1
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Petkau G, Mitchell TJ, Evans MJ, Matheson L, Salerno F, Turner M. Zfp36l1 establishes the high-affinity CD8 T-cell response by directly linking TCR affinity to cytokine sensing. Eur J Immunol 2024; 54:e2350700. [PMID: 38039407 PMCID: PMC11146077 DOI: 10.1002/eji.202350700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
How individual T cells compete for and respond to IL-2 at the molecular level, and, as a consequence, how this shapes population dynamics and the selection of high-affinity clones is still poorly understood. Here we describe how the RNA binding protein ZFP36L1, acts as a sensor of TCR affinity to promote clonal expansion of high-affinity CD8 T cells. As part of an incoherent feed-forward loop, ZFP36L1 has a nonredundant role in suppressing multiple negative regulators of cytokine signaling and mediating a selection mechanism based on competition for IL-2. We suggest that ZFP36L1 acts as a sensor of antigen affinity and establishes the dominance of high-affinity T cells by installing a hierarchical response to IL-2.
Collapse
Affiliation(s)
- Georg Petkau
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Twm J. Mitchell
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | | | - Louise Matheson
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Fiamma Salerno
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Martin Turner
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| |
Collapse
|
3
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers B, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Multiscale integration of human and single-cell variations reveals unadjuvanted vaccine high responders are naturally adjuvanted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287474. [PMID: 37090674 PMCID: PMC10120791 DOI: 10.1101/2023.03.20.23287474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Advances in multimodal single cell analysis can empower high-resolution dissection of human vaccination responses. The resulting data capture multiple layers of biological variations, including molecular and cellular states, vaccine formulations, inter- and intra-subject differences, and responses unfolding over time. Transforming such data into biological insight remains a major challenge. Here we present a systematic framework applied to multimodal single cell data obtained before and after influenza vaccination without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach pinpoints responses shared across or unique to specific cell types and identifies adjuvant specific signatures, including pro-survival transcriptional states in B lymphocytes that emerged one day after vaccination. We also reveal that high antibody responders to the unadjuvanted vaccine have a distinct baseline involving a rewired network of cell type specific transcriptional states. Remarkably, the status of certain innate immune cells in this network in high responders of the unadjuvanted vaccine appear "naturally adjuvanted": they resemble phenotypes induced early in the same cells only by vaccination with AS03. Furthermore, these cell subsets have elevated frequency in the blood at baseline and increased cell-intrinsic phospho-signaling responses after LPS stimulation ex vivo in high compared to low responders. Our findings identify how variation in the status of multiple immune cell types at baseline may drive robust differences in innate and adaptive responses to vaccination and thus open new avenues for vaccine development and immune response engineering in humans.
Collapse
Affiliation(s)
- Matthew P. Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A. Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S. Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Abstract
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Collapse
Affiliation(s)
- Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Chen S, Xin Y, Tang K, Wu Y, Guo Y. Nardosinone and aurantio-obtusin, two medicine food homology natural compounds, are anti-influenza agents as indicated by transcriptome signature reversion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154515. [PMID: 36347176 DOI: 10.1016/j.phymed.2022.154515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Medicine food homology (MFH) refers to food that can be used as medicine, and compounds isolated from MFH materials are valuable in novel drug discovery due to their good safety. Transcriptome signature reversion (TSR) is an attractive method for discovering drugs through transcriptional reverse matching; namely, the changes in transcriptional signatures induced by compounds are matched to a certain disease. This strategy can be used to discover anti-influenza agents among MFH natural compounds. PURPOSE MFH natural compounds with anti-influenza activities were identified through analyses of the reversal in the expression of multiple informative genes followed by in vitro evaluation of the cytopathic effect (CPE) caused by influenza infection and relative quantification of the nucleoprotein (NP) gene in viral RNA (vRNA). The combined effect of active compounds was determined through network-based separation score prediction followed by quantification of the viral hemagglutinin (HA) level. METHODS The transcriptome profiles of 4 lung or airway cell lines infected with 7 influenza virus strains were analyzed by robust rank aggregation (RRA) to identify informative genes in the signature of influenza virus infection. The identified informative genes were then matched to a transcriptomic profile library of MFH natural compounds. The anti-influenza activities of MFH natural compounds with negative enrichment scores (ESs) were evaluated in vitro using a CPE assay and relative quantification of the NP gene in the vRNA in the supernatant and cytoplasm to identify anti-influenza agents. The effects of combinations of active compounds were analyzed using network-based calculations followed by confirmation through bioassays for quantifying the viral HA levels. RESULTS Among the 159 MFH natural compounds, 54 compounds had negative ESs, as determined through TSR, and the anti-influenza activities of nardosinone and aurantio-obtusin were confirmed by bioassays. The half-maximal effective concentrations (EC50) of nardosinone and aurantio-obtusin were 4.3-84.4 μM and 31.9-113.6 μM, respectively. The separation score between the informative genes with expression that was negatively regulated by nardosinone and aurantio-obtusin in the human protein-protein interaction (PPI) network was calculated to be 0.10, which indicated that the two compounds potentially exert a synergistic effect, and this effect was confirmed by the finding that the combination indexes (CIs) were calculated to equal 0.86 at inhibition level of 50% and 0.44 at inhibition level of 90%. CONCLUSION The TSR analysis and in vitro evaluation identified nardosinone and aurantio-obtusin as anti-influenza agents. Their antiviral activities were exerted by reversing the expression of multiple informative genes of the host cells. The separation analysis between the informative genes that were reversely regulated by nardosinone and aurantio-obtusin indicated that their combination may exert a synergistic effect, which was confirmed in vitro.
Collapse
Affiliation(s)
- Shubing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - You Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
6
|
Laukkanen S, Veloso A, Yan C, Oksa L, Alpert EJ, Do D, Hyvärinen N, McCarthy K, Adhikari A, Yang Q, Iyer S, Garcia SP, Pello A, Ruokoranta T, Moisio S, Adhikari S, Yoder JA, Gallagher K, Whelton L, Allen JR, Jin AH, Loontiens S, Heinäniemi M, Kelliher M, Heckman CA, Lohi O, Langenau DM. Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia. Blood 2022; 140:1891-1906. [PMID: 35544598 PMCID: PMC10082361 DOI: 10.1182/blood.2021015106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.
