1
|
Zhang M, Ma J, Li M. Original Antigenic Sin in CD4+ T Cells. Immunology 2025; 175:165-179. [PMID: 40056013 DOI: 10.1111/imm.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 05/07/2025] Open
Abstract
Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.
Collapse
Affiliation(s)
- Mingran Zhang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
| | - Meili Li
- School of Mathematics and Statistics, Donghua University, Shanghai, China
| |
Collapse
|
2
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
3
|
Chen Y, Xie Y, Yu X. Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review. Front Med 2025:10.1007/s11684-025-1129-3. [PMID: 40347368 DOI: 10.1007/s11684-025-1129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/16/2024] [Indexed: 05/12/2025]
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Collapse
Affiliation(s)
- Yao Chen
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xie
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
5
|
Magodoro IM, Wilkinson KA, Claggett BL, Ntusi NAB, Siedner M MJ, Wilkinson RJ. Discordance between measures of Mycobacterium tuberculosis sensitization and type 2 diabetes mellitus in the United States (NHANES): A population-based cohort study. J Infect 2025; 90:106496. [PMID: 40315998 DOI: 10.1016/j.jinf.2025.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
OBJECTIVE We examined how latent TB infection (LTBI), evaluated by cell-mediated immune responses to Mycobacterium tuberculosis (Mtb) antigens, impacts glucose metabolism in US adults. METHODS Mtb sensitization was evaluated by interferon-γ (IFN-γ) release assay (IGRA+: assay reactivity) and tuberculin skin testing (TST+: skin induration ≥10 mm), and categorized as: IGRA-/TST- (TB uninfected controls); IGRA-/TST+; IGRA+/TST-; or IGRA+/TST+. Diabetes was ascertained by fasting plasma glucose (FPG) ≥7.0 mmol/L, HbA1c ≥6.5% and/or antidiabetic medication. Adjusted generalized additive models examined nonlinear effects of skin induration and IFN-γ reactivity on FPG and HbA1c; and LTBI on diabetes prevalence. RESULTS Among 1787 (IGRA-/TST-), 101 (IGRA-/TST+), 92 (IGRA+/TST-), and 99 (IGRA+/TST+) adults, skin induration linearly associated with FPG [effective degrees of freedom (EDF) =1.01; p<0.001] and non-linearly with HbA1c [EDF=1.76; p=0.003]. IFN-γ reactivity correlated with neither FPG [p=0.58] nor HbA1c [p=0.94]. Relatedly, adjusted diabetes prevalence was greater in IGRA-/TST+ [24.9%; p=0.048] and IGRA+/TST+ [27.3%; p=0.004] but not IGRA+/TST- [15.9%; p=0.69] individuals than among controls [15.3%]. CONCLUSIONS LTBI associated with glycemic measures and diabetes when assessed by skin induration, but not IFN-γ release. This suggests an association with innate immune activation rather than acquired T-cell response, as determined by ex vivo IFN-γ release assay.
Collapse
Affiliation(s)
- Itai M Magodoro
- Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Katalin A Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa; Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, Republic of South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa; Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom
| | - Brian L Claggett
- Harvard Medical School, Boston 02115, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston 02115, MA, USA
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa; South African Medical Research Council, Tygerberg 7505, Republic of South Africa; ARUA/GUILD Cluster of Research Excellence on Noncommunicable Diseases and Associated Multimorbidity
| | - Mark J Siedner M
- Harvard Medical School, Boston 02115, MA, USA; Medical Practice Evaluation Center and Division of Infectious Diseases, Massachusetts General Hospital, Boston 02114, MA, USA; Africa Health Research Institute, Mtubatuba 3935, Republic of South Africa; University of KwaZulu-Natal, Durban 4013, South Africa
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa; Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, Republic of South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa; Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College, London W12 0NN, United Kingdom.
| |
Collapse
|
6
|
Ramadan A, Rao P, Allababidi S, Khashan R, Fathallah AM. Tolerization with a Novel Dual-Acting Liposomal Tim Agonist Prepares the Immune System for the Success of Gene Therapy. Int J Mol Sci 2025; 26:3830. [PMID: 40332528 PMCID: PMC12027763 DOI: 10.3390/ijms26083830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Gene therapy holds great promise for treating various congenital rare diseases. However, immunogenicity against viral vectors used in gene therapy remains a challenge, impacting both the safety and efficacy of gene therapy products. Neutralizing antibodies against the vector capsid proteins impact the ability to re-dose patients, which a growing body of evidence suggests might be required for some indications and certain younger patient populations. In this communication, we report a novel dual-acting liposomal formulation that induces immune tolerance toward adeno-associated virus 9null (AAV9null) capsid proteins. We present in silico data on our first- and second-generation Tim agonist molecules as well as in vitro and in vivo data supporting the generation of antigen-specific regulatory T cells (Tregs) as well as abrogation of antibody response to AAV9null capsid in our animal models. These early data are encouraging and may offer a new solution to mitigate the immunogenicity induced by gene therapy products.
