR-ligand interactions. CD4 thymocytes maturing in the altered thymic epithelial environment of CD40/CD80/86 knockout mice are highly autoreactive in vitro and are lethal in congenic adoptive transfer in vivo, demonstrating a critical role for these costimulatory pathways in self-tolerance as well as thymic epithelial development. These findings demonstrate that cooperativity between CD28-CD80/86 and CD40-CD40L pathways is required for normal medullary epithelium and for maintenance of self-tolerance in thymocyte development.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang X, Paun A, Claudio E, Wang H, Siebenlist U. The tumor promoter and NF-κB modulator Bcl-3 regulates splenic B cell development. THE JOURNAL OF IMMUNOLOGY 2013; 191:5984-92. [PMID: 24244019 DOI: 10.4049/jimmunol.1300611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bcl-3 is an atypical member of the family of IκB proteins. Unlike the classic members, Bcl-3 functions as a nuclear transcriptional cofactor that may, depending on context, promote or suppress genes via association with p50/NF-κB1 or p52/NF-κB2 homodimers. Bcl-3 is also an oncogene, because it is a partner in recurrent translocations in B cell tumors, resulting in deregulated expression. Bcl-3 functions, however, remain poorly understood. We have investigated the role of Bcl-3 in B cells and discovered a previously unknown involvement in the splenic development of these cells. Loss of Bcl-3 in B cells resulted in significantly more marginal zone (MZ) and fewer follicular (FO) B cells. Conversely, transgenic expression of Bcl-3 in B cells generated fewer MZ and more FO B cells. Both Bcl-3(-/-) FO and MZ B cells were more responsive to LPS stimulation compared with their wild-type counterparts, including increased proliferation. By contrast, Bcl-3(-/-) FO B cells were more prone to apoptosis upon BCR stimulation, also limiting their expansion. The data reveal Bcl-3 as a regulator of B cell fate determination, restricting the MZ path and favoring the FO pathway, at least in part, via increased signal-specific survival of the latter, a finding of relevance to its tumorigenic activity.
Collapse
Affiliation(s)
- Xiaoren Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
43
|
Chen P, Zhang J, Zhan Y, Su J, Du Y, Xu G, Shi Y, Siebenlist U, Zhang X. Established thymic epithelial progenitor/stem cell-like cell lines differentiate into mature thymic epithelial cells and support T cell development. PLoS One 2013; 8:e75222. [PMID: 24086471 PMCID: PMC3781041 DOI: 10.1371/journal.pone.0075222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/12/2013] [Indexed: 01/21/2023] Open
Abstract
Common thymic epithelial progenitor/stem cells (TEPCs) differentiate into cortical and medullary thymic epithelial cells (TECs), which are required for the development and selection of thymocytes. Mature TEC lines have been widely established. However, the establishment of TEPC lines is rarely reported. Here we describe the establishment of thymic epithelial stomal cell lines, named TSCs, from fetal thymus. TSCs express some of the markers present on tissue progenitor/stem cells such as Sca-1. Gene expression profiling verifies the thymic identity of TSCs. RANK stimulation of these cells induces expression of autoimmune regulator (Aire) and Aire-dependent tissue-restricted antigens (TRAs) in TSCs in vitro. TSCs could be differentiated into medullary thymic epithelial cell-like cells with exogenously expressed NF-κB subunits RelB and p52. Importantly, upon transplantation under the kidney capsules of nude mice, TSCs are able to differentiate into mature TEC-like cells that can support some limited development of T cells in vivo. These findings suggest that the TSC lines we established bear some characteristics of TEPC cells and are able to differentiate into functional TEC-like cells in vitro and in vivo. The cloned TEPC-like cell lines may provide useful tools to study the differentiation of mature TEC cells from precursors.
Collapse
Affiliation(s)
- Pengfei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Transfusion, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Yu Zhan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Su
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yarui Du
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Atypical IκB proteins - nuclear modulators of NF-κB signaling. Cell Commun Signal 2013; 11:23. [PMID: 23578005 PMCID: PMC3639191 DOI: 10.1186/1478-811x-11-23] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
Collapse
|
45
|
The transcriptional specificity of NF-κB dimers is coded within the κB DNA response elements. Cell Rep 2012; 2:824-39. [PMID: 23063365 PMCID: PMC4167904 DOI: 10.1016/j.celrep.2012.08.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022] Open
Abstract
Nuclear factor κB (NF-κB) regulates gene expression by binding to specific DNA elements, known collectively as κB sites, that are contained within the promoters/enhancers of target genes. We found that the identity of the central base pair (bp) of κB sites profoundly affects the transcriptional activity of NF-κB dimers. RelA dimers prefer an A/T bp at this position for optimal transcriptional activation (A/T-centric) and discriminate against G/C-centric κB sites. The p52 homodimer, in contrast, activates transcription from G/C-centric κB sites in complex with Bcl3 but represses transcription from the A/T-centric sites. The p52:Bcl3 complex binds to these two classes of κB sites in distinct modes, permitting the recruitment of coactivator, corepressor, or both coactivator and corepressor complexes in promoters that contain G/C-, A/T-, or both G/C- and A/T-centric sites. Therefore, through sensing of bp differences within κB sites, NF-κB dimers modulate biological programs by activating, repressing, and altering the expression of effector genes.