Collapse
Affiliation(s)
- Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alexandra Veloso
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Chuan Yan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eric J. Alpert
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Daniel Do
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Karin McCarthy
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Abhinav Adhikari
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Qiqi Yang
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Sara P. Garcia
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Annukka Pello
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tanja Ruokoranta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sanni Moisio
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sadiksha Adhikari
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Kayleigh Gallagher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Lauren Whelton
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - James R. Allen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Alex H. Jin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Siebe Loontiens
- Cancer Research Institute Ghent and Center for Medical Genetics, Ghent, Belgium
| | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - David M. Langenau
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Huang Y, Zou Y, Jiao Y, Shi P, Nie X, Huang W, Xiong C, Choi M, Huang C, Macintyre AN, Nichols A, Li F, Li CY, MacIver NJ, Cardona D, Brennan TV, Li Z, Chao NJ, Rathmell J, Chen BJ. Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft- Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Front Immunol 2022; 13:751296. [PMID: 35296079 PMCID: PMC8920494 DOI: 10.3389/fimmu.2022.751296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023] Open
Abstract
Alloreactive donor T cells undergo extensive metabolic reprogramming to become activated and induce graft-versus-host disease (GVHD) upon alloantigen encounter. It is generally thought that glycolysis, which promotes T cell growth and clonal expansion, is employed in this process. However, conflicting data have been reported regarding the requirement of glycolysis to induce T cell-mediated GVHD due to the lack of T cell-specific treatments using glycolysis inhibitors. Importantly, previous studies have not evaluated whether graft-versus-leukemia (GVL) activity is preserved in donor T cells deficient for glycolysis. As a critical component affecting the clinical outcome, it is necessary to assess the anti-tumor activity following treatment with metabolic modulators in preclinical models. In the present study, we utilized T cells selectively deficient for glucose transporter 1 (Glut1T-KO), to examine the role of glycolysis exclusively in alloreactive T cells without off-targeting effects from antigen presenting cells and other cell types that are dependent on glycolysis. We demonstrated that transfer of Glut1T-KO T cells significantly improved acute GVHD outcomes through increased apoptotic rates, impaired expansion, and decreased proinflammatory cytokine production. In addition to impaired GVHD development, donor Glut1T-KO T cells mediated sufficient GVL activity to protect recipients from tumor development. A clinically relevant approach using donor T cells treated with a small molecule inhibitor of glycolysis, 2-Deoxy-D-glucose ex vivo, further demonstrated protection from tumor development. These findings indicate that treatment with glycolysis inhibitors prior to transplantation selectively eliminates alloreactive T cells, but spares non-alloreactive T cells including those that protect against tumor growth. The present study has established a definitive role for glycolysis in acute GVHD and demonstrated that acute GVHD can be selectively prevented through targeting glycolysis.
Collapse
Affiliation(s)
- Ying Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Peijie Shi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Xiaoli Nie
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Chuanfeng Xiong
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael Choi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Andrew N. Macintyre
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Amanda Nichols
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Chuan-Yuan Li
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Dermatology, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nancie J. MacIver
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Pediatrics, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Todd V. Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Departments of Pathology, Microbiology, and Immunology, Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benny J. Chen
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,*Correspondence: Benny J. Chen,
| |
Collapse
|
8
|
Ludwig LM, Hawley KM, Banks DB, Thomas-Toth AT, Blazar BR, McNerney ME, Leverson JD, LaBelle JL. Venetoclax imparts distinct cell death sensitivity and adaptivity patterns in T cells. Cell Death Dis 2021; 12:1005. [PMID: 34707089 PMCID: PMC8551340 DOI: 10.1038/s41419-021-04285-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day "short-term" ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day "long-term" BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.
Collapse
Affiliation(s)
- Lindsey M. Ludwig
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Katrina M. Hawley
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - David B. Banks
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Medical Scientist Training Program, University of Chicago, Chicago, IL USA
| | - Anika T. Thomas-Toth
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Bruce R. Blazar
- grid.17635.360000000419368657Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Megan E. McNerney
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Pathology, University of Chicago, Chicago, IL USA
| | - Joel D. Leverson
- grid.431072.30000 0004 0572 4227AbbVie Inc., North Chicago, IL USA
| | - James L. LaBelle
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
9
|
Inde Z, Croker BA, Yapp C, Joshi GN, Spetz J, Fraser C, Qin X, Xu L, Deskin B, Ghelfi E, Webb G, Carlin AF, Zhu YP, Leibel SL, Garretson AF, Clark AE, Duran JM, Pretorius V, Crotty-Alexander LE, Li C, Lee JC, Sodhi C, Hackam DJ, Sun X, Hata AN, Kobzik L, Miller J, Park JA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. SCIENCE ADVANCES 2021; 7:eabf8609. [PMID: 34407940 PMCID: PMC8373124 DOI: 10.1126/sciadv.abf8609] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Gaurav N Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA, USA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Xingping Qin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Le Xu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabrielle Webb
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanfang Peipei Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex E Clark
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason M Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor Pretorius
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | | | - Chendi Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jamie Casey Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - David J Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey Miller
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kristopher A Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Frasca D, Saada YB, Garcia D, Friguet B. Effects of cellular senescence on metabolic pathways in non-immune and immune cells. Mech Ageing Dev 2020; 194:111428. [PMID: 33383073 DOI: 10.1016/j.mad.2020.111428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022]
Abstract
Many cellular stresses induce cellular senescence and the irreversible arrest of cell proliferation in different cell types. Although blocked in their capacity to divide, senescent cells are metabolically active and are characterized by a different metabolic phenotype as compared to non-senescent cells. Changes observed in senescent cells depend from the cell type and lead to an adaptative flexibility in the type of metabolism. This metabolic reprogramming is needed to cope with survival and with the energetic demands of the senescent program that include the increased secretion of senescence-associated secretory phenotype factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Yara Bou Saada
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | | | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France.