Collapse
Affiliation(s)
| | - Pushpa Rao
- LAPIX Therapeutics Inc., Cambridge, MA 02141, USA
| | | | - Raed Khashan
- Artelligence Therapeutics LLC, Philadelphia, PA 19114, USA;
| | | |
Collapse
|
7
|
Wen Y, Zhao J, Zhang Z. Heterogeneity and longitudinal transcriptomic characteristics of Tregs in COVID-19 patients. Front Immunol 2025; 16:1548173. [PMID: 40114921 PMCID: PMC11922936 DOI: 10.3389/fimmu.2025.1548173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Regulatory T cells (Tregs) play a crucial role in maintaining immune tolerance by suppressing immune responses against pathogens. The fluctuation of Treg proportions in COVID-19 remains a topic of debate, and the mechanisms triggering Treg activation in COVID-19 are still unclear. Understanding these issues is essential for better managing immune responses in COVID-19 patients. Methods We collected a cohort of COVID-19 patients with varying disease severity and stage to explore the transcriptomic and functional traits of Tregs in these individuals. Using transcriptomic analysis, we evaluated the proportion and functionality of different Treg subsets, specifically HLA_DR+ Tregs, across different stages of COVID-19 patients. Results Our analysis revealed that the proportion of CCR7 + Tregs decreased as the disease advanced, while the cell proportion of HLA_DR+ regs escalated with the severity of the disease. Moreover, the transcription actor CARHSP1 exhibited apositive correlation with the proportion of HLA_DR+ Tregs. Notably, the heightened suppressive function of HLA_DR+ Tregs in severe COVID-19 patients, with interactions between PF4 and CXCR3, contributed to the homeostasis of HLA_DR+ Tregs in severe COVID-19 patients. Furthermore, we observed that Tregs in COVID-19 patients exhibited weakened TCR clonotype expansion, and the suppression of HLA_DR+ Tregs with expanded TCR clonotypes in severe COVID-19 cases did not show a significant increase compared to asymptomatic and mild COVID-19 groups. The findings indicate that Tregs may be activated through the bystander effect, as evidenced by the analysis of TCR clonotype characteristics. Discussion Our research delineates the diversity of dynamic alterations in Tregs and sheds light on potential mechanisms underlying Treg activation, providing a theoretical foundation and offering treatment strategies for managing COVID-19 patients.
Collapse
Affiliation(s)
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Izzy S, Yahya T, Albastaki O, Abou-El-Hassan H, Aronchik M, Cao T, De Oliveira MG, Lu KJ, Moreira TG, da Silva P, Boucher ML, Beauchamp LC, S LeServe D, Brandao WN, Carolina Durão A, Lanser T, Montini F, Lee JH, Bernstock JD, Kaul M, Pasquarelli-do-Nascimento G, Chopra K, Krishnan R, Mannix R, Rezende RM, Quintana FJ, Butovsky O, Weiner HL. Nasal anti-CD3 monoclonal antibody ameliorates traumatic brain injury, enhances microglial phagocytosis and reduces neuroinflammation via IL-10-dependent T reg-microglia crosstalk. Nat Neurosci 2025; 28:499-516. [PMID: 40016353 PMCID: PMC11893472 DOI: 10.1038/s41593-025-01877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/20/2024] [Indexed: 03/01/2025]
Abstract
Neuroinflammation plays a crucial role in traumatic brain injury (TBI), contributing to both damage and recovery, yet no effective therapy exists to mitigate central nervous system (CNS) injury and promote recovery after TBI. In the present study, we found that nasal administration of an anti-CD3 monoclonal antibody ameliorated CNS damage and behavioral deficits in a mouse model of contusional TBI. Nasal anti-CD3 induced a population of interleukin (IL)-10-producing regulatory T cells (Treg cells) that migrated to the brain and closely contacted microglia. Treg cells directly reduced chronic microglia inflammation and regulated their phagocytic function in an IL-10-dependent manner. Blocking the IL-10 receptor globally or specifically on microglia in vivo abrogated the beneficial effects of nasal anti-CD3. However, the adoptive transfer of IL-10-producing Treg cells to TBI-injured mice restored these beneficial effects by enhancing microglial phagocytic capacity and reducing microglia-induced neuroinflammation. These findings suggest that nasal anti-CD3 represents a promising new therapeutic approach for treating TBI and potentially other forms of acute brain injury.
