1
|
Nakagawa T, Honda T, Yuasa T, Nishiuchi G, Sato M, Tokunaga A, Nakahara M, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Padmanabhan P, Chatterjee A, Sathe G, Ghose V, Janakiraman N, Blake DJ, Koizumi N, Elchuri S, Okumura N. The TCF4 Gene Regulates Apoptosis of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:16. [PMID: 40048186 PMCID: PMC11895853 DOI: 10.1167/iovs.66.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disorder characterized by excessive extracellular matrix (ECM) accumulation and corneal endothelial cell death. CTG trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene represents the most significant genetic risk factor. This study aimed to elucidate the role of TCF4 in FECD pathogenesis through comprehensive proteomic analysis. Methods Corneal endothelial cells isolated from patients with FECD harboring TCF4 trinucleotide repeat expansion were immortalized to establish an FECD cell model (iFECD). CRISPR/Cas9-mediated genome editing was employed to generate TCF4-knockout iFECD cells. Whole-cell proteome analysis was performed using liquid chromatography-mass spectrometry, followed by pathway enrichment analysis of differentially expressed proteins (DEPs). The effects of TCF4 deletion on TGF-β-mediated protein aggregation and cell death were evaluated using Western blot analysis, flow cytometry, and aggresome detection assays. Results Proteomic analysis identified 88 DEPs among 6510 detected proteins. Pathway analysis revealed significant enrichment in ECM-associated pathways, oxidative stress responses, and cellular motility. TCF4 deletion attenuated TGF-β-induced cell death in iFECD cells. Concordantly, Western blot analysis demonstrated that TCF4 deletion suppressed TGF-β2-mediated cleavage of caspase-3 and poly (ADP-ribose) polymerase. Flow cytometric analysis of Annexin V-positive cells confirmed reduced apoptosis in TCF4-deleted cells following TGF-β2 treatment. Additionally, aggresome detection assays revealed that TCF4 deletion diminished TGF-β2-induced protein aggregation. Conclusions This study demonstrates a crucial role for TCF4 in FECD pathogenesis, particularly in ECM regulation and protein aggregation-induced cell death.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Go Nishiuchi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Sato
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Ayumi Tokunaga
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Prema Padmanabhan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, India
| | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | | | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Derek J. Blake
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
2
|
Greene TT, Jo Y, Chiale C, Macal M, Fang Z, Khatri FS, Codrington AL, Kazane KR, Akbulut E, Swaminathan S, Fujita Y, Fitzgerald-Bocarsly P, Cordes T, Metallo C, Scott DA, Zúñiga EI. Metabolic deficiencies underlie reduced plasmacytoid dendritic cell IFN-I production following viral infection. Nat Commun 2025; 16:1460. [PMID: 39920132 PMCID: PMC11805920 DOI: 10.1038/s41467-025-56603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Type I Interferons (IFN-I) are central to host protection against viral infections, with plasmacytoid dendritic cells (pDC) being the most significant source, yet pDCs lose their IFN-I production capacity following an initial burst of IFN-I, resulting in susceptibility to secondary infections. The underlying mechanisms of these dynamics are not well understood. Here we find that viral infection reduces the capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a positive regulator of pDC IFN-I production in mice and humans; meanwhile, LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following infection. In addition, preservation of LDHB expression is sufficient to partially retain the function of otherwise exhausted pDCs, both in vitro and in vivo. Furthermore, restoring LDHB in vivo in pDCs from infected mice increases IFNAR-dependent, infection-associated pathology. Our work thus identifies a mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved infection-driven pDC inhibition.
Collapse
Affiliation(s)
- Trever T Greene
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Yeara Jo
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Carolina Chiale
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Monica Macal
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ziyan Fang
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fawziyah S Khatri
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alicia L Codrington
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Katelynn R Kazane
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth Akbulut
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Shobha Swaminathan
- Department of Medicine, Division of Infectious Disease, The State University of New Jersey, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Yu Fujita
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Thekla Cordes
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - David A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Elina I Zúñiga
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zhang H, Zeng J, Zhang F, Liu J, Liang L. Role of B-Cell Lymphoma/Leukemia 11A in Normal and Malignant Hematopoiesis. BIOLOGY 2025; 14:26. [PMID: 39857257 PMCID: PMC11759832 DOI: 10.3390/biology14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias. This review provides a comprehensive overview of the role of BCL11A in normal and malignant hematopoiesis, details the hematological disorders associated with its dysregulation and explores the current therapeutic strategies targeting this transcription factor.
Collapse
Affiliation(s)
- Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Junhao Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Fangling Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| |
Collapse
|
4
|
De Vos T, Oatman N, Boehme L, Putteman T, Velghe I, Van Droogenbroeck Y, De Munter S, Cesnekova M, Van Nieuwerburgh F, Vandekerckhove B, Philippe J, Taghon T. <i>HES6</i>knockdown in human hematopoietic precursor cells reduces their <i>in vivo</i> engraftment potential and their capacity to differentiate into erythroid cells, B cells, T cells and plasmacytoid dendritic cells. Haematologica 2024; 109:3578-3592. [PMID: 38572564 PMCID: PMC11532694 DOI: 10.3324/haematol.2023.283432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is driven by molecular mechanisms that induce differentiation and proliferation of hematopoietic stem cells and their progeny. This involves the activity of various transcription factors, such as members of the Hairy/Enhancer of Split (HES) family, and important roles for both HES1 and HES4 have been shown in normal and malignant hematopoiesis. Here, we investigated the role of HES6 in human hematopoiesis using in vitro and in vivo models. Using bulk and single-cell RNA-sequencing data, we show that HES6 is expressed during erythroid/megakaryocyte and plasmacytoid dendritic cell development, as well as in multipotent precursors and at specific stages of T- and B-cell development following pre-B-cell receptor and pre-T-cell receptor signaling, respectively. Consistently, knockdown of HES6 in cord blood-derived hematopoietic precursors in well-defined in vitro differentiation assays resulted in reduced differentiation of human hematopoietic precursors towards megakaryocytes, erythrocytes, plasmacytoid dendritic cells, B cells and T cells. In addition, HES6 knockdown hematopoietic stem and progenitor cells displayed reduced colony-forming unit capacity in vitro and impaired potential to reconstitute hematopoiesis in vivo in a competitive transplantation assay. We demonstrate that loss of HES6 expression has an impact on cell cycle progression during erythroid differentiation and provide evidence for potential downstream target genes that affect these perturbations. Thus, our study provides new insights into the role of HES6 in human hematopoiesis.
Collapse
Affiliation(s)
- Tamara De Vos
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Nicole Oatman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Tom Putteman
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Imke Velghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Yana Van Droogenbroeck
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Michaela Cesnekova
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium; Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Jan Philippe
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent.
| |
Collapse
|
5
|
Araujo AM, Dekker JD, Garrison K, Su Z, Rhee C, Hu Z, Lee BK, Osorio D, Lee J, Iyer VR, Ehrlich LIR, Georgiou G, Ippolito G, Yi S, Tucker HO. Lymphoid origin of intrinsically activated plasmacytoid dendritic cells in mice. eLife 2024; 13:RP96394. [PMID: 39269281 PMCID: PMC11398865 DOI: 10.7554/elife.96394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as 'B-pDCs', have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.