| |
Collapse
|
12
|
Sumiyoshi M, Kotani Y, Ikuta Y, Suzue K, Ozawa M, Katakai T, Yamada T, Abe T, Bando K, Koyasu S, Kanaho Y, Watanabe T, Matsuda S. Arf1 and Arf6 Synergistically Maintain Survival of T Cells during Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:366-375. [PMID: 33310872 DOI: 10.4049/jimmunol.2000971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation factor (Arf) family consisting of six family members, Arf1-Arf6, belongs to Ras superfamily and orchestrates vesicle trafficking under the control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. It is well established that brefeldin A, a potent inhibitor of ArfGEFs, blocks cytokine secretion from activated T cells, suggesting that the Arf pathway plays important roles in T cell functions. In this study, because Arf1 and Arf6 are the best-characterized members among Arf family, we established T lineage-specific Arf1-deficient, Arf6-deficient, and Arf1/6 double-deficient mice to understand physiological roles of the Arf pathway in the immune system. Contrary to our expectation, Arf deficiency had little or no impact on cytokine secretion from the activated T cells. In contrast, the lack of both Arf1 and Arf6, but neither Arf1 nor Arf6 deficiency alone, rendered naive T cells susceptible to apoptosis upon TCR stimulation because of imbalanced expression of Bcl-2 family members. We further demonstrate that Arf1/6 deficiency in T cells alleviates autoimmune diseases like colitis and experimental autoimmune encephalomyelitis, whereas Ab response under Th2-polarizing conditions is seemingly normal. Our findings reveal an unexpected role for the Arf pathway in the survival of T cells during TCR-induced activation and its potential as a therapeutic target in the autoimmune diseases.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yui Kotani
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.,Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Yuki Ikuta
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Iruma-gun, Saitama 350-0495, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan;
| |
Collapse
|
13
|
Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sci 2020; 265:118766. [PMID: 33245965 DOI: 10.1016/j.lfs.2020.118766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the main source of energy and play an important role in coupling intracellular and intercellular metabolic cooperation. Cellular stress and energetic status can affect various mitochondrial behaviors, including mitochondrial biogenesis, mitophagy, assembly of respiratory chain supercomplexes and mitochondrial distribution. These modifications usually result in adaptive adjustment of mitochondrial output and resistance to cellular stress. However, when the pro-death signals triggered by excessive damage converge to mitochondria, mitochondrial reserve and functional status can profoundly determine the direction of cell death, and even affect the survival and death of surrounding or distant tissues. In this review, we discuss multiple mitochondrial modifications in eukaryotes based on metabolic status and cellular stress, and review the emerging knowledge about the effects of mitochondrial dysfunction on the fate of cells and surrounding tissues.
Collapse
|
14
|
Zeng M, He Y, Du H, Yang J, Wan H. Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Front Cell Dev Biol 2020; 8:598112. [PMID: 33330486 PMCID: PMC7718039 DOI: 10.3389/fcell.2020.598112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The emergence of endosymbiosis between aerobic alpha-proteobacterium and anaerobic eukaryotic cell precursors opened the chapter of eukaryotic evolution. Multiple functions of mitochondria originated from the ancient precursors of mitochondria and underwent remodeling in eukaryotic cells. Due to the dependence on mitochondrial functions, eukaryotic cells need to constantly adjust mitochondrial output based on energy demand and cellular stress. Meanwhile, eukaryotes conduct the metabolic cooperation between different cells through the involvement of mitochondria. Under some conditions, mitochondria might also be transferred to nearby cells to provide a protective mechanism. However, the endosymbiont relationship determines the existence of various types of mitochondrial injury, such as proteotoxic stress, mutational meltdown, oxidative injure, and immune activation caused by released mitochondrial contents. Eukaryotes have a repertoire of mitochondrial optimization processes, including various mitochondrial quality-control proteins, regulation of mitochondrial dynamics and activation of mitochondrial autophagy. When these quality-control processes fail, eukaryotic cells can activate apoptosis to intercept uncontrolled cell death, thereby minimizing the damage to extracellular tissue. In this review, we describe the intracellular and extracellular context-based regulation of mitochondrial output in eukaryotic cells, and introduce new findings on multifaceted quality-control processes to deal with mitochondrial defects.
Collapse
Affiliation(s)
- Miaolin Zeng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Inde Z, Yapp C, Joshi GN, Spetz J, Fraser C, Deskin B, Ghelfi E, Sodhi C, Hackam DJ, Kobzik L, Croker BA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 disease severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.13.276923. [PMID: 32935109 PMCID: PMC7491524 DOI: 10.1101/2020.09.13.276923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19). COVID-19 disease severity is typically lower in pediatric patients than adults (particularly the elderly), but higher rates of hospitalizations requiring intensive care are observed in infants than in older children - the reasons for these differences are unknown. ACE2 is expressed in several adult tissues and cells, including alveolar type 2 cells of the distal lung epithelium, but expression at other ages is largely unexplored. Here we show that ACE2 transcripts are expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood. Notably, the repertoire of cells expressing ACE2 protein in the mouse lung and airways shifts during key phases of lung maturation. In particular, podoplanin-positive cells, which are likely alveolar type I cells responsible for gas exchange, express ACE2 only in advanced age. Similar patterns of expression were evident in analysis of human lung tissue from over 100 donors, along with extreme inter- and intra-individual heterogeneity in ACE2 protein expression in epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in young individuals, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells and may thus limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for translation of apoptosis modulating drugs as novel treatments for COVID-19.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA
| | - Gaurav N. Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - David J. Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Ben A. Croker
- Division of Allergy, Immunology and Rheumatology, University of California, San Diego, CA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Ali Hosseini Rad SM, Min Yi Tan G, Poudel A, He K, McLellan AD. Regulation of human Mcl-1 by a divergently-expressed antisense transcript. Gene 2020; 762:145016. [PMID: 32777522 DOI: 10.1016/j.gene.2020.145016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Mcl-1 is a member of the Bcl-2 anti-apoptotic protein family with important roles in the development, lifespan and metabolism of lymphocytes, as well as oncogenesis. Mcl-1 displays the shortest half-life of all Bcl-2 family members, with miRNA interference and proteasomal degradation being major pathways for Mcl-1 downregulation. In this study, we have identified a previously undescribed control mechanism active at the RNA level. A divergently transcribed lncRNA LOC107985203 (named here mcl1-AS1) negatively modulated Mcl-1 expression resulting in downregulation of Mcl-1 at both mRNA and protein level in a time-dependent manner. Using reporter assays, we confirmed that the mcl1-AS1 lncRNA promoter was located within Mcl-1 coding region. We next placed mcl1-AS1 under tetracycline-inducible control and demonstrated decreased viability in HEK293 cells upon doxycycline induction. Inhibition of mcl1-AS1 with shRNA reversed drug sensitivity. Bioinformatics surveys predicted direct mcl1-AS1 lncRNA binding to Mcl-1 transcripts, suggesting its mechanism in Mcl-1 expression is at the transcriptional level, consistent with a common role for anti-sense transcripts. The identification of a bi-directional promoter and lncRNA controlling Mcl-1 expression will have implications for controlling Mcl-1 activity in cancer cells, or for the purpose of enhancing the lifespan and quality of anti-cancer T lymphocytes.