Collapse
Affiliation(s)
- Saef Izzy
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar Albastaki
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Cao
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marilia Garcia De Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuan-Jung Lu
- Immunology of Brain Injury Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick da Silva
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masen L Boucher
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wesley Nogueira Brandao
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Carolina Durão
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Toby Lanser
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Montini
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Megha Kaul
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kusha Chopra
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebekah Mannix
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
10
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Chu KH, Chiang BL. A Novel Subset of Regulatory T Cells Induced by B Cells Alleviate the Severity of Immunological Diseases. Clin Rev Allergy Immunol 2024; 67:73-82. [PMID: 39465485 DOI: 10.1007/s12016-024-09009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3 days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genomes and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Cai L, Du Y, Xiong H, Zheng H. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1438819. [PMID: 39679376 PMCID: PMC11637861 DOI: 10.3389/fphar.2024.1438819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Hepatocellular carcinoma is the predominant histologic variant of hepatic malignancy and has become a major challenge to global health. The increasing incidence and mortality of hepatocellular carcinoma has created an urgent need for effective prevention, diagnosis, and treatment strategies. This is despite the impressive results of multiple treatments in the clinic. However, the unique tumor immunosuppressive microenvironment of hepatocellular carcinoma increases the difficulty of treatment and immune tolerance. In recent years, the application of nanoparticles in the treatment of hepatocellular carcinoma has brought new hope for tumor patients. Nano agents target tumor-associated fibroblasts, regulatory T cells, myeloid suppressor cells, tumor-associated macrophages, tumor-associated neutrophils, and immature dendritic cells, reversed the immunosuppressive microenvironment of hepatocellular carcinoma. In addition, he purpose of this review is to summarize the advantages of nanotechnology in guiding surgical excision, local ablation, TACE, standard chemotherapy, and immunotherapy, application of nano-vaccines has also continuously enriched the treatment of liver cancer. This study aims to investigate the potential applications of nanotechnology in the management of hepatocellular carcinoma, with the ultimate goal of enhancing therapeutic outcomes and improving the prognosis for patients affected by this malignancy.
Collapse
Affiliation(s)
| | | | | | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
14
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
15
|
Shi Y, Zhang W, Jia Q, Zhong X, Iyer P, Wu H, Yuan YC, Zhao Y, Zhang L, Wang L, Jia Z, Kuo YH, Sun Z. Cancer-associated SF3B1-K700E mutation controls immune responses by regulating T reg function via aberrant Anapc13 splicing. SCIENCE ADVANCES 2024; 10:eado4274. [PMID: 39303038 PMCID: PMC11414738 DOI: 10.1126/sciadv.ado4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Recurrent somatic mutations in spliceosome factor 3b subunit 1 (SF3B1) are identified in hematopoietic malignancies, with SF3B1-K700E being the most common one. Here, we show that regulatory T cell (Treg)-specific expression of SF3B1-K700E (Sf3b1K700Efl/+/Foxp3YFP-Cre) results in spontaneous autoimmune phenotypes. CD4+ T cells from Sf3b1K700Efl/+/Foxp3YFP-Cre mice display defective Treg differentiation and inhibitory function, which is demonstrated by failed prevention of adoptive transfer colitis by Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs. Mechanically, SF3B1-K700E induces an aberrant splicing event that results in reduced expression of a cell proliferation regulator Anapc13 due to the insertion of a 231-base pair DNA fragment to the 5' untranslated region. Forced expression of the Anapc13 gene restores the differentiation and ability of Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs to prevent adoptive transfer colitis. In addition, acute myeloid leukemia grows faster in aged, but not young, Sf3b1K700Efl/+/Foxp3YFP-Cre mice compared to Foxp3YFP-Cre mice. Our results highlight the impact of cancer-associated SF3B1 mutation on immune responses, which affect cancer development.