Collapse
Affiliation(s)
| | - Joseph D Dekker
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Kendra Garrison
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Zhe Su
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Zicheng Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Daniel Osorio
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Gregory Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Stephen Yi
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
6
|
Yoon JH, Bae E, Nagafuchi Y, Sudo K, Han JS, Park SH, Nakae S, Yamashita T, Ju JH, Matsumoto I, Sumida T, Miyazawa K, Kato M, Kuroda M, Lee IK, Fujio K, Mamura M. Repression of SMAD3 by STAT3 and c-Ski induces conventional dendritic cell differentiation. Life Sci Alliance 2024; 7:e201900581. [PMID: 38960622 PMCID: PMC11222659 DOI: 10.26508/lsa.201900581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
A pleiotropic immunoregulatory cytokine, TGF-β, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.
Collapse
Affiliation(s)
- Jeong-Hwan Yoon
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Shin-Young Medical Institute, Chiba, Japan
- Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Department of Companion Health, Yeonsung University, Anyang, Republic of Korea
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Jin Soo Han
- Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamashita
- Laboratory of Veterinary Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Ji Hyeon Ju
- Department of Rheumatology, Catholic University of Korea, Seoul St. Mary Hospital, Seoul, Republic of Korea
| | - Isao Matsumoto
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiji Miyazawa
- Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - In-Kyu Lee
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuko Mamura
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Shin-Young Medical Institute, Chiba, Japan
- Department of Advanced Nucleic Acid Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
7
|
Rodrigues PF, Trsan T, Cvijetic G, Khantakova D, Panda SK, Liu Z, Ginhoux F, Cella M, Colonna M. Progenitors of distinct lineages shape the diversity of mature type 2 conventional dendritic cells. Immunity 2024; 57:1567-1585.e5. [PMID: 38821051 DOI: 10.1016/j.immuni.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Conventional dendritic cells (cDC) are antigen-presenting cells comprising cDC1 and cDC2, responsible for priming naive CD8+ and CD4+ T cells, respectively. Recent studies have unveiled cDC2 heterogeneity and identified various cDC2 progenitors beyond the common DC progenitor (CDP), hinting at distinct cDC2 lineages. By generating Cd300ciCre-hCD2R26tdTomato reporter mice, we identified a bone marrow pro-cDC2 progenitor exclusively generating cDC2 in vitro and in vivo. Single-cell analyses and multiparametric flow cytometry demonstrated that pro-cDC2 encompasses myeloid-derived pre-cDC2 and lymphoid-derived plasmacytoid DC (pDC)-like precursors differentiating into a transcriptionally convergent cDC2 phenotype. Cd300c-traced cDC2 had distinct transcriptomic profiles, phenotypes, and tissue distributions compared with Ms4a3CreR26tdTomato lineage-traced DC3, a monocyte-DC progenitor (MDP)-derived subset that bypasses CDP. Mice with reduced Cd300c-traced cDC2 showed impaired humoral responses to T cell-dependent antigens. We conclude that progenitors of distinct lineages shape the diversity of mature cDC2 across tissues. Thus, ontogenesis may impact tissue immune responses.
Collapse
Affiliation(s)
- Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Grozdan Cvijetic
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Darya Khantakova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Ji Y, Heng Y, Zhu X, Zhang D, Tang D, Zhou J, Lin H, Ma J, Ding X, Tao L, Lu L. Increased tumor-infiltrating plasmacytoid dendritic cells express high levels of PD-L2 and affect CD8 + T lymphocyte infiltration in human laryngeal squamous cell carcinoma. Transl Oncol 2024; 45:101936. [PMID: 38678970 PMCID: PMC11068930 DOI: 10.1016/j.tranon.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
The infiltration and prognostic significance of tumor-infiltrating plasmacytoid dendritic cells (TI-pDC) have been elucidated in various human solid cancers. However, the infiltrating patterns and functional importance of TI-pDC in laryngeal squamous cell carcinoma (LSCC) remain unknown. In this study, flow cytometric analyses were conducted to characterize the infiltration of dendritic cells and T lymphocytes, along with their respective subgroups in tumor tissues (TT), para-carcinoma tissues (PT), and peripheral blood (PB) from LSCC patients. Immunohistochemical staining for CD4 and CD8, as well as immunofluorescence staining for CD123, were performed on serial tissue sections to investigate the co-localization of TI-pDC and tumor-infiltrating T lymphocytes (TIL) within the tumor microenvironment (TME). Our results demonstrated significantly lower percentages of all three DC subsets in PB compared to TT and PT. Notably, the pDC percentage was markedly higher in TT than in PT. Moreover, TI-pDC percentage was significantly elevated in N+ stage patients compared to those with N0 stage. The results of survival analysis consistently demonstrated that high levels of TI-pDC infiltration were indicative of a poor prognosis. Further investigation revealed a significant negative correlation between TI-pDC and CD8+ TILs; notably, pDCs expressed an inhibitory surface molecule PD-L2 rather than PD-L1 within PT. Collectively, our findings suggest that increased TI-pDC is associated with adverse outcomes in LSCC patients while exhibiting an inhibitory phenotype that may play a crucial role in suppressing CD8+ TILs within LSCC tumors. These results highlight the potential therapeutic strategy targeting PD-L2+ pDCs for immunotherapies against LSCC.
Collapse
Affiliation(s)
- Yangyang Ji
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Yu Heng
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xiaoke Zhu
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Duo Zhang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Di Tang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Jian Zhou
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Hanqing Lin
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Jingyu Ma
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xuping Ding
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Tao
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China.
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
9
|
Li N, Steiger S, Zhong M, Lu M, Lei Y, Tang C, Chen J, Guo Y, Li J, Zhang D, Li J, Zhu E, Zheng Z, Lichtnekert J, Chen Y, Wang X. IRF8 maintains mononuclear phagocyte and neutrophil function in acute kidney injury. Heliyon 2024; 10:e31818. [PMID: 38845872 PMCID: PMC11153194 DOI: 10.1016/j.heliyon.2024.e31818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Immune cells are key players in acute tissue injury and inflammation, including acute kidney injury (AKI). Their development, differentiation, activation status, and functions are mediated by a variety of transcription factors, such as interferon regulatory factor 8 (IRF8) and IRF4. We speculated that IRF8 has a pathophysiologic impact on renal immune cells in AKI and found that IRF8 is highly expressed in blood type 1 conventional dendritic cells (cDC1s), monocytes, monocyte-derived dendritic cells (moDCs) and kidney biopsies from patients with AKI. In a mouse model of ischemia‒reperfusion injury (IRI)-induced AKI, Irf8 -/- mice displayed increased tubular cell necrosis and worsened kidney dysfunction associated with the recruitment of a substantial amount of monocytes and neutrophils but defective renal infiltration of cDC1s and moDCs. Mechanistically, global Irf8 deficiency impaired moDC and cDC1 maturation and activation, as well as cDC1 proliferation, antigen uptake, and trafficking to lymphoid organs for T-cell priming in ischemic AKI. Moreover, compared with Irf8 +/+ mice, Irf8 -/- mice exhibited increased neutrophil recruitment and neutrophil extracellular trap (NET) formation following AKI. IRF8 primarily regulates cDC1 and indirectly neutrophil functions, and thereby protects mice from kidney injury and inflammation following IRI. Our results demonstrate that IRF8 plays a predominant immunoregulatory role in cDC1 function and therefore represents a potential therapeutic target in AKI.