Collapse
Affiliation(s)
- S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand.
| | - Grace Min Yi Tan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Aarati Poudel
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Kevin He
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand.
| |
Collapse
|
17
|
Frasca D, Blomberg BB, Garcia D, Keilich SR, Haynes L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol Rev 2020; 296:142-154. [PMID: 32484934 DOI: 10.1111/imr.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Aging significantly changes the ability to respond to vaccinations and infections. In this review, we summarize published results on age-related changes in response to infection with the influenza virus and on the factors known to increase influenza risk infection leading to organ failure and death. We also summarize how aging affects the response to the influenza vaccine with a special focus on B cells, which have been shown to be less responsive in the elderly. We show the cellular and molecular mechanisms contributing to the dysfunctional immune response of the elderly to the vaccine against influenza. These include a defective interaction of helper T cells (CD4+) with B cells in germinal centers, changes in the microenvironment, and the generation of immune cells with a senescence-associated phenotype. Finally, we discuss the effects of aging on metabolic pathways and we show how metabolic complications associated with aging lead to immune dysfunction.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spencer R Keilich
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Laura Haynes
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
18
|
Eomes broadens the scope of CD8 T-cell memory by inhibiting apoptosis in cells of low affinity. PLoS Biol 2020; 18:e3000648. [PMID: 32182234 PMCID: PMC7077837 DOI: 10.1371/journal.pbio.3000648] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
The memory CD8 T-cell pool must select for clones that bind immunodominant epitopes with high affinity to efficiently counter reinfection. At the same time, it must retain a level of clonal diversity to allow recognition of pathogens with mutated epitopes. How the level of diversity within the memory pool is controlled is unclear, especially in the context of a selective drive for antigen affinity. We find that preservation of clones that bind the activating antigen with low affinity depends on expression of the transcription factor Eomes in the first days after antigen encounter. Eomes is induced at low activating signal strength and directly drives transcription of the prosurvival protein Bcl-2. At higher signal intensity, T-bet is induced which suppresses Bcl-2 and causes a relative survival advantage for cells of low affinity. Clones activated with high-affinity antigen form memory largely independent of Eomes and have a proliferative advantage over clones that bind the same antigen with low affinity. This causes high-affinity clones to prevail in the memory pool, despite their relative survival deficit. Genetic or therapeutic targeting of the Eomes/Bcl-2 axis reduces the clonal diversity of the memory pool, which diminishes its ability to respond to pathogens carrying mutations in immunodominant epitopes. Thus, we demonstrate on a molecular level how sufficient diversity of the memory pool is established in an environment of affinity-based selection. This study shows that the diversity of the memory CD8 T-cell pool is regulated by the transcription factor Eomes, which drives transcription of the pro-survival protein Bcl-2. Genetic or therapeutic targeting of the Eomes/Bcl-2 axis reduces the clonal diversity of the memory pool.
Collapse
|
19
|
Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, Okamoto T, Call MJ, Huang DCS, van Delft MF. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ 2020; 27:2484-2499. [PMID: 32094511 PMCID: PMC7370232 DOI: 10.1038/s41418-020-0517-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co-operate to mark MCL1 for degradation by the proteasome—specifically when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane. MTCH2 has not previously been reported to regulate protein stability, but is known to influence the mitochondrial localization of certain key apoptosis regulators and to impact metabolism. We have now pinpointed an essential but previously unappreciated role for MTCH2 in turnover of the MCL1:NOXA complex by MARCH5, further strengthening its links to BCL2-regulated apoptosis.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lei Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ming-Jie Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Melissa J Call
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20:175-193. [PMID: 30655609 PMCID: PMC7325303 DOI: 10.1038/s41580-018-0089-8] [Citation(s) in RCA: 1342] [Impact Index Per Article: 223.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Kavazović I, Polić B, Wensveen FM. Cheating the Hunger Games; Mechanisms Controlling Clonal Diversity of CD8 Effector and Memory Populations. Front Immunol 2018; 9:2831. [PMID: 30555492 PMCID: PMC6281969 DOI: 10.3389/fimmu.2018.02831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022] Open
Abstract
Effector and memory CD8 T cells have an intrinsic difference in the way they must approach antigen; effector cells need to address the pathogen at hand and therefore favor outgrowth of only high-affinity clones. In contrast, the memory pool benefits from greater clonal diversity to recognize and eliminate pathogens with mutations in their immunogenic epitopes. Effector and memory fates are ultimately the result of the same three signals that control T cell activation; T cell receptor (TCR) engagement together with co-stimulation and cytokines. Great progress has been made in our understanding of the transcriptional programs that drive effector or memory differentiation. However, how these two different programs result from the same initial cues is still a matter of debate. An emerging image is that not only the classical three signals determine T cell differentiation, but also the ability of cells to access these signals relative to that of other activated clones. Inter-clonal competition is therefore not only a selective force, but also a mediator of CD8 T cell fate. How this is regulated on a transcriptional level, especially in the context of a selective “hunger game” based on antigen-affinity in which only cells of high-affinity are supposed to survive, is still poorly defined. In this review, we discuss recent literature that illustrates how antigen-affinity dependent inter-clonal competition shapes effector and memory populations in an environment of antigen affinity-driven selection. We argue that fine-tuning of TCR signal intensity presents an attractive target for regulating the scope of CD8 T cell vaccines.
Collapse
Affiliation(s)
- Inga Kavazović
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia.,Department of Experimental Immunology, Amsterdam University Medical Center University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Martínez-Usatorre A, Donda A, Zehn D, Romero P. PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:792-803. [PMID: 29875150 DOI: 10.4049/jimmunol.1701644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257-264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that αPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
Collapse
Affiliation(s)
- Amaia Martínez-Usatorre
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Alena Donda
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Pedro Romero
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
24
|
Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol 2018; 51:32-38. [PMID: 29414529 DOI: 10.1016/j.coi.2018.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 01/10/2023]
Abstract
Activation induced proliferation and clonal expansion of antigen specific lymphocytes is a hallmark of the adaptive immune response to pathogens. Recent studies identify two distinct control phases. In the first T and B lymphocytes integrate antigen and additional costimuli to motivate a programmed proliferative burst that ceases with a return to cell quiescence and eventual death. This proliferative burst is autonomously timed, ensuring an appropriate response magnitude whilst preventing uncontrolled expansion. This initial response is subject to further modification and extension by a range of signals that modify, expand and direct the emergence of a rich array of new cell types. Thus, both robust clonal expansion of a small number of antigen specific T cells, and the concurrent emergence of extensive cellular diversity, confers immunity to a vast array of different pathogens. The in vivo response to a given pathogen is made up by the sum of all responding clones and is reproducible and pathogen specific. Thus, a precise description of the regulatory principles governing lymphocyte proliferation, differentiation and survival is essential to a unified understanding of the immune system.