Collapse
Affiliation(s)
- Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Qiong Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Prajish Iyer
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics, Department of Computational Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yuqi Zhao
- Integrated Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lili Wang
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Fu Y, Zhang Y, Zhang Y, Li R, Yang M, Bai T, Zheng X, Huang D, Zhang M, Tu K, Xu Q, Liu X. Nanoreactors with Cascade Catalytic Activity Reprogram the Tumor Microenvironment for Enhanced Immunotherapy by Synchronously Regulating Treg and Macrophage Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49053-49068. [PMID: 39241037 DOI: 10.1021/acsami.4c09830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Immunotherapy has been extensively utilized and studied as a prominent therapeutic strategy for tumors. However, the presence of a hypoxic immunosuppressive tumor microenvironment significantly reduces the efficacy of the treatment, thus impeding its application. In addition, the hypoxic microenvironment can also lead to the enrichment of immunosuppressive cells and reduce the effectiveness of tumor immunotherapy; nanoparticles with biocatalytic activity have the ability to relieve hypoxia in tumor tissues and deliver drugs to target cells and have been widely concerned and applied in the field of tumor therapy. The present study involved the development of a dual nanodelivery system that effectively targets the immune system to modify the tumor microenvironment (TME). The nanodelivery system was developed by incorporating R848 and Imatinib (IMT) into Pt nanozyme loaded hollow polydopamine (P@HP) nanocarriers. Subsequently, their surface was modified with specifically targeted peptides that bind to M2-like macrophages and regulatory T (Treg) cells, thereby facilitating the precise targeting of these cells. When introduced into the tumor model, the nanocarriers were able to selectively target immune cells in tumor tissue, causing M2-type macrophages to change into the M1 phenotype and reducing Treg activation within the tumor microenvironment. In addition, the carriers demonstrated exceptional biocatalytic activity, effectively converting H2O2 into oxygen and water at the tumor site while the drug was active, thereby alleviating the hypoxic inhibitory conditions present in the tumor microenvironment. Additionally, this further enhanced the infiltration of M1-type macrophages and cytotoxic T lymphocytes. Moreover, when used in conjunction with immune checkpoint therapy, the proposed approach demonstrated enhanced antitumor immunotherapeutic effects. The bimodal targeted immunotherapeutic strategy developed in the present study overcomes the drawbacks of traditional immunotherapy approaches while offering novel avenues for the treatment of cancer.
Collapse
Affiliation(s)
- Yuhan Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Runqing Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- Key Laboratory of Enhanced Recovery after Surgery of Intergrated Chinese and Western Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xin Liu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
17
|
Wu M, Yu S, Yan S, Wu M, Zhang L, Chen S, Shi D, Liu S, Fan Y, Lin X, Shen J. Peroxynitrite reduces Treg cell expansion and function by mediating IL-2R nitration and aggravates multiple sclerosis pathogenesis. Redox Biol 2024; 75:103240. [PMID: 38889621 PMCID: PMC11231601 DOI: 10.1016/j.redox.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.
Collapse
MESH Headings
- Peroxynitrous Acid/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Mice
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Receptors, Interleukin-2/metabolism
- Female
- Signal Transduction/drug effects
- Disease Models, Animal
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Male
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Sulan Yu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shenyu Yan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Minghui Wu
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lu Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Shanlin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China; Free Radical Regulation and Application Research Center of Fudan University, Shanghai, 200000, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
18
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Yu YJ, Liu XD, Liao C, Yu R, Wang X, Li M, Wang Y. Targeting gut microbiota for immunotherapy of diseases. Arch Toxicol 2024; 98:2429-2439. [PMID: 38722348 DOI: 10.1007/s00204-024-03770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 07/26/2024]
Abstract
With advances in next-generation sequencing technology, there is growing evidence that the gut microbiome plays a key role in the host's innate and adaptive immune system. Gut microbes and their metabolites directly or indirectly regulate host immune cells. Crucially, dysregulation of the gut microbiota is often associated with many immune system diseases. In turn, microbes modulate disease immunotherapy. Data from preclinical to clinical studies suggest that the gut microbiota may influence the effectiveness of tumor immunotherapy, particularly immune checkpoint inhibitors (ICIs). In addition, the most critical issue now is a COVID-19 vaccine that generates strong and durable immunity. A growing number of clinical studies confirm the potential of gut microbes to enhance the efficacy of COVID-19 vaccines. However, it is still unclear how gut bacteria interact with immune cells and what treatments are based on gut microbes. Here, we outline recent advances in the effects and mechanisms of the gut microbiota and its metabolites (tryptophan metabolites, bile acids, short-chain fatty acids, and inosine) on different immune cells (dendritic cells, CD4+T cells, and macrophages). It also highlights innovative intervention strategies and clinical trials of microbiota-based checkpoint blocking therapies for tumor immunity, and ongoing efforts to maintain the long-term immunogenicity of COVID-19 vaccines. Finally, the challenges to be overcome in this area are discussed. These provide an important basis for further research and clinical translation of gut microbiota.
Collapse
Affiliation(s)
- Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Dong Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
20
|
Lepore MT, Bruzzaniti S, La Rocca C, Fusco C, Carbone F, Mottola M, Zuccarelli B, Lanzillo R, Brescia Morra V, Maniscalco GT, De Simone S, Procaccini C, Porcellini A, De Rosa V, Galgani M, Cassano S, Matarese G. Deciphering the role of protein kinase A in the control of FoxP3 expression in regulatory T cells in health and autoimmunity. Sci Rep 2024; 14:17571. [PMID: 39080325 PMCID: PMC11289137 DOI: 10.1038/s41598-024-68098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The molecular mechanisms that govern differential T cell development from CD4+CD25-conventional T (Tconv) into CD4+CD25+ forkhead-box-P3+ (FoxP3+) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2. We found that transient PKA inhibition reduced the recruitment of cAMP-responsive element-binding protein (CREB) on regulatory regions of the FoxP3 gene, a condition that is associated with an impaired acquisition of their suppressive capacity in vitro. To corroborate our findings in a human model of autoimmunity, we measured CREB phosphorylation and FoxP3 levels in iTreg cells from treatment-naïve relapsing-remitting (RR)-multiple sclerosis (MS) subjects. Interestingly, both phospho-CREB and FoxP3 induction directly correlated and were significantly reduced in RR-MS patients, suggesting a previously unknown mechanism involved in the induction and function of human iTreg cells.