Collapse
Affiliation(s)
- Na Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilian-University Munich, 80336, Munich, Bavaria, Germany
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Meihua Lu
- Department of Geriatrics, People's Hospital of Banan District, 401320, Chongqing, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Yao Guo
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Dengyang Zhang
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jingyi Li
- Department of Pulmonary & Critical Care Medicine, Shenzhen Hospital of Southern Medical University, 518107, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Julia Lichtnekert
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilian-University Munich, 80336, Munich, Bavaria, Germany
| | - Yun Chen
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| |
Collapse
|
10
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
11
|
Greene TT, Jo Y, Macal M, Fang Z, Khatri FS, Codrington AL, Kazane KR, Chiale C, Akbulut E, Swaminathan S, Fujita Y, Fitzgerald-Bocarsly P, Cordes T, Metallo C, Scott DA, Zuniga EI. Metabolic Deficiencies Underlie Plasmacytoid Dendritic Cell Exhaustion After Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582551. [PMID: 38464328 PMCID: PMC10925345 DOI: 10.1101/2024.02.28.582551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.
Collapse
|
12
|
Pozniak J, Pedri D, Landeloos E, Van Herck Y, Antoranz A, Vanwynsberghe L, Nowosad A, Roda N, Makhzami S, Bervoets G, Maciel LF, Pulido-Vicuña CA, Pollaris L, Seurinck R, Zhao F, Flem-Karlsen K, Damsky W, Chen L, Karagianni D, Cinque S, Kint S, Vandereyken K, Rombaut B, Voet T, Vernaillen F, Annaert W, Lambrechts D, Boecxstaens V, Saeys Y, van den Oord J, Bosisio F, Karras P, Shain AH, Bosenberg M, Leucci E, Paschen A, Rambow F, Bechter O, Marine JC. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 2024; 187:166-183.e25. [PMID: 38181739 DOI: 10.1016/j.cell.2023.11.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Collapse
Affiliation(s)
- Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | | | - Asier Antoranz
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Lukas Vanwynsberghe
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ada Nowosad
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Niccolò Roda
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucas Ferreira Maciel
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lotte Pollaris
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Fang Zhao
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Karine Flem-Karlsen
- Department of Dermatology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - William Damsky
- Departments of Dermatology and Pathology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - Limin Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Despoina Karagianni
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Benjamin Rombaut
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale University, New Haven, CT 05610, USA
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Annette Paschen
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany; University Duisburg-Essen, Essen, Germany.
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Zhang Y, Wu T, He Z, Lai W, Shen X, Lv J, Wang Y, Wu L. Regulation of pDC fate determination by histone deacetylase 3. eLife 2023; 12:e80477. [PMID: 38011375 PMCID: PMC10732571 DOI: 10.7554/elife.80477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology; however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Tao Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Zhimin He
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Wenlong Lai
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiangyi Shen
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaoyan Lv
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Yuanhao Wang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Li Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
15
|
Yang L, Li S, Chen L, Zhang Y. Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity. Cancer Biol Med 2023; 20:728-747. [PMID: 37817484 PMCID: PMC10618948 DOI: 10.20892/j.issn.2095-3941.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.
Collapse
Affiliation(s)
- Leilei Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuhui Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Nealon CL, Halladay CW, Gorman BR, Simpson P, Roncone DP, Canania RL, Anthony SA, Rogers LRS, Leber JN, Dougherty JM, Bailey JNC, Crawford DC, Sullivan JM, Galor A, Wu WC, Greenberg PB, Lass JH, Iyengar SK, Peachey NS. Association Between Fuchs Endothelial Corneal Dystrophy, Diabetes Mellitus, and Multimorbidity. Cornea 2023; 42:1140-1149. [PMID: 37170406 PMCID: PMC10523841 DOI: 10.1097/ico.0000000000003311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to assess risk for demographic variables and other health conditions that are associated with Fuchs endothelial corneal dystrophy (FECD). METHODS We developed a FECD case-control algorithm based on structured electronic health record data and confirmed accuracy by individual review of charts at 3 Veterans Affairs (VA) Medical Centers. This algorithm was applied to the Department of VA Million Veteran Program cohort from whom sex, genetic ancestry, comorbidities, diagnostic phecodes, and laboratory values were extracted. Single-variable and multiple variable logistic regression models were used to determine the association of these risk factors with FECD diagnosis. RESULTS Being a FECD case was associated with female sex, European genetic ancestry, and a greater number of comorbidities. Of 1417 diagnostic phecodes evaluated, 213 had a significant association with FECD, falling in both ocular and nonocular conditions, including diabetes mellitus (DM). Five of 69 laboratory values were associated with FECD, with the direction of change for 4 being consistent with DM. Insulin dependency and type 1 DM raised risk to a greater degree than type 2 DM, like other microvascular diabetic complications. CONCLUSIONS Female sex, European ancestry, and multimorbidity increased FECD risk. Endocrine/metabolic clinic encounter codes and altered patterns of laboratory values support DM increasing FECD risk. Our results evoke a threshold model in which the FECD phenotype is intensified by DM and potentially other health conditions that alter corneal physiology. Further studies to better understand the relationship between FECD and DM are indicated and may help identify opportunities for slowing FECD progression.