Collapse
Affiliation(s)
- Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Julia M Marchingo
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Zhan Y, Carrington EM, Zhang Y, Heinzel S, Lew AM. Life and Death of Activated T Cells: How Are They Different from Naïve T Cells? Front Immunol 2017; 8:1809. [PMID: 29326701 PMCID: PMC5733345 DOI: 10.3389/fimmu.2017.01809] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023] Open
Abstract
T cells are pivotal in immunity and immunopathology. After activation, T cells undergo a clonal expansion and differentiation followed by a contraction phase, once the pathogen has been cleared. Cell survival and cell death are critical for controlling the numbers of naïve T cells, effector, and memory T cells. While naïve T cell survival has been studied for a long time, more effort has gone into understanding the survival and death of activated T cells. Despite this effort, there is still much to be learnt about T cell survival, as T cells transition from naïve to effector to memory. One key advance is the development of inhibitors that may allow the temporal study of survival mechanisms operating in these distinct cell states. Naïve T cells were highly reliant on BCL-2 and sensitive to BCL-2 inhibition. Activated T cells are remarkably different in their regulation of apoptosis by pro- and antiapoptotic members of the BCL-2 family, rendering them differentially sensitive to antagonists blocking the function of one or more members of this family. Recent progress in understanding other programmed cell death mechanisms, especially necroptosis, suggests a unique role for alternative pathways in regulating death of activated T cells. Furthermore, we highlight a mechanism of epigenetic regulation of cell survival unique to activated T cells. Together, we present an update of our current understanding of the survival requirement of activated T cells.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol 2017; 95:870-877. [PMID: 28875977 DOI: 10.1038/icb.2017.72] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
Targeting survival mechanisms of immune cells may provide an avenue for immune intervention to dampen unwanted responses (e.g. autoimmunity, immunopathology and transplant rejection) or enhance beneficial ones (e.g. immune deficiency, microbial defence and cancer immunotherapy). The selective survival mechanisms of the various immune cell types also avails the possibility of specific tailoring of such interventions. Here, we review the role of the BCL-2 anti-apoptotic family members (BCL-2, BCL-XL, BCL-W, MCL-1 and A1) on cell death/survival of the major immune cell types, for example, T, NK, B, dendritic cell (DC) lineages. There is both selectivity and redundancy among this family. Selectivity comes partly from the expression levels in each of the cell types. For example, plasmacytoid DC express abundant BCL-2 and are susceptible to BCL-2 antagonism or deficiency, whereas conventional DC express abundant A1 and are susceptible to A1 deficiency. There is, however, also functional redundancy; for example, overexpression of MCL-1 can override BCL-2 antagonism in plasmacytoid DC. Moreover, susceptibility to another anti-apoptotic family member can be unmasked, when one or other member is removed. These dual principles of selectivity and redundancy should guide the use of antagonists for manipulating immune cells.
Collapse
Affiliation(s)
- Emma M Carrington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Daniel H Gray
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas D Huntington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew M Lew
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Tuzlak S, Kaufmann T, Villunger A. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev 2017; 30:2133-2151. [PMID: 27798841 DOI: 10.1101/gad.289298.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
"Programmed cell death or 'apoptosis' is critical for organogenesis during embryonic development and tissue homeostasis in the adult. Its deregulation can contribute to a broad range of human pathologies, including neurodegeneration, cancer, or autoimmunity…" These or similar phrases have become generic opening statements in many reviews and textbooks describing the physiological relevance of apoptotic cell death. However, while the role in disease has been documented beyond doubt, facilitating innovative drug discovery, we wonder whether the former is really true. What goes wrong in vertebrate development or in adult tissue when the main route to apoptotic cell death, controlled by the BCL2 family, is impaired? Such scenarios have been mimicked by deletion of one or more prodeath genes within the BCL2 family, and gene targeting studies in mice exploring the consequences have been manifold. Many of these studies were geared toward understanding the role of BCL2 family proteins and mitochondrial apoptosis in disease, whereas fewer focused in detail on their role during normal development or tissue homeostasis, perhaps also due to an irritating lack of phenotype. Looking at these studies, the relevance of classical programmed cell death by apoptosis for development appears rather limited. Together, these many studies suggest either highly selective and context-dependent contributions of mitochondrial apoptosis or significant redundancy with alternative cell death mechanisms, as summarized and discussed here.
Collapse
Affiliation(s)
- Selma Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, A6020 Innsbruck, Austria
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, CH3010 Bern, Switzerland
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, A6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, A6020 Innsbruck, Austria
| |
Collapse
|
28
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
29
|
Hao Z, Sheng Y, Duncan GS, Li WY, Dominguez C, Sylvester J, Su YW, Lin GHY, Snow BE, Brenner D, You-Ten A, Haight J, Inoue S, Wakeham A, Elford A, Hamilton S, Liang Y, Zúñiga-Pflücker JC, He HH, Ohashi PS, Mak TW. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nat Commun 2017; 8:14003. [PMID: 28084302 PMCID: PMC5241832 DOI: 10.1038/ncomms14003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8+ T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo. The E3 ligase Mule has been previously reported to be essential for B cell development and function by modulating p53 ubiquitination and degradation. Here Hao et al. identify KLF4 as a novel ubiquitination target of Mule and show it controls T cell proliferation and autoimmunity.
Collapse
Affiliation(s)
- Zhenyue Hao
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S3E1
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Gordon S Duncan
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Wanda Y Li
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Carmen Dominguez
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jennifer Sylvester
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yu-Wen Su
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Gloria H Y Lin
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Bryan E Snow
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, Esch-sur-Alzette L-4354, Luxembourg.,Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense DK-5000 Denmark
| | - Annick You-Ten
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jillian Haight
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Satoshi Inoue
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Alisha Elford
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Sara Hamilton
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Juan C Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada M4N 3M5
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Pamela S Ohashi
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| |
Collapse
|
30
|
Tuzlak S, Schenk RL, Vasanthakumar A, Preston SP, Haschka MD, Zotos D, Kallies A, Strasser A, Villunger A, Herold MJ. The BCL-2 pro-survival protein A1 is dispensable for T cell homeostasis on viral infection. Cell Death Differ 2017; 24:523-533. [PMID: 28085151 DOI: 10.1038/cdd.2016.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological role of the pro-survival BCL-2 family member A1 has been debated for a long time. Strong mRNA induction in T cells on T cell receptor (TCR)-engagement suggested a major role of A1 in the survival of activated T cells. However, the investigation of the physiological roles of A1 was complicated by the quadruplication of the A1 gene locus in mice, making A1 gene targeting very difficult. Here, we used the recently generated A1-/- mouse model to examine the role of A1 in T cell immunity. We confirmed rapid and strong induction of A1 protein in response to TCR/CD3 stimulation in CD4+ as well as CD8+ T cells. Surprisingly, on infection with the acute influenza HKx31 or the lymphocytic choriomeningitis virus docile strains mice lacking A1 did not show any impairment in the expansion, survival, or effector function of cytotoxic T cells. Furthermore, the ability of A1-/- mice to generate antigen-specific memory T cells or to provide adequate CD4-dependent help to B cells was not impaired. These results suggest functional redundancy of A1 with other pro-survival BCL-2 family members in the control of T cell-dependent immune responses.