Collapse
Affiliation(s)
- Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Clorinda Fusco
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mottola
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Bruno Zuccarelli
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Vincenzo Brescia Morra
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Salvatore De Simone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Silvana Cassano
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
21
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
22
|
Zhao C, Xiao R, Jin H, Li X. The immune microenvironment of lung adenocarcinoma featured with ground-glass nodules. Thorac Cancer 2024; 15:1459-1470. [PMID: 38923346 PMCID: PMC11219292 DOI: 10.1111/1759-7714.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Early-stage lung cancer is now more commonly identified in the form of ground-glass nodules (GGNs). Presently, the treatment of lung cancer with GGNs mainly depends on surgery; however, issues still exist such as overtreatment and delayed treatment due to the nonuniform standard of follow-up. Therefore, the discovery of a noninvasive treatment could expand the treatment repertoire of ground-glass nodular lung cancer and benefit the prognosis of patients. Immunotherapy has recently emerged as a new promising approach in the field of lung cancer treatment. Thus, this study presents a comprehensive review of the immune microenvironment of lung cancer with GGNs and describes the functions and characteristics of various immune cells involved, aiming to provide guidance for the clinical identification of novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Changtai Zhao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Rongxin Xiao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Hongming Jin
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Xiao Li
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| |
Collapse
|
23
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
24
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
26
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
27
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
29
|
Schafer S, Chen K, Ma L. Crosstalking with Dendritic Cells: A Path to Engineer Advanced T Cell Immunotherapy. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1372995. [PMID: 38911455 PMCID: PMC11192543 DOI: 10.3389/fsysb.2024.1372995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Crosstalk between dendritic cells (DCs) and T cells plays a crucial role in modulating immune responses in natural and pathological conditions. DC-T cell crosstalk is achieved through contact-dependent (i.e., immunological synapse) and contact-independent mechanisms (i.e., cytokines). Activated DCs upregulate co-stimulatory signals and secrete proinflammatory cytokines to orchestrate T cell activation and differentiation. Conversely, activated T helper cells "license" DCs towards maturation, while regulatory T cells (Tregs) silence DCs to elicit tolerogenic immunity. Strategies to efficiently modulate the DC-T cell crosstalk can be harnessed to promote immune activation for cancer immunotherapy or immune tolerance for the treatment of autoimmune diseases. Here, we review the natural crosstalk mechanisms between DC and T cells. We highlight bioengineering approaches to modulate DC-T cell crosstalk, including conventional vaccines, synthetic vaccines, and DC-mimics, and key seminal studies leveraging these approaches to steer immune response for the treatment of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Sogand Schafer
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research Institute, Children’s Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA 19104, USA
| | - Kaige Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leyuan Ma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, US
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Li Y, Ning X, Zhao Z, He X, Xue Q, Zhou M, Li W, Li M. Core fucosylation of maternal milk N-glycans imparts early-life immune tolerance through gut microbiota-dependent regulation in RORγt + Treg cells. Food Funct 2024; 15:4140-4153. [PMID: 38445991 DOI: 10.1039/d4fo00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xixi Ning
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Zihui Zhao
- Pelvic Floor Repair Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xi He
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Qidi Xue
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Manlin Zhou
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- Shantou University Medical College, Shantou, Guangdong, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
31
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
32
|
Kondo M, Kumagai S, Nishikawa H. Metabolic advantages of regulatory T cells dictated by cancer cells. Int Immunol 2024; 36:75-86. [PMID: 37837615 DOI: 10.1093/intimm/dxad035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
Cancer cells employ glycolysis for their survival and growth (the "Warburg effect"). Consequently, surrounding cells including immune cells in the tumor microenvironment (TME) are exposed to hypoglycemic, hypoxic, and low pH circumstances. Since effector T cells depend on the glycolysis for their survival and functions, the metabolically harsh TME established by cancer cells is unfavorable, resulting in the impairment of effective antitumor immune responses. By contrast, immunosuppressive cells such as regulatory T (Treg) cells can infiltrate, proliferate, survive, and exert immunosuppressive functions in the metabolically harsh TME, indicating the different metabolic dependance between effector T cells and Treg cells. Indeed, some metabolites that are harmful for effector T cells can be utilized by Treg cells; lactic acid, a harmful metabolite for effector T cells, is available for Treg cell proliferation and functions. Deficiency of amino acids such as tryptophan and glutamine in the TME impairs effector T cell activation but increases Treg cell populations. Furthermore, hypoxia upregulates fatty acid oxidation via hypoxia-inducible factor 1α (HIF-1α) and promotes Treg cell migration. Adenosine is induced by the ectonucleotidases CD39 and CD73, which are strongly induced by HIF-1α, and reportedly accelerates Treg cell development by upregulating Foxp3 expression in T cells via A2AR-mediated signals. Therefore, this review focuses on the current views of the unique metabolism of Treg cells dictated by cancer cells. In addition, potential cancer combination therapies with immunotherapy and metabolic molecularly targeted reagents that modulate Treg cells in the TME are discussed to develop "immune metabolism-based precision medicine".