Collapse
Affiliation(s)
- Cari L. Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Christopher W. Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Bryan R. Gorman
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
- Booz Allen Hamilton, McLean, Virginia, USA
| | - Piana Simpson
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - David P. Roncone
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Scott A. Anthony
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Jenna N. Leber
- Ophthalmology Section, VA Western NY Health Care System, Buffalo, New York, USA
| | | | - Jessica N. Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Dana C. Crawford
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Jack M. Sullivan
- Ophthalmology Section, VA Western NY Health Care System, Buffalo, New York, USA
- Research Service, VA Western NY Health Care System, Buffalo, New York, USA
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, New York, USA
| | - Anat Galor
- Miami Veterans Affairs Medical Center, Miami, Florida, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Paul B. Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, Rhode Island, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - Jonathan H. Lass
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Sudha K. Iyengar
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Neal S. Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Arroyo Hornero R, Idoyaga J. Plasmacytoid dendritic cells: A dendritic cell in disguise. Mol Immunol 2023; 159:38-45. [PMID: 37269733 PMCID: PMC10625168 DOI: 10.1016/j.molimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Since their discovery, the identity of plasmacytoid dendritic cells (pDCs) has been at the center of a continuous dispute in the field, and their classification as dendritic cells (DCs) has been recently re-challenged. pDCs are different enough from the rest of the DC family members to be considered a lineage of cells on their own. Unlike the exclusive myeloid ontogeny of cDCs, pDCs may have dual origin developing from myeloid and lymphoid progenitors. Moreover, pDCs have the unique ability to quickly secrete abundant levels of type I interferon (IFN-I) in response to viral infections. In addition, pDCs undergo a differentiation process after pathogen recognition that allows them to activate T cells, a feature that has been shown to be independent of presumed contaminating cells. Here, we aim to provide an overview of the historic and current understanding of pDCs and argue that their classification as either lymphoid or myeloid may be an oversimplification. Instead, we propose that the capacity of pDCs to link the innate and adaptive immune response by directly sensing pathogens and activating adaptive immune responses justify their inclusion within the DC network.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
20
|
Duluc D, Sisirak V. Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods Mol Biol 2023; 2618:3-16. [PMID: 36905505 DOI: 10.1007/978-1-0716-2938-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells are cells of hematopoietic origin that are specialized in antigen presentation and instruction of innate and adaptive immune responses. They are a heterogenous group of cells populating lymphoid organs and most tissues. Dendritic cells are commonly separated in three main subsets that differ in their developmental paths, phenotype, and functions. Most studies on dendritic cells were done primarily in mice; therefore, in this chapter, we propose to summarize the current knowledge and recent progress on mouse dendritic cell subsets' development, phenotype, and functions.
Collapse
Affiliation(s)
- Dorothée Duluc
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France.
| | - Vanja Sisirak
- UMR CNRS 5164 - Immunoconcept, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
21
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
22
|
Shah PT, Tufail M, Wu C, Xing L. THP-1 cell line model for tuberculosis: A platform for in vitro macrophage manipulation. Tuberculosis (Edinb) 2022; 136:102243. [PMID: 35963145 DOI: 10.1016/j.tube.2022.102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Macrophages are large mononuclear phagocytic cells that play a vital role in the immune response. They are present in all body tissues with extremely heterogeneous and plastic phenotypes that adapt to the organs and tissues in which they live and respond in the first-line against invading microorganisms. Tuberculosis (TB) is caused by the pathogenic bacteria Mycobacterium tuberculosis (Mtb), which is among the top 10 global infectious agents and the leading cause of mortality, ranking above human immunodeficiency virus (HIV), as a single infectious agent. Macrophages, upon Mtb infection, not only phagocytose the bacteria and present the antigens to T-cells, but also react rapidly by developing antimycobacterial immune response depending highly on the production of cytokines. However, Mtb is also capable of intracellular survival in instances of sub-optimal activation of macrophages. Hence, several systems have been established to evaluate the Mtb-macrophage interaction, where the THP-1 monocytes have been developed as an attractive model for in vitro polarized monocyte-derived macrophages. This model is extensively used for Mtb as well as other intracellular bacterial studies. Herein, we have summarized the updated implications of the THP-1 model for TB-related studies and discussed the pros and cons compared to other cell models of TB.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Muhammad Tufail
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
23
|
Babcock RL, Zhou Y, Patel B, Chrisikos TT, Kahn LM, Dyevoich AM, Medik YB, Watowich SS. Regulation and function of Id2 in plasmacytoid dendritic cells. Mol Immunol 2022; 148:6-17. [PMID: 35640521 PMCID: PMC11390127 DOI: 10.1016/j.molimm.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-I) producing cells that promote anti-viral immune responses and contribute to autoimmunity. Development of pDCs requires the transcriptional regulator E2-2 and is opposed by inhibitor of DNA binding 2 (Id2). Prior work indicates Id2 is induced in pDCs upon maturation and may affect pDC IFN-I production via suppression of E2-2, suggesting an important yet uncharacterized role in this lineage. We found TLR7 agonists stimulate Id2 mRNA and protein expression in pDCs. We further show that transcriptional activation of Id2 is dependent on the E2 ubiquitin-conjugating enzyme Ubc13, but independent of IFN-I signaling in response to TLR7 agonist stimulation. Nonetheless, conditional Id2 depletion in pDCs indicates Id2 is dispensable for TLR7 agonist-induced maturation and inhibition of E2-2 expression. Thus, we identify new mechanisms of Id2 regulation by Ubc13, which may be relevant for understanding Id2 gene regulation in other contexts, while ruling out major roles for Id2 in pDC responses to TLR7 agonists.
Collapse
Affiliation(s)
- Rachel L Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Laura M Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Allison M Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yusra B Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
25
|
Ly6D +Siglec-H + precursors contribute to conventional dendritic cells via a Zbtb46 +Ly6D + intermediary stage. Nat Commun 2022; 13:3456. [PMID: 35705536 PMCID: PMC9200809 DOI: 10.1038/s41467-022-31054-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmacytoid and conventional dendritic cells (pDC and cDC) are generated from progenitor cells in the bone marrow and commitment to pDCs or cDC subtypes may occur in earlier and later progenitor stages. Cells within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor fraction of the mouse bone marrow generate both pDCs and cDCs. Here we investigate the heterogeneity and commitment of subsets in this compartment by single-cell transcriptomics and high-dimensional flow cytometry combined with cell fate analysis: Within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor pool cells expressing high levels of Ly6D and lacking expression of transcription factor Zbtb46 contain CCR9loB220hi immediate pDC precursors and CCR9loB220lo (lo-lo) cells which still generate pDCs and cDCs in vitro and in vivo under steady state conditions. cDC-primed cells within the Ly6DhiZbtb46- lo-lo precursors rapidly upregulate Zbtb46 and pass through a Zbtb46+Ly6D+ intermediate stage before acquiring cDC phenotype after cell division. Type I IFN stimulation limits cDC and promotes pDC output from this precursor fraction by arresting cDC-primed cells in the Zbtb46+Ly6D+ stage preventing their expansion and differentiation into cDCs. Modulation of pDC versus cDC output from precursors by external factors may allow for adaptation of DC subset composition at later differentiation stages.
Collapse
|
26
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
27
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
28
|
Ghanem MH, Shih AJ, Khalili H, Werth EG, Chakrabarty JK, Brown LM, Simpfendorfer KR, Gregersen PK. Proteomic and Single-Cell Transcriptomic Dissection of Human Plasmacytoid Dendritic Cell Response to Influenza Virus. Front Immunol 2022; 13:814627. [PMID: 35401570 PMCID: PMC8984281 DOI: 10.3389/fimmu.2022.814627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells [pDCs] represent a rare innate immune subset uniquely endowed with the capacity to produce substantial amounts of type-I interferons. This function of pDCs is critical for effective antiviral defenses and has been implicated in autoimmunity. While IFN-I and select cytokines have been recognized as pDC secreted products, a comprehensive agnostic profiling of the pDC secretome in response to a physiologic stimulus has not been reported. We applied LC-MS/MS to catalogue the repertoire of proteins secreted by pDCs in the unperturbed condition and in response to challenge with influenza H1N1. We report the identification of a baseline pDC secretome, and the repertoire of virus-induced proteins including most type-I interferons, various cytokines, chemokines and granzyme B. Additionally, using single-cell RNA-seq [scRNA-seq], we perform multidimensional analyses of pDC transcriptional diversity immediately ex vivo and following stimulation. Our data evidence preexisting pDC heterogeneity, with subsequent highly specialized roles within the pDC population upon stimulation ranging from dedicated cytokine super-producers to cells with APC-like traits. Dynamic expression of transcription factors and surface markers characterize subclusters within activated pDCs. Integrating the proteomic and transcriptomic datasets confirms the pDC-subcluster origin of the proteins identified in the secretome. Our findings represent the most comprehensive molecular characterization of primary human pDCs at baseline, and in response to influenza virus, reported to date.