Collapse
Affiliation(s)
- Selma Tuzlak
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria.,The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Robyn L Schenk
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Ajithkumar Vasanthakumar
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Simon P Preston
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Manuel D Haschka
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| | - Dimitra Zotos
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Axel Kallies
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Andreas Strasser
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Marco J Herold
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| |
Collapse
|
31
|
Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 2016; 7:13540. [PMID: 27869196 PMCID: PMC5121331 DOI: 10.1038/ncomms13540] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. Why do populations of highly similar T cells have heterogeneous division destinies in response to antigenic stimulus? Here the authors develop a multiplex-dye assay and a mathematical framework to test clonal heterogeneity and show distinction in division destiny is a result of inter-clonal variability as lineage imprinting ensures clones share similar proliferation fates.
Collapse
Affiliation(s)
- J M Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Prevedello
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| | - A Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| |
Collapse
|
32
|
Wensveen FM, Slinger E, van Attekum MH, Brink R, Eldering E. Antigen-affinity controls pre-germinal center B cell selection by promoting Mcl-1 induction through BAFF receptor signaling. Sci Rep 2016; 6:35673. [PMID: 27762293 PMCID: PMC5071843 DOI: 10.1038/srep35673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Upon antigen encounter, the responsive B cell pool undergoes stringent selection which eliminates cells with low B cell receptor (BCR) affinity. Already before formation of the germinal center, activated B cells of low-affinity are negatively selected in a process that is molecularly not well understood. In this study, we investigated the mechanism behind pre-GC affinity-mediated B cell selection. We applied affinity mutants of HEL antigen and found that rapidly after activation B cells become highly dependent on the cytokine BAFF. Moreover, expression of BAFF receptor CD268 is regulated in a BCR-affinity dependent fashion. High affinity responses via BAFF correlated with PI3K activation, which controlled expression of the pro-survival protein Mcl-1, and thereby increased survival. In the presence of excess BAFF, or in absence of the Mcl-1 antagonist Noxa, more low-affinity B cells survived the first two days after antigen encounter. This resulted in increased numbers of antigen-specific B cells of low affinity upon immunization and reduced the overall affinity of cells that contributed to the germinal center reaction. Our findings elucidate a crucial molecular pathway of B cell selection in the earliest phases of activation by identifying a novel link between BCR affinity and BAFF-R signaling towards Mcl-1.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, 1105AZ, Amsterdam, The Netherlands
| | - Erik Slinger
- Department of Experimental Immunology, Academic Medical Center, 1105AZ, Amsterdam, The Netherlands
| | - Martijn Ha van Attekum
- Department of Experimental Immunology, Academic Medical Center, 1105AZ, Amsterdam, The Netherlands
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, NSW 2010, Darlinghurst, Australia
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Wang R, Davidoff AM, Pfeffer LM. Bortezomib sensitizes human glioblastoma cells to induction of apoptosis by type I interferons through NOXA expression and Mcl-1 cleavage. Biochem Biophys Res Commun 2016; 478:128-134. [PMID: 27450810 DOI: 10.1016/j.bbrc.2016.07.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
Glioblastomas are highly invasive and aggressive primary brain tumors. Type I interferons have significant, pleiotropic anticancer activity. However, through various pathways many cancers become interferon-resistant, limiting interferon's clinical utility. In this study, we demonstrated that the proteasomal inhibitor bortezomib sensitized human glioblastoma cells to the antiproliferative action of interferons, which involved the induction of caspase-dependent apoptosis but not necroptosis. We found that death ligands such as TRAIL (TNF-related apoptosis-inducing ligand) were not involved in interferon/bortezomib-induced apoptosis, although interferon induced TRAIL expression. However, apoptosis was induced through an intrinsic pathway involving increased NOXA expression and Mcl-1 cleavage. Our findings may provide an important rationale for combining type I interferons with bortezomib for glioblastoma therapy.
Collapse
Affiliation(s)
- Ruishan Wang
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA; Center for Cancer Research, Memphis, TN, USA; Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA; Center for Cancer Research, Memphis, TN, USA.
| |
Collapse
|
34
|
Slinger E, Wensveen FM, Guikema JE, Kater AP, Eldering E. Chronic lymphocytic leukemia development is accelerated in mice with deficiency of the pro-apoptotic regulator NOXA. Haematologica 2016; 101:e374-7. [PMID: 27479816 DOI: 10.3324/haematol.2016.142323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Erik Slinger
- Department of Hematology, Academic Medical Center, The Netherlands Department of Experimental Immunology, Academic Medical Center, The Netherlands
| | - Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, The Netherlands
| | - Jeroen E Guikema
- Department of Pathology, Academic Medical Center, The Netherlands Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Arnon P Kater
- Department of Hematology, Academic Medical Center, The Netherlands Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, The Netherlands Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| |
Collapse
|
35
|
Lee CW, Wohlan K, Dallmann I, Förster R, Ganser A, Krueger A, Scherr M, Eder M, Koenecke C. miR-181a Expression in Donor T Cells Modulates Graft-versus-Host Disease after Allogeneic Bone Marrow Transplantation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3927-34. [PMID: 27009493 DOI: 10.4049/jimmunol.1502152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022]
Abstract
Because miR-181a has been described to alter T cell activation, we hypothesized that manipulation of miR-181a expression in donor T cells may alter acute graft-versus-host disease (aGvHD) after allogeneic bone marrow transplantation (BMT). We therefore analyzed the impact of enhanced and reduced miR-181a expression in donor T cells on aGvHD induction by lentiviral gene transfer into primary T cells and using miR-181a/b-1(-/-) T cells, respectively. BMT-recipient mice receiving donor T cells with enhanced miR-181a expression showed no signs of aGvHD and survived for the time of follow-up, whereas T cells lacking miR-181a/b-1 accelerated aGvHD. In line with these data, analysis of donor T cells in blood, secondary lymphoid organs, and target organs of aGvHD after BMT showed significantly reduced numbers of miR-181a-transduced T cells, as compared with controls. In addition, expansion of activated T cells with enhanced miR-181a expression was reduced in vitro and in vivo. We further show that anti-apoptotic BCL-2 protein expression is reduced in murine and human T cells upon overexpression of miR-181a, suggesting that regulation of BCL-2-expression by miR-181a may contribute to altered alloreactivity of T cells in aGvHD. These data indicate that proteins regulated by miR-181a may be therapeutic targets for aGvHD prevention.