Collapse
|
46
|
Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol 2012; 3:278. [PMID: 22969770 PMCID: PMC3432834 DOI: 10.3389/fimmu.2012.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022] Open
Abstract
Thymic epithelial cells (TECs) provide the microenvironment required for the development of T cells in the thymus. A unique property of medullary thymic epithelial cells (mTECs) is their expression of a wide range of tissue-restricted self-antigens, critically regulated by the nuclear protein AIRE, which contributes to the selection of the self-tolerant T cell repertoire, thereby suppressing the onset of autoimmune diseases. The TNF receptor family (TNFRF) protein receptor activator of NF-κB (RANK), CD40 and lymphotoxin β receptor (LtβR) regulate the development and functions of mTECs. The engagement of these receptors with their specific ligands results in the activation of the NF-κB family of transcription factors. Two NF-κB activation pathways, the classical and non-classical pathways, promote the development of mature mTECs induced by these receptors. Consistently, TNF receptor-associated factor (TRAF6), the signal transducer of the classical pathway, and NF-κB inducing kinase (NIK), the signal transducer of the non-classical pathway, are essential for the development of mature mTECs. This review summarizes the current understanding of how the signaling by the TNF receptor family controls the development and functions of mTEC.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
47
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
48
|
Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ. NF-κB subunit specificity in hemopoiesis. Immunol Rev 2012; 246:272-85. [PMID: 22435561 DOI: 10.1111/j.1600-065x.2011.01090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the diverse functions served by the nuclear factor-κB (NF-κB) pathway in virtually all cell types are typically employed to deal with stress responses, NF-κB transcription factors also play key roles in the development of hemopoietic cells. This review focuses on how NF-κB transcription factors control various aspects of thymic T-cell and myeloid cell differentiation that include its roles in hemopoietic precursors, conventional αβ T cells, CD4(+) regulatory T cells, natural killer T cells, γδ T cells, macrophages, and dendritic cells.
Collapse
|
49
|
Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, Nishikawa Y, Nii T, Kiyonari H, Abe T, Uehara H, Izumi K, Tamada K, Chen L, Penninger JM, Inoue JI, Akiyama T, Matsumoto M. Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. THE JOURNAL OF IMMUNOLOGY 2011; 186:5047-57. [PMID: 21441458 DOI: 10.4049/jimmunol.1003533] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has recently become clear that signals mediated by members of the TNFR superfamily, including lymphotoxin-β receptor (LTβR), receptor activator for NF-κB (RANK), and CD40, play essential roles in organizing the integrity of medullary thymic epithelial cells (mTECs) required for the establishment of self-tolerance. However, details of the mechanism responsible for the unique and cooperative action of individual and multiple TNFR superfamily members during mTEC differentiation still remain enigmatic. In this study, we show that the LTβR signal upregulates expression of RANK in the thymic stroma, thereby promoting accessibility to the RANK ligand necessary for mTEC differentiation. Cooperation between the LTβR and RANK signals for optimal mTEC differentiation was underscored by the exaggerated defect of thymic organogenesis observed in mice doubly deficient for these signals. In contrast, we observed little cooperation between the LTβR and CD40 signals. Thus, the LTβR signal exhibits a novel and unique function in promoting RANK activity for mTEC organization, indicating a link between thymic organogenesis mediated by multiple cytokine signals and the control of autoimmunity.
Collapse
Affiliation(s)
- Yasuhiro Mouri
- Division of Molecular Immunology, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pène F, Paun A, Sønder SU, Rikhi N, Wang H, Claudio E, Siebenlist U. The IκB family member Bcl-3 coordinates the pulmonary defense against Klebsiella pneumoniae infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:2412-21. [PMID: 21228348 DOI: 10.4049/jimmunol.1001331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.
Collapse
Affiliation(s)
- Frédéric Pène
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|