Collapse
Affiliation(s)
- Mustafa H Ghanem
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J Shih
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Houman Khalili
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Jayanta K Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Kim R Simpfendorfer
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Peter K Gregersen
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
29
|
Zeng J, Wang D, Luo J, Li L, Lin L, Li J, Zheng W, Zuo D, Yang B. Mannan-binding lectin exacerbates the severity of psoriasis by promoting plasmacytoid dendritic cell differentiation via the signal transducer and activator of transcription 3-interferon regulatory factor 8 axis. J Dermatol 2022; 49:496-507. [PMID: 35347767 DOI: 10.1111/1346-8138.16323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by host immune responses. Plasmacytoid dendritic cells (pDC) and interferon (IFN)-α secreted by pDC are involved in the initiation of psoriasis. Mannan-binding lectin (MBL), a vital component of the complement pathway, plays a critical role in innate immune defense and the inflammatory response. Our previous study found that MBL could exacerbate skin inflammation in psoriatic mice, but the effect of MBL on pDC remains unstudied. Herein, we revealed that the circulating level of MBL was elevated in patients with psoriasis compared with the healthy controls. Moreover, the MBL level was positively correlated with disease severity, relative inflammatory cytokine levels, and peripheral blood (PB) pDC frequency in psoriasis. An in vitro study determined that the MBL protein could promote the differentiation of human pDC and upregulate the production of relative inflammatory cytokines and chemokines. Additionally, MBL-deficient (MBL-/- ) mice exhibited decreased accumulation of pDC in lymph nodes, spleens, and skin lesions with reduced secretion of pDC-related cytokines compared with wild-type (WT) mice in the preliminary stage of psoriasis induced by imiquimod. Notably, the differentiation of pDC from bone marrow (BM) cells derived from MBL-/- mice was weakened compared with that from WT mice upon Fms-like tyrosine kinase 3 ligand (Flt3L) incubation. Mechanistic research indicated that the signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 8 (IRF8) axis was responsible for MBL-modulated pDC differentiation. In summary, these results suggest that MBL exacerbates the severity of psoriasis by enhancing pDC differentiation and pDC-related cytokine secretion via the STAT3-IRF8 axis, thus providing a new target for psoriasis treatment.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luyang Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jingyi Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Feng J, Pucella JN, Jang G, Alcántara-Hernández M, Upadhaya S, Adams NM, Khodadadi-Jamayran A, Lau CM, Stoeckius M, Hao S, Smibert P, Tsirigos A, Idoyaga J, Reizis B. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 2022; 55:405-422.e11. [PMID: 35180378 PMCID: PMC9344860 DOI: 10.1016/j.immuni.2022.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.
Collapse
Affiliation(s)
- Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marlon Stoeckius
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Stephanie Hao
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Peter Smibert
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Godoy-Tena G, Ballestar E. Epigenetics of Dendritic Cells in Tumor Immunology. Cancers (Basel) 2022; 14:cancers14051179. [PMID: 35267487 PMCID: PMC8909611 DOI: 10.3390/cancers14051179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells with the distinctive property of inducing the priming and differentiation of naïve CD4+ and CD8+ T cells into helper and cytotoxic effector T cells to develop efficient tumor-immune responses. DCs display pathogenic and tumorigenic antigens on their surface through major histocompatibility complexes to directly influence the differentiation of T cells. Cells in the tumor microenvironment (TME), including cancer cells and other immune-infiltrated cells, can lead DCs to acquire an immune-tolerogenic phenotype that facilitates tumor progression. Epigenetic alterations contribute to cancer development, not only by directly affecting cancer cells, but also by their fundamental role in the differentiation of DCs that acquire a tolerogenic phenotype that, in turn, suppresses T cell-mediated responses. In this review, we focus on the epigenetic regulation of DCs that have infiltrated the TME and discuss how knowledge of the epigenetic control of DCs can be used to improve DC-based vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Barcelona, Spain;
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Barcelona, Spain;
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
- Correspondence:
| |
Collapse
|
32
|
Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid Dendritic Cells and Cancer Immunotherapy. Cells 2022; 11:222. [PMID: 35053338 PMCID: PMC8773673 DOI: 10.3390/cells11020222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite largely disappointing clinical trials of dendritic cell (DC)-based vaccines, recent studies have shown that DC-mediated cross-priming plays a critical role in generating anti-tumor CD8 T cell immunity and regulating anti-tumor efficacy of immunotherapies. These new findings thus support further development and refinement of DC-based vaccines as mono-immunotherapy or combinational immunotherapies. One exciting development is recent clinical studies with naturally circulating DCs including plasmacytoid DCs (pDCs). pDC vaccines were particularly intriguing, as pDCs are generally presumed to play a negative role in regulating T cell responses in tumors. Similarly, DC-derived exosomes (DCexos) have been heralded as cell-free therapeutic cancer vaccines that are potentially superior to DC vaccines in overcoming tumor-mediated immunosuppression, although DCexo clinical trials have not led to expected clinical outcomes. Using a pDC-targeted vaccine model, we have recently reported that pDCs required type 1 conventional DCs (cDC1s) for optimal cross-priming by transferring antigens through pDC-derived exosomes (pDCexos), which also cross-prime CD8 T cells in a bystander cDC-dependent manner. Thus, pDCexos could combine the advantages of both cDC1s and pDCs as cancer vaccines to achieve better anti-tumor efficacy. In this review, we will focus on the pDC-based cancer vaccines and discuss potential clinical application of pDCexos in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
33
|
Fan C, Wu J, Shen Y, Hu H, Wang Q, Mao Y, Ye B, Xiang M. Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Med 2021; 11:922-930. [PMID: 34964283 PMCID: PMC8855917 DOI: 10.1002/cam4.4511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/11/2022] Open
Abstract
Objective We aim to review the roles of plasmacytoid dendritic cells (pDCs) in head and neck squamous cell carcinoma (HNSCC) and explore the effects of hypoxia on the tolerogenic transformation of pDCs. Background pDCs, best known as professional type I interferon‐secreting cells, play key roles in immune surveillance and antitumor immunity. Recently, pDCs have been shown to be tolerogenic and correlate with poor prognosis in a variety of cancers, including HNSCC. However, it remains unclear what drives the tolerogenic transformation of pDCs in the HNSCC microenvironment. Hypoxia, a prominent hallmark of the tumor microenvironment (TME) of HNSCC, can interfere with multiple immune cells and establish an immunosuppressive TME. Methods In this review, we summarize the antitumor and protumor functions of pDCs, explore the effects of hypoxia on the migration and maturation of pDCs, and discuss related mechanisms in HNSCC. Conclusions pDCs mainly display protumor functions in HNSCC. The hypoxic TME in HNSCC can enhance the migration of pDCs and inhibit the differentiation and maturation of pDCs, promoting the tolerogenic phenotype of pDCs.