Collapse
Affiliation(s)
- Chun-Wei Lee
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Katharina Wohlan
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and
| | - Iris Dallmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany; and Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
36
|
Gabriel SS, Bon N, Chen J, Wekerle T, Bushell A, Fehr T, Cippà PE. Distinctive Expression of Bcl-2 Factors in Regulatory T Cells Determines a Pharmacological Target to Induce Immunological Tolerance. Front Immunol 2016; 7:73. [PMID: 26973650 PMCID: PMC4771729 DOI: 10.3389/fimmu.2016.00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Distinctive molecular characteristics of functionally diverse lymphocyte populations may represent novel pharmacological targets for immunotherapy. The intrinsic apoptosis pathway is differently regulated among conventional and regulatory T cells (Tregs). Targeted pharmacological modulation of this pathway with a small molecule Bcl-2/Bcl-xL inhibitor (ABT-737) caused a selective depletion of effector T cells and a relative enrichment of Tregs in vivo. Treatment with ABT-737 resulted in a tolerogenic milieu, which was exploited to alleviate graft-versus-host disease, to prevent allograft rejection in a stringent fully MHC-mismatched skin transplantation model and to induce immunological tolerance in combination with bone marrow transplantation. This concept has the potential to find various applications for immunotherapy, since it allows pharmacologic exploitation of the immunomodulatory properties of Tregs without the need for cell manipulation ex vivo.
Collapse
Affiliation(s)
- Sarah Sharon Gabriel
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Nina Bon
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Jin Chen
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Thomas Wekerle
- Transplantation Immunology, Department of Surgery, Medical University of Vienna , Vienna , Austria
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford , Oxford , UK
| | - Thomas Fehr
- Nephrology, Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland; Department of Internal Medicine, Cantonal Hospital Graubünden, Chur, Switzerland
| | | |
Collapse
|
37
|
Kim EH, Neldner B, Gui J, Craig RW, Suresh M. Mcl-1 regulates effector and memory CD8 T-cell differentiation during acute viral infection. Virology 2016; 490:75-82. [PMID: 26855329 DOI: 10.1016/j.virol.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/19/2022]
Abstract
Mcl-1, an anti-apoptotic member of Bcl-2 family maintains cell viability during clonal expansion of CD8 T cells, but the cell intrinsic role of Mcl-1 in contraction of effectors or the number of memory CD8 T cells is unknown. Mcl-1 levels decline during the contraction phase but rebound to high levels in memory CD8 T cells. Therefore, by overexpressing Mcl-1 in CD8 T cells we asked whether limiting levels of Mcl-1 promote contraction of effectors and constrain CD8 T-cell memory. Mcl-1 overexpression failed to affect CD8 T-cell expansion, contraction or the magnitude of CD8 T-cell memory. Strikingly, high Mcl-1 levels enhanced mTOR phosphorylation and augmented the differentiation of terminal effector cells and effector memory CD8 T cells to the detriment of poly-cytokine-producing central memory CD8 T cells. Taken together, these findings provided unexpected insights into the role of Mcl-1 in the differentiation of effector and memory CD8 T cells.
Collapse
Affiliation(s)
- Eui Ho Kim
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Brandon Neldner
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Jingang Gui
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Ruth W Craig
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Ludwig LM, Nassin ML, Hadji A, LaBelle JL. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation. Front Pediatr 2016; 4:135. [PMID: 28066751 PMCID: PMC5174130 DOI: 10.3389/fped.2016.00135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed.
Collapse
Affiliation(s)
- Lindsey M Ludwig
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Michele L Nassin
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital , Chicago, IL , USA
| | - Abbas Hadji
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital , Chicago, IL , USA
| | - James L LaBelle
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2015; 35:3955-64. [PMID: 26640142 PMCID: PMC5025767 DOI: 10.1038/onc.2015.464] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/09/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.
Collapse
|
40
|
Tscharke DC, Croft NP, Doherty PC, La Gruta NL. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 2015; 15:705-16. [DOI: 10.1038/nri3905] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol 2015; 15:574-84. [DOI: 10.1038/nri3874] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
BCR-signaling-induced cell death demonstrates dependency on multiple BH3-only proteins in a murine model of B-cell lymphoma. Cell Death Differ 2015; 23:303-12. [PMID: 26184912 DOI: 10.1038/cdd.2015.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/17/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Genetic recombination during B-cell development regularly results in the generation of autoreactive, potentially pathogenic B-cell receptors (BCRs). Consequently, multiple mechanisms link inappropriate BCR specificity to clonal deletion. Similar pathways remain in malignant B cells, offering the potential for targeting BCR signaling. Recently, small molecule inhibitors have realized this potential and, therefore, a deeper understanding of BCR-induced signaling networks in malignant cells is vital. The BH3-only protein Bim has a key role in BCR-induced apoptosis, but it has long been proposed that additional BH3-only proteins also contribute, although conclusive proof has been lacking. Here, we comprehensively characterized the mechanism of BCR-induced apoptosis in Eμ-Myc murine lymphoma cells. We demonstrate the upregulation of Bim, Bik, and Noxa during BCR signaling in vitro and that intrinsic apoptosis has a prominent role in anti-BCR antibody therapy in vivo. Furthermore, lymphomas deficient in these individual BH3-only proteins display significant protection from BCR-induced cell death, whereas combined loss of Noxa and Bim offers enhanced protection in comparison with loss of Bim alone. Some but not all of these effects were reversed upon inhibition of Syk or MEK. These observations indicate that BCR signaling elicits maximal cell death through upregulation of multiple BH3-only proteins; namely Bim, Bik, and Noxa.
Collapse
|
43
|
Giménez-Cassina A, Danial NN. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Trends Endocrinol Metab 2015; 26:165-75. [PMID: 25748272 PMCID: PMC4380665 DOI: 10.1016/j.tem.2015.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/07/2015] [Accepted: 02/08/2015] [Indexed: 12/21/2022]
Abstract
Cells have evolved a highly integrated network of mechanisms to coordinate cellular survival/death, proliferation, differentiation, and repair with metabolic states. It is therefore not surprising that proteins with canonical roles in cell death/survival also modulate nutrient and energy metabolism and vice versa. The finding that many BCL-2 (B cell lymphoma 2) proteins reside at mitochondria or can translocate to this organelle has long motivated investigation into their involvement in normal mitochondrial physiology and metabolism. These endeavors have led to the discovery of homeostatic roles for BCL-2 proteins beyond apoptosis. We predominantly focus on recent findings that link select BCL-2 proteins to carbon substrate utilization at the level of mitochondrial fuel choice, electron transport, and metabolite import independent of their cell death regulatory function.