Collapse
Affiliation(s)
- Masaki Kondo
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
33
|
Boulanger H, Bounan S, Mahdhi A, Drouin D, Ahriz-Saksi S, Guimiot F, Rouas-Freiss N. Immunologic aspects of preeclampsia. AJOG GLOBAL REPORTS 2024; 4:100321. [PMID: 38586611 PMCID: PMC10994979 DOI: 10.1016/j.xagr.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.
Collapse
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Stéphane Bounan
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Amel Mahdhi
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Dominique Drouin
- Department of Obstetrics and Gynecology, Clinique de l'Estrée, Stains, France (Dr Drouin)
| | - Salima Ahriz-Saksi
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Fabien Guimiot
- Fetoplacental Unit, Robert-Debré Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France (Dr Guimiot)
| | - Nathalie Rouas-Freiss
- Fundamental Research Division, CEA, Institut de biologie François Jacob, Hemato-Immunology Research Unit, Inserm UMR-S 976, Institut de Recherche Saint-Louis, Paris University, Saint-Louis Hospital, Paris, France (Dr Rouas-Freiss)
| |
Collapse
|
34
|
Saito S. Role of immune cells in the establishment of implantation and maintenance of pregnancy and immunomodulatory therapies for patients with repeated implantation failure and recurrent pregnancy loss. Reprod Med Biol 2024; 23:e12600. [PMID: 39091423 PMCID: PMC11292669 DOI: 10.1002/rmb2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Background Immune cells play an important role in the establishment of pregnancy, and abnormalities in the immune system can cause implantation failure and miscarriage. Methods Previous papers have been summarized and the role of immune cells in reproduction is reviewed. Results The immune environment in the uterus changes drastically from before implantation to after pregnancy to maintain pregnancy. In allogeneic pregnancies, immature dendritic cells (DCs) that induce immune tolerance from outside the uterus flow into the uterus, and mature DCs that remain in the uterus express programmed cell death ligand 2, which suppresses the immune response. Macrophages are classified into M1-macrophages, which induce inflammation, and M2-macrophages, which suppress inflammation; M1-macrophages are required for luteinization, and M2-macrophages induce the differentiation of endometrial epithelial cells to enable implantation. Regulatory T cells, which suppress rejection, are essential for the implantation and maintenance of allogeneic pregnancies. Implantation failure and fetal loss are associated with decreased numbers or qualitative abnormalities of DCs, macrophages, and regulatory T cells. The clinical usefulness of immunomodulatory therapies in patients with repeated implantation failure and recurrent pregnancy loss has been reported. Conclusion The provision of individualized medical care in cases of implantation failure or miscarriage may improve clinical outcomes.
Collapse
|
35
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
36
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
37
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
38
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
39
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
40
|
Zhukova OA, Chudakova DA, Belopasov VV, Shirshova ЕV, Baklaushev VP, Yusubalieva GM. Treg Cells in Ischemic Stroke: A Small Key to a Great Orchestrion. КЛИНИЧЕСКАЯ ПРАКТИКА 2023; 14:36-49. [DOI: 10.17816/clinpract568210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Ischemic stroke is a global medical problem and one of the leading causes of death or disability worldwide. The main approach of ischemic stroke therapy in the most acute period, which can prevent or minimize the development of a neurological deficit, is the restoration of the blood flow in the ischemic brain tissue using enzymatic thrombolysis or endovascular thromboextraction. When the therapeutic window is missed, the modulation of the acute inflammatory response may play an important role in determining the fate of neurons in the penumbra. The key players in this process are T-regulatory cells (Tregs) an immunosuppressive population of CD4+ T-cells with the CD4+, CD25+ CD127low, FoxP3+ phenotype. Despite the existing reports that Tregs (or certain Treg subpopulations) can exacerbate microcirculatory disorders in the ischemic tissue, many stadies convincingly suggest the positive role of Tregs in ischemic stroke. Resident CD69+ Tregs found in the normal mammalian brain have neuroprotective activity, produce IL-10 and other anti-inflammatory cytokines, control astrogliosis, and downregulate cytotoxic subpopulations of T cells and microglia. Systemic administration of Treg in stroke is accompained by a decrease in the volume of cerebral infarction and decreased levels of secondary neuronal death. Thus, the methods allowing Treg activation and expansion ex vivo open up several new avenues for the immunocorrection not only in systemic and autoimmune diseases, but, potentially, in the neuroprotective therapy for ischemic stroke. The relationship between Treg, inflammation, and cerebrovascular pathology is of particular interest in the case of ischemic stroke and COVID-19 as a comorbidity. It has been demonstrated that systemic inflammation caused by SARS-CoV-2 infection leads to a significant suppression of Treg, which is accompanied by an increased risk for the development of ischemic stroke and other neurological complications. Overall, the information summarized herein about the possible therapeutic potential of Treg in cerebrovascular pathology may be of practical interest not only for researchers, but also for clinicians.