Collapse
Affiliation(s)
- Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Mao
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Das A, Chauhan KS, Kumar H, Tailor P. Mutation in Irf8 Gene ( Irf8R294C ) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Front Immunol 2021; 12:758190. [PMID: 34867997 PMCID: PMC8635750 DOI: 10.3389/fimmu.2021.758190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations—regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.
Collapse
Affiliation(s)
- Annesa Das
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India.,Special Centre for Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
The Modes of Dysregulation of the Proto-Oncogene T-Cell Leukemia/Lymphoma 1A. Cancers (Basel) 2021; 13:cancers13215455. [PMID: 34771618 PMCID: PMC8582492 DOI: 10.3390/cancers13215455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary T-cell leukemia/lymphoma 1A (TCL1A) is a proto-oncogene that is mainly expressed in embryonic and fetal tissues, as well as in some lymphatic cells. It is frequently overexpressed in a variety of T- and B-cell lymphomas and in some solid tumors. In chronic lymphocytic leukemia and in T-prolymphocytic leukemia, TCL1A has been implicated in the pathogenesis of these conditions, and high-level TCL1A expression correlates with more aggressive disease characteristics and poorer patient survival. Despite the modes of TCL1A (dys)regulation still being incompletely understood, there are recent advances in understanding its (post)transcriptional regulation. This review summarizes the current concepts of TCL1A’s multi-faceted modes of regulation. Understanding how TCL1A is deregulated and how this can lead to tumor initiation and sustenance can help in future approaches to interfere in its oncogenic actions. Abstract Incomplete biological concepts in lymphoid neoplasms still dictate to a large extent the limited availability of efficient targeted treatments, which entertains the mostly unsatisfactory clinical outcomes. Aberrant expression of the embryonal and lymphatic TCL1 family of oncogenes, i.e., the paradigmatic TCL1A, but also TML1 or MTCP1, is causally implicated in T- and B-lymphocyte transformation. TCL1A also carries prognostic information in these particular T-cell and B-cell tumors. More recently, the TCL1A oncogene has been observed also in epithelial tumors as part of oncofetal stemness signatures. Although the concepts on the modes of TCL1A dysregulation in lymphatic neoplasms and solid tumors are still incomplete, there are recent advances in defining the mechanisms of its (de)regulation. This review presents a comprehensive overview of TCL1A expression in tumors and the current understanding of its (dys)regulation via genomic aberrations, epigenetic modifications, or deregulation of TCL1A-targeting micro RNAs. We also summarize triggers that act through such transcriptional and translational regulation, i.e., altered signals by the tumor microenvironment. A refined mechanistic understanding of these modes of dysregulations together with improved concepts of TCL1A-associated malignant transformation can benefit future approaches to specifically interfere in TCL1A-initiated or -driven tumorigenesis.
Collapse
|
36
|
Sarkar D, Shariq M, Dwivedi D, Krishnan N, Naumann R, Bhalla US, Ghosh HS. Adult brain neurons require continual expression of the schizophrenia-risk gene Tcf4 for structural and functional integrity. Transl Psychiatry 2021; 11:494. [PMID: 34564703 PMCID: PMC8464606 DOI: 10.1038/s41398-021-01618-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The schizophrenia-risk gene Tcf4 has been widely studied in the context of brain development using mouse models of haploinsufficiency, in utero knockdown and embryonic deletion. However, Tcf4 continues to be abundantly expressed in adult brain neurons where its functions remain unknown. Given the importance of Tcf4 in psychiatric diseases, we investigated its role in adult neurons using cell-specific deletion and genetic tracing in adult animals. Acute loss of Tcf4 in adult excitatory neurons in vivo caused hyperexcitability and increased dendritic complexity of neurons, effects that were distinct from previously observed effects in embryonic-deficiency models. Interestingly, transcriptomic analysis of genetically traced adult-deleted FACS-sorted Tcf4-knockout neurons revealed that Tcf4 targets in adult neurons are distinct from those in the embryonic brain. Meta-analysis of the adult-deleted neuronal transcriptome from our study with the existing datasets of embryonic Tcf4 deficiencies revealed plasma membrane and ciliary genes to underlie Tcf4-mediated structure-function regulation specifically in adult neurons. The profound changes both in the structure and excitability of adult neurons upon acute loss of Tcf4 indicates that proactive regulation of membrane-related processes underlies the functional and structural integrity of adult neurons. These findings not only provide insights for the functional relevance of continual expression of a psychiatric disease-risk gene in the adult brain but also identify previously unappreciated gene networks underpinning mature neuronal regulation during the adult lifespan.
Collapse
Affiliation(s)
- Dipannita Sarkar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Mohammad Shariq
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Deepanjali Dwivedi
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Nirmal Krishnan
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Ronald Naumann
- grid.419537.d0000 0001 2113 4567MPI of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
| | - Upinder Singh Bhalla
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Hiyaa Singhee Ghosh
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
| |
Collapse
|
37
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
38
|
Laustsen A, van der Sluis RM, Gris-Oliver A, Hernández SS, Cemalovic E, Tang HQ, Pedersen LH, Uldbjerg N, Jakobsen MR, Bak RO. Ascorbic acid supports ex vivo generation of plasmacytoid dendritic cells from circulating hematopoietic stem cells. eLife 2021; 10:65528. [PMID: 34473049 PMCID: PMC8445615 DOI: 10.7554/elife.65528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole-blood HSPCs, and these cells display a pDC phenotype and function. Using GMP-compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways, suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood and lays the foundation for investigating HSPC-pDCs for cell-based immunotherapy.
Collapse
Affiliation(s)
- Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Renée M van der Sluis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | | | | | - Ena Cemalovic
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Hai Q Tang
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Henning Pedersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Tran TTP, Tran TH, Kremer EJ. IgG-Complexed Adenoviruses Induce Human Plasmacytoid Dendritic Cell Activation and Apoptosis. Viruses 2021; 13:1699. [PMID: 34578281 PMCID: PMC8472521 DOI: 10.3390/v13091699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Following repeat exposure to many human adenoviruses (HAdVs), most adults harbour long-lived B- and T-cell responses. Combined, this response typically protects us for years from re-infection by the same HAdV type. In spite of these immune responses, some HAdV types are associated with persistent infections that constitute a life-threatening risk when an individual's T-cell response is compromised. By contrast, patients with B-cell deficiencies do not appear to be at a greater risk of HAdV disease. This dichotomy begs the question of the secondary role of anti-HAdV antibodies during host defence. In this study, we explored IgG-complexed (IC)-HAdV5 and primary human plasmacytoid dendritic cell (pDC) interactions. We found that IC-HAdV5 are efficiently internalized in pDCs, stimulate their activation through TLR9 signalling, and cause apoptosis. These data may help reconcile the enigma of robust immune response to HAdVs, while concurrently allowing persistence.