Collapse
Affiliation(s)
- Alfredo Giménez-Cassina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Abstract
UNLABELLED Viral infection results in the generation of massive numbers of activated effector CD8(+) T cells that recognize viral components. Most of these are short-lived effector T cells (SLECs) that die after clearance of the virus. However, a small proportion of this population survives and forms antigen-specific memory precursor effector cells (MPECs), which ultimately develop into memory cells. These can participate in a recall response upon reexposure to antigen even at protracted times postinfection. Here, antiapoptotic myeloid cell leukemia 1 (MCL1) was found to prolong survival upon T cell stimulation, and mice expressing human MCL1 as a transgene exhibited a skewing in the proportion of CD8(+) T cells, away from SLECs toward MPECs, during the acute phase of vaccinia virus infection. A higher frequency and total number of antigen-specific CD8(+) T cells were observed in MCL1 transgenic mice. These findings show that MCL1 can shape the makeup of the CD8(+) T cell response, promoting the formation of long-term memory. IMPORTANCE During an immune response to a virus, CD8(+) T cells kill cells infected by the virus, and most die when the infection resolves. However, a small proportion of cells survives and differentiates into long-lived memory cells that confer protection from reinfection by the same virus. This report shows that transgenic expression of an MCL1 protein enhances survival of memory CD8(+) T cells following infection with vaccinia virus. This is important because it shows that MCL1 expression may be an important determinant of the formation of long-term CD8(+) T cell memory.
Collapse
|
45
|
den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162:103-12. [DOI: 10.1016/j.imlet.2014.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins. Cell Death Differ 2014; 22:174-84. [PMID: 25124553 DOI: 10.1038/cdd.2014.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/27/2013] [Accepted: 07/10/2014] [Indexed: 01/16/2023] Open
Abstract
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Collapse
|
47
|
Wensveen FM, Geest CR, Libregts SFWM, Derks IAM, Ekert PG, Labi V, Villunger A, Nolte MA, Eldering E. BH3-only protein Noxa contributes to apoptotic control of stress-erythropoiesis. Apoptosis 2014; 18:1306-1318. [PMID: 23975731 PMCID: PMC3825139 DOI: 10.1007/s10495-013-0890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apoptosis plays an essential role in the control of erythropoiesis under normal and pathological conditions. However, the contribution of individual proteins within cell death signalling pathways remains poorly defined. Here, we investigated the role of the pro-apoptotic Bcl-2 family member Noxa in the regulation of erythropoiesis. We found that expression of Noxa is induced during erythroid differentiation of human and murine precursor cells. Using in vitro model systems for erythroid progenitors, we observed rapid induction of Noxa upon cytokine deprivation. Knockdown or deletion of Noxa conferred significant protection against apoptosis upon cytokine withdrawal. In vivo, Noxa deficiency did not affect hematological blood parameters or erythroid progenitor composition of bone marrow and spleen under steady-state conditions. In contrast, in a model of acute haemolytic anemia, Noxa-deficiency enhanced hematocrit recovery. Moreover, in a model of chronic inflammation-induced anemia, Noxa-ablation resulted in a dramatic increase of erythroblast expansion. Our data indicate that induction of Noxa in erythroid progenitors sets a survival threshold that limits expansion beyond the number of cells that can be sustained by the available cytokines, which becomes apparent under conditions of induced anemia.
Collapse
Affiliation(s)
- Felix M. Wensveen
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
| | - Christian R. Geest
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
| | - Sten F. W. M. Libregts
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
| | - Ingrid A. M. Derks
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
| | - Paul G. Ekert
- Division of Cell Signaling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC Australia
| | - Verena Labi
- Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martijn A. Nolte
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 8, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
48
|
van Aalderen MC, Remmerswaal EBM, ten Berge IJM, van Lier RAW. Blood and beyond: properties of circulating and tissue-resident human virus-specific αβ CD8(+) T cells. Eur J Immunol 2014; 44:934-44. [PMID: 24448915 DOI: 10.1002/eji.201344269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 01/11/2023]
Abstract
CD8(+) αβ T-cell responses form an essential line of defence against viral infections. An important part of the mechanisms that control the generation and maintenance of these responses have been elucidated in experimental mouse models. In recent years it has become clear that CD8(+) T-cell responses in humans not only show similarities, but also display differences to those occurring in mice. Furthermore, while several viral infections occur primarily in specialised organ systems, for obvious reasons, most human CD8(+) T-cell investigations were performed on cells deriving from the circulation. Indeed, several lines of evidence now point to essential functional differences between virus-specific CD8(+) memory T cells found in the circulation and those providing protection in organ systems, such as the lungs. In this review, we will focus on summarising recent insights into human CD8(+) T-cell differentiation in response to several viruses and emphasise that for a complete understanding of anti-viral immunity, it is pivotal to scrutinize such responses in both blood and tissue.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Ottina E, Pellegrini M, Villunger A. Guarding effector T-cell survival: all for one, Mcl-1 for all? Cell Death Differ 2014; 20:969-71. [PMID: 23832147 DOI: 10.1038/cdd.2013.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Cippà PE, Gabriel SS, Kraus AK, Chen J, Wekerle T, Guimezanes A, Wüthrich RP, Fehr T. Bcl-2 inhibition to overcome memory cell barriers in transplantation. Am J Transplant 2014; 14:333-42. [PMID: 24472193 DOI: 10.1111/ajt.12554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 01/25/2023]
Abstract
Memory T cells (Tm) represent a major barrier for immunosuppression and tolerance induction after solid organ transplantation. Taking into consideration the critical role of the intrinsic apoptosis pathway in the generation and maintenance of Tm, we developed a new concept to deplete alloreactive Tm by targeting Bcl-2 proteins. The small-molecule Bcl-2/Bcl-XL inhibitor ABT-737 efficiently induced apoptosis in alloreactive Tm in vitro and in vivo and prolonged skin graft survival in sensitized recipients. A short course of ABT-737 induction therapy prevented Tm-mediated resistance in a donor-specific transfusion model and allowed mixed chimerism induction across Tm barriers. Since Bcl-2 inhibitors yielded encouraging safety results in cancer trials, this novel approach might represent a substantial advance to prevent allograft rejection and induce tolerance in sensitized recipients.
Collapse
Affiliation(s)
- P E Cippà
- Institute of Physiology, University of Zürich, Zürich, Switzerland; Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|