Collapse
|
41
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
42
|
Vogel K, Arra A, Lingel H, Bretschneider D, Prätsch F, Schanze D, Zenker M, Balk S, Bruder D, Geffers R, Hachenberg T, Arens C, Brunner-Weinzierl MC. Bifidobacteria shape antimicrobial T-helper cell responses during infancy and adulthood. Nat Commun 2023; 14:5943. [PMID: 37741816 PMCID: PMC10517955 DOI: 10.1038/s41467-023-41630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Microbial infections early in life are challenging for the unexperienced immune system. The SARS-CoV-2 pandemic again has highlighted that neonatal, infant, child, and adult T-helper(Th)-cells respond differently to infections, and requires further understanding. This study investigates anti-bacterial T-cell responses against Staphylococcus aureus aureus, Staphylococcus epidermidis and Bifidobacterium longum infantis in early stages of life and adults and shows age and pathogen-dependent mechanisms. Beside activation-induced clustering, T-cells stimulated with Staphylococci become Th1-type cells; however, this differentiation is mitigated in Bifidobacterium-stimulated T-cells. Strikingly, prestimulation of T-cells with Bifidobacterium suppresses the activation of Staphylococcus-specific T-helper cells in a cell-cell dependent manner by inducing FoxP3+CD4+ T-cells, increasing IL-10 and galectin-1 secretion and showing a CTLA-4-dependent inhibitory capacity. Furthermore Bifidobacterium dampens Th responses of severely ill COVID-19 patients likely contributing to resolution of harmful overreactions of the immune system. Targeted, age-specific interventions may enhance infection defence, and specific immune features may have potential cross-age utilization.
Collapse
Affiliation(s)
- Katrin Vogel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Florian Prätsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Silke Balk
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Hachenberg
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- Justus-Liebig-University Gießen, University Hospital of Gießen and Marburg (UKGM), Gießen Campus, Department of Otorhinolaryngology, Head/Neck Surgery and Plastic Surgery, Gießen, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
43
|
Zhang X, Chen X, Wang Z, Meng X, Hoffmann-Sommergruber K, Cavallari N, Wu Y, Gao J, Li X, Chen H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023; 170:1-12. [PMID: 37067238 DOI: 10.1111/imm.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xiao Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Zhongliang Wang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xuanyi Meng
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | | | - Nicola Cavallari
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Yong Wu
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
44
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
45
|
Swaminathan S, Scorza T, Yero A, Farnos O, Burke Schinkel SC, Angel JB, Jenabian MA. Impact of in vitro HIV infection on human thymic regulatory T cell differentiation. Front Microbiol 2023; 14:1217801. [PMID: 37547675 PMCID: PMC10400333 DOI: 10.3389/fmicb.2023.1217801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background The differentiation and function of immunosuppressive regulatory T cells (Tregs) is dictated by the master transcription factor FoxP3. During HIV infection, there is an increase in Treg frequencies in the peripheral blood and lymphoid tissues. This accentuates immune dysfunction and disease progression. Expression of FoxP3 by thymic Tregs (tTregs) is partially controlled by TGF-β. This cytokine also contributes to Treg development in the peripheral blood and lymphoid tissues. Although TGF-β mediates lymphoid tissue fibrosis and peripheral Treg differentiation in HIV-infected individuals, its role in the induction and maintenance of Tregs within the thymus during HIV infection remains unclear. Methods Thymocytes were isolated from fresh human thymic tissues obtained from pediatric patients undergoing cardiac surgery. Infection by both R5- and X4-tropic HIV-1 strains and TGF-β treatment of human thymocytes was performed in an in vitro co-culture model with OP9-DL1 cells expressing Notch ligand delta-like 1 without T cell receptor (TCR) activation. Results Despite high expression of CCR5 and CXCR4 by tTregs, FoxP3 + CD3highCD8- thymocytes were much less prone to in vitro infection with R5- and X4-tropic HIV strains compared to FoxP3-CD3highCD8- thymocytes. As expected, CD3highCD4+ thymocytes, when treated with TGF-β1, upregulated CD127 and this treatment resulted in increased FoxP3 expression and Treg differentiation, but did not affect the rate of HIV infection. FoxP3 expression and Treg frequencies remained unchanged following in vitro HIV infection alone or in combination with TGF-β1. Conclusion FoxP3 expression and tTreg differentiation is not affected by in vitro HIV infection alone or the combination of in vitro HIV infection and TGF-β treatment.