Collapse
Affiliation(s)
- Thi Thu Phuong Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 34090 Montpellier, France; (T.T.P.T.); (T.H.T.)
- Department of Life Sciences, University of Science and Technology of Hanoi Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Tuan Hiep Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 34090 Montpellier, France; (T.T.P.T.); (T.H.T.)
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi 11313, Vietnam
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 34090 Montpellier, France; (T.T.P.T.); (T.H.T.)
| |
Collapse
|
40
|
Zhu XX, Yin XQ, Hei GZ, Wei R, Guo Q, Zhao L, Zhang Z, Chu C, Fu XX, Xu K, Li X. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol Hum Reprod 2021; 27:6317516. [PMID: 34240166 PMCID: PMC8355038 DOI: 10.1093/molehr/gaab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Dendritic cells (DCs) are thought to confer fetal–maternal immunotolerance and play a crucial role in ensuring a successful pregnancy. A decrease of plasmacytoid dendritic cells (pDCs) was found to be involved in RSA, but the underlying mechanisms of decreased pDC in RSA remain unclear. MicroRNAs (miRNAs) play critical roles in RSA as well as the development, differentiation and functional regulation of pDCs; however, the regulatory effect of miRNAs on pDC in RSA has not been fully investigated. Here we demonstrated that both the proportion of pDC and signal transducer and activator of transcription (STAT3)/transcription factor 4 (Tcf4/E2-2) expression decreased in the peripheral blood mononuclear cells and decidua of patients with RSA compared to those with normal pregnancy (NP), and there was a significantly positive correlation between pDC and STAT3 mRNA. MiRNA microarray assay and quantitative reverse transcription PCR results showed that miR-6875-5p expression was markedly increased in women with RSA and negatively correlated with mRNA expression level of STAT3. Up-regulated miR-6875-5p could sensitively discriminate patients with RSA from NP subjects. Overexpression of miR-6875-5p significantly down-regulated the mRNA expression of STAT3 and E2-2 as well as the protein and phosphorylation level of STAT3, while miR-6875-5p knockdown showed opposite results. Dual luciferase reporter verified that miR-6875-5p regulated STAT3 expression by directly binding to its 3'untranslated region. Overall, our results suggested that increased miR-6875-5p is involved in RSA by decreasing the differentiation of pDCs via inhibition of the STAT3/E2-2 signaling pathway. miR-6875-5p may be explored as a promising diagnostic marker and therapeutic target for RSA.
Collapse
Affiliation(s)
- Xiao-Xiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xun-Qiang Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guo-Zhen Hei
- Shandong Province Maternal and Child Health Care Hospital, Jinan, Shandong, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao-Xiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Ke Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
41
|
Lancien M, Bienvenu G, Salle S, Gueno L, Feyeux M, Merieau E, Remy S, Even A, Moreau A, Molle A, Fourgeux C, Coulon F, Beriou G, Bouchet-Delbos L, Chiffoleau E, Kirstetter P, Chan S, Kerfoot SM, Abdu Rahiman S, De Simone V, Matteoli G, Boncompain G, Perez F, Josien R, Poschmann J, Cuturi MC, Louvet C. Dendritic Cells Require TMEM176A/B Ion Channels for Optimal MHC Class II Antigen Presentation to Naive CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:421-435. [PMID: 34233909 DOI: 10.4049/jimmunol.2000498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.
Collapse
Affiliation(s)
- Melanie Lancien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Geraldine Bienvenu
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sonia Salle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Lucile Gueno
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Emmanuel Merieau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Severine Remy
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Amandine Even
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Aurelie Moreau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Alice Molle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Flora Coulon
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Gaelle Beriou
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Saeed Abdu Rahiman
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gaelle Boncompain
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Franck Perez
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Regis Josien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Maria Cristina Cuturi
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cedric Louvet
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France;
| |
Collapse
|
42
|
Cheng W, Yu TT, Tang AP, He Young K, Yu L. Blastic Plasmacytoid Dendritic Cell Neoplasm: Progress in Cell Origin, Molecular Biology, Diagnostic Criteria and Therapeutic Approaches. Curr Med Sci 2021; 41:405-419. [PMID: 34218354 DOI: 10.1007/s11596-021-2393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy characterized by recurrent skin nodules, an aggressive clinical course with rapid involvement of hematological organs, and a poor prognosis with poor overall survival. BPDCN is derived from plasmacytoid dendritic cells (pDCs) and its pathogenesis is unclear. The tumor cells show aberrant expression of CD4, CD56, interleukin-3 receptor alpha chain (CD123), blood dendritic cell antigen 2 (BDCA 2/CD303), blood dendritic cell antigen 4 (BDCA4) and transcription factor (E protein) E2-2 (TCF4). The best treatment drugs are based on experience by adopting those used for either leukemia or lymphoma. Relapse with drug resistance generally occurs quickly. Stem cell transplantation after the first complete remission is recommended and tagraxofusp is the first targeted therapy. In this review, we summarize the differentiation of BPDCN from its cell origin, its connection with normal pDCs, clinical characteristics, genetic mutations and advances in treatment of BPDCN. This review provides insights into the mechanisms of and new therapeutic approaches for BPDCN.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Tian Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ai-Ping Tang
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ken He Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, 27710, USA
| | - Li Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
43
|
Lee MYH, Upadhyay AA, Walum H, Chan CN, Dawoud RA, Grech C, Harper JL, Karunakaran KA, Nelson SA, Mahar EA, Goss KL, Carnathan DG, Cervasi B, Gill K, Tharp GK, Wonderlich ER, Velu V, Barratt-Boyes SM, Paiardini M, Silvestri G, Estes JD, Bosinger SE. Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathog 2021; 17:e1009674. [PMID: 34181694 PMCID: PMC8270445 DOI: 10.1371/journal.ppat.1009674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.
Collapse
Affiliation(s)
- Michelle Y.-H. Lee
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Hasse Walum
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Chi N. Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Reem A. Dawoud
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Christine Grech
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Sydney A. Nelson
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ernestine A. Mahar
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kyndal L. Goss
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Diane G. Carnathan
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Kiran Gill
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | | | - Vijayakumar Velu
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Steven E. Bosinger
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis. Blood Adv 2021; 5:1540-1551. [PMID: 33687433 DOI: 10.1182/bloodadvances.2020003359] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.