Collapse
Affiliation(s)
- Sharada Swaminathan
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tatiana Scorza
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | | | - Jonathan B. Angel
- Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| |
Collapse
|
46
|
Li T, Wang X, Niu M, Wang M, Zhou J, Wu K, Yi M. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front Immunol 2023; 14:1196970. [PMID: 37520520 PMCID: PMC10373067 DOI: 10.3389/fimmu.2023.1196970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The PD-1/PD-L1 signaling pathway plays a crucial role in cancer immune evasion, and the use of anti-PD-1/PD-L1 antibodies represents a significant milestone in cancer immunotherapy. However, the low response rate observed in unselected patients and the development of therapeutic resistance remain major obstacles to their clinical application. Accumulating studies showed that overexpressed TGF-β is another immunosuppressive factor apart from traditional immune checkpoints. Actually, the effects of PD-1 and TGF-β pathways are independent and interactive, which work together contributing to the immune evasion of cancer cell. It has been verified that blocking TGF-β and PD-L1 simultaneously could enhance the efficacy of PD-L1 monoclonal antibody and overcome its treatment resistance. Based on the bispecific antibody or fusion protein technology, multiple bispecific and bifunctional antibodies have been developed. In the preclinical and clinical studies, these updated antibodies exhibited potent anti-tumor activity, superior to anti-PD-1/PD-L1 monotherapies. In the review, we summarized the advances of bispecific antibodies targeting TGF-β and PD-L1 in cancer immunotherapy. We believe these next-generation immune checkpoint inhibitors would substantially alter the cancer treatment paradigm, especially in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingli Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Műzes G, Sipos F. CAR-Based Therapy for Autoimmune Diseases: A Novel Powerful Option. Cells 2023; 12:1534. [PMID: 37296654 PMCID: PMC10252902 DOI: 10.3390/cells12111534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The pervasive application of chimeric antigen receptor (CAR)-based cellular therapies in the treatment of oncological diseases has long been recognized. However, CAR T cells can target and eliminate autoreactive cells in autoimmune and immune-mediated diseases. By doing so, they can contribute to an effective and relatively long-lasting remission. In turn, CAR Treg interventions may have a highly effective and durable immunomodulatory effect via a direct or bystander effect, which may have a positive impact on the course and prognosis of autoimmune diseases. CAR-based cellular techniques have a complex theoretical foundation and are difficult to implement in practice, but they have a remarkable capacity to suppress the destructive functions of the immune system. This article provides an overview of the numerous CAR-based therapeutic options developed for the treatment of immune-mediated and autoimmune diseases. We believe that well-designed, rigorously tested cellular therapies could provide a promising new personalized treatment strategy for a significant number of patients with immune-mediated disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
48
|
Suzuki K, Kunisada Y, Miyamura N, Eikawa S, Hurtado de Mendoza T, Mose ES, Lu C, Kuroda Y, Ruoslahti E, Lowy AM, Sugahara KN. Tumor-resident regulatory T cells in pancreatic cancer express the αvβ5 integrin as a targetable activation marker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542137. [PMID: 37292693 PMCID: PMC10245898 DOI: 10.1101/2023.05.24.542137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has abundant immunosuppressive regulatory T cells (Tregs), which contribute to a microenvironment resistant to immunotherapy. Here, we report that Tregs in the PDAC tissue, but not those in the spleen, express the αvβ5 integrin in addition to neuropilin-1 (NRP-1), which makes them susceptible to the iRGD tumor-penetrating peptide, which targets cells positive for αv integrin- and NRP-1. As a result, long-term treatment of PDAC mice with iRGD leads to tumor-specific depletion of Tregs and improved efficacy of immune checkpoint blockade. αvβ5 integrin + Tregs are induced from both naïve CD4 + T cells and natural Tregs upon T cell receptor stimulation, and represent a highly immunosuppressive subpopulation of CCR8 + Tregs. This study identifies the αvβ5 integrin as a marker for activated tumor-resident Tregs, which can be targeted to achieve tumor-specific Treg depletion and thereby augment anti-tumor immunity for PDAC therapy.
Collapse
|
49
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|