Collapse
|
45
|
Yoshikawa G, Miyazaki K, Ogata H, Miyazaki M. The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System. Int J Mol Sci 2021; 22:ijms22115888. [PMID: 34072618 PMCID: PMC8199221 DOI: 10.3390/ijms22115888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity relies on the V(D)J DNA recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes, which enables the recognition of highly diverse antigens and the elicitation of antigen-specific immune responses. This process is mediated by recombination-activating gene (Rag) 1 and Rag2 (Rag1/2), whose expression is strictly controlled in a cell type-specific manner; the expression of Rag1/2 genes represents a hallmark of lymphoid lineage commitment. Although Rag genes are known to be evolutionally conserved among jawed vertebrates, how Rag genes are regulated by lineage-specific transcription factors (TFs) and how their regulatory system evolved among vertebrates have not been fully elucidated. Here, we reviewed the current body of knowledge concerning the cis-regulatory elements (CREs) of Rag genes and the evolution of the basic helix-loop-helix TF E protein regulating Rag gene CREs, as well as the evolution of the antagonist of this protein, the Id protein. This may help to understand how the adaptive immune system develops along with the evolution of responsible TFs and enhancers.
Collapse
Affiliation(s)
- Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (H.O.); (M.M.)
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
- Correspondence: (H.O.); (M.M.)
| |
Collapse
|
46
|
Leylek R, Alcántara-Hernández M, Granja JM, Chavez M, Perez K, Diaz OR, Li R, Satpathy AT, Chang HY, Idoyaga J. Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Rep 2021; 32:108180. [PMID: 32966789 PMCID: PMC7546547 DOI: 10.1016/j.celrep.2020.108180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function. Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis. Human dendritic cells (DCs) orchestrate immune responses by a division of labor between functionally specialized subsets; however, the transcriptional basis of this heterogeneity is poorly understood. Using ATAC-seq, Leylek et al. profile the chromatin landscape of human DC subsets, providing insight into the underlying regulatory mechanisms that modulate their function.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey M Granja
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly Perez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar R Diaz
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Shariq M, Sahasrabuddhe V, Krishna S, Radha S, Nruthyathi, Bellampalli R, Dwivedi A, Cheramangalam R, Reizis B, Hébert J, Ghosh HS. Adult neural stem cells have latent inflammatory potential that is kept suppressed by Tcf4 to facilitate adult neurogenesis. SCIENCE ADVANCES 2021; 7:eabf5606. [PMID: 34020954 PMCID: PMC8139598 DOI: 10.1126/sciadv.abf5606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 02/04/2025]
Abstract
Inflammation is known to adversely affect adult neurogenesis, wherein the source of inflammation is largely thought to be extraneous to the neurogenic niche. Here, we demonstrate that the adult hippocampal neural progenitors harbor an inflammatory potential that is proactively suppressed by transcription factor 4 (Tcf4). Deletion of Tcf4 in hippocampal nestin-expressing progenitors causes loss of proliferative capacity and acquisition of myeloid inflammatory properties. This transformation abolishes their differentiation potential and causes production of detrimental factors that adversely affect niche cells, causing inflammation in the dentate gyrus. Thus, on one hand, Tcf4 deletion causes abrogation of proliferative progenitors leading to reduction of adult neurogenesis, while on the other, their accompanying inflammatory transformation inflicts inflammation in the niche. Taken together, we provide the first evidence for a latent inflammatory potential of adult hippocampal neural progenitors and identify Tcf4 as a critical regulator that facilitates adult neurogenesis via proactive suppression of this detrimental potential.
Collapse
Affiliation(s)
- Mohammad Shariq
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Vinaya Sahasrabuddhe
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Sreevatsan Krishna
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Swathi Radha
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Nruthyathi
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Ravishankara Bellampalli
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Anukriti Dwivedi
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Rajit Cheramangalam
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jean Hébert
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Hiyaa S Ghosh
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India.
| |
Collapse
|
48
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
49
|
Zhang S, Coughlan HD, Ashayeripanah M, Seizova S, Kueh AJ, Brown DV, Cao W, Jacquelot N, D'Amico A, Lew AM, Zhan Y, Tonkin CJ, Villadangos JA, Smyth GK, Chopin M, Nutt SL. Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Sci Immunol 2021; 6:6/58/eabf4432. [PMID: 33811060 DOI: 10.1126/sciimmunol.abf4432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The functional diversification of dendritic cells (DCs) is a key step in establishing protective immune responses. Despite the importance of DC lineage diversity, its genetic basis is not fully understood. The transcription factor DC-SCRIPT is expressed in conventional DCs (cDCs) and their committed bone marrow progenitors but not in plasmacytoid DCs (pDCs). We show that mice lacking DC-SCRIPT displayed substantially impaired development of IRF8 (interferon regulatory factor 8)-dependent cDC1, whereas cDC2 numbers increased marginally. The residual DC-SCRIPT-deficient cDC1s had impaired capacity to capture and present cell-associated antigens and to secrete IL-12p40, two functional hallmarks of this population. Genome-wide mapping of DC-SCRIPT binding and gene expression analyses revealed a key role for DC-SCRIPT in maintaining cDC1 identity via the direct regulation of cDC1 signature genes, including Irf8 Our study reveals DC-SCRIPT to be a critical component of the gene regulatory program shaping the functional attributes of cDC1s.
Collapse
Affiliation(s)
- Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah D Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Simona Seizova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel V Brown
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Angela D'Amico
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
50
|
Yun TJ, Igarashi S, Zhao H, Perez OA, Pereira MR, Zorn E, Shen Y, Goodrum F, Rahman A, Sims PA, Farber DL, Reizis B. Human plasmacytoid dendritic cells mount a distinct antiviral response to virus-infected cells. Sci Immunol 2021; 6:6/58/eabc7302. [PMID: 33811059 DOI: 10.1126/sciimmunol.abc7302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) can rapidly produce interferons and other soluble factors in response to extracellular viruses or virus mimics such as CpG-containing DNA. pDCs can also recognize live cells infected with certain RNA viruses, but the relevance and functional consequences of such recognition remain unclear. We studied the response of primary DCs to the prototypical persistent DNA virus, human cytomegalovirus (CMV). Human pDCs produced high amounts of type I interferon (IFN-I) when incubated with live CMV-infected fibroblasts but not with free CMV; the response involved integrin-mediated adhesion, transfer of DNA-containing virions to pDCs, and the recognition of DNA through TLR9. Compared with transient polyfunctional responses to CpG or free influenza virus, pDC response to CMV-infected cells was long-lasting, dominated by the production of IFN-I and IFN-III, and lacked diversification into functionally distinct populations. Similarly, pDC activation by influenza-infected lung epithelial cells was highly efficient, prolonged, and dominated by interferon production. Prolonged pDC activation by CMV-infected cells facilitated the activation of natural killer cells critical for CMV control. Last, patients with CMV viremia harbored phenotypically activated pDCs and increased circulating IFN-I and IFN-III. Thus, recognition of live infected cells is a mechanism of virus detection by pDCs that elicits a unique antiviral immune response.
Collapse
Affiliation(s)
- Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Suzu Igarashi
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Haoquan Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcus R Pereira
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Adeeb Rahman
- Precision Immunology Institute, Department of Genetics and Genomic Sciences, Tisch Cancer Institute, and Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter A Sims
- Department of Systems Biology, Department of Biochemistry & Molecular Biophysics, and Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Surgery and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|