1
|
Xu H, Fu X, Wang S, Ge Y, Zhang L, Li J, Zhang F, Yang Y, He Y, Sun Y, Gao A. Immunoglobulin-like transcript 5 polarizes M2-like tumor-associated macrophages for immunosuppression in non-small cell lung cancer. Int J Cancer 2025; 156:2225-2236. [PMID: 39910654 PMCID: PMC11970544 DOI: 10.1002/ijc.35360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have shifted the treatment paradigm of non-small cell lung cancer (NSCLC) over the last decade. Despite notable therapeutic advancements in responders, the response rate remains limited owing to the immunosuppressive tumor microenvironment (TME). Therefore, to improve the efficacy of ICIs, it is essential to explore alternative targets or signals that mediate immunosuppression. Immunoglobulin-like transcript (ILT) 5 is a negative regulator of immune activation in myeloid cells. However, the expression and function of ILT5 in NSCLC remain unknown. Here, we found that ILT5 was highly expressed in tumor-associated macrophages (TAMs) of NSCLC tissues and predicted poor patient survival. Functionally, ILT5 induces the M2-like polarization of TAMs, which subsequently decreases the density of T cells, and increases FOXP3+T cell accumulation, leading to an immunosuppressive TME. The combination of ILT5 expression with M2-like TAM density is a more reliable biomarker of patient survival than ILT5 expression alone. ILT5 knockout mitigates the reprogramming of TAM and T cell subsets toward immunosuppressive phenotypes and inhibits tumor growth in vivo. These findings highlight that ILT5 is a potential immunotherapeutic target and a promising prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Huijun Xu
- Jinan Central HospitalShandong UniversityJinanShandongChina
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Xuebing Fu
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Yihui Ge
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Lu Zhang
- Department of OncologyThe Fourth People's Hospital of ZiboZiboShandongChina
| | - Juan Li
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Fang Zhang
- Department of OncologyCentral Hospital affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yang Yang
- Department of Ultrasound, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Yifu He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
2
|
Xu Y, Kang K, Coakley BA, Eisenstein S, Parveen A, Mai S, Wang YS, Zheng J, Boral D, Mai J, Pan W, Zhang L, Aaronson SA, Fang B, Divino C, Zhang B, Song WM, Hung MC, Pan PY, Chen SH. Modulation of tumor inflammatory signaling and drug sensitivity by CMTM4. EMBO J 2025; 44:1866-1883. [PMID: 39948411 PMCID: PMC11914105 DOI: 10.1038/s44318-024-00330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 03/19/2025] Open
Abstract
Although inflammation has been widely associated with cancer development, how it affects the outcomes of immunotherapy and chemotherapy remains incompletely understood. Here, we show that CKLF-like MARVEL transmembrane domain-containing member 4 (CMTM4) is highly expressed in multiple human and murine cancer types including Lewis lung carcinoma, triple-negative mammary cancer and melanoma. In lung carcinoma, loss of CMTM4 significantly reduces tumor growth and impairs NF-κB, mTOR, and PI3K/Akt pathway activation. Furthermore, we demonstrate that CMTM4 can regulate epidermal growth factor (EGF) signaling post-translationally by promoting EGFR recycling and preventing its Rab-dependent degradation. Consequently, CMTM4 knockout sensitizes human lung tumor cells to EGFR inhibitors. In addition, CMTM4 knockout tumors stimulated with EGF show a decreased ability to produce inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF), leading to decreased recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and therefore establishing a less suppressive tumor immune environment in both lung and mammary cancers. We also present evidence indicating that CMTM4-targeting siRNA-loaded liposomes reduce lung tumor growth in vivo and prolong animal survival. Knockout of CMTM4 enhances immune checkpoint blockade or chemotherapy to further reduce lung tumor growth. These data suggest that CMTM4 represents a novel target for the inhibition of tumor inflammation, and improvement of the immune response and tumor drug sensitivity.
Collapse
Affiliation(s)
- Yitian Xu
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kyeongah Kang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Brian A Coakley
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel Eisenstein
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arshiya Parveen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Sunny Mai
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yuan Shuo Wang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Junjun Zheng
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Debasish Boral
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - William Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Licheng Zhang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Celia Divino
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Ying Pan
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York, NY, 10065, USA.
- Graduate and professional school at Texas A&M University, 400 Bizzell St., College Station, TX, 77840, USA.
| |
Collapse
|
3
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. Vascular smooth muscle cell plasticity in the tumor microenvironment. Cancer Commun (Lond) 2025; 45:167-171. [PMID: 39648671 PMCID: PMC11833666 DOI: 10.1002/cac2.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Affiliation(s)
- Caitlin F. Bell
- Department of MedicineDivision of Cardiovascular MedicineStanford University School of MedicineStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of MedicineDivision of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Richard A. Baylis
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineDivision of CardiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nicolas G. Lopez
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Wei Feng Ma
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Medical Scientist Training ProgramUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Hua Gao
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Fudi Wang
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Sharika Bamezai
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Changhao Fu
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yoko Kojima
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Shaunak S. Adkar
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Lingfeng Luo
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Clint L. Miller
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nicholas J. Leeper
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of SurgeryDivision of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
4
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
5
|
Jiang Z, Huang Q, Chang Y, Qiu Y, Cheng H, Yang M, Ruan S, Ji S, Sun J, Wang Z, Xu S, Liang R, Dai X, Wu K, Li B, Li D, Zhao H. LILRB2 promotes immune escape in breast cancer cells via enhanced HLA-A degradation. Cell Oncol (Dordr) 2024; 47:1679-1696. [PMID: 38656573 DOI: 10.1007/s13402-024-00947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Increased expression of leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) is associated with immune evasion in breast cancer (BC). The aim of this study to elucidate the role of LILRB2 in BC progression. METHODS LILRB2 expression in tumor tissues was detected by immunohistochemical staining. Human leukocyte antigen A (HLA-A) expression in BC cells was detected by Western blotting, and HLA-A ubiquitination was detected by immunoprecipitation and histidine pulldown assay. An in-situ tumor model was established in nude BALB/c mice to verify the role of LILRB2 in immune escape. Finally, the functions and potential mechanisms of LILRB2 in BC progression were explored using in silico data. RESULTS LILRB2 was upregulated in BC tissues and cells, and correlated positively with poor prognosis. LILRB2 promoted BC progression by downregulating HLA-A expression. Mechanistically, LILRB2 facilitates the ubiquitination and subsequent degradation of HLA-A by promoting the interaction between the ubiquitin ligase membrane-associated ring finger protein 9 (MARCH9) and HLA-A. In syngeneic graft mouse models, LILRB2-expressing BC cells evaded CD8 + T cells and inhibited the secretion of cytokines by the cytotoxic CD8 + T cells. CONCLUSION LILRB2 downregulates HLA-A to promote immune evasion in BC cells and is a promising new target for BC treatment.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianru Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Chang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Qiu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Cheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Mengdi Yang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunyi Ruan
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suyuan Ji
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
| | - Zhiyu Wang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
| | - Shengyuan Xu
- College of Arts and Science, New York University, New York, USA
| | - Rui Liang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China.
| |
Collapse
|
6
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. BST2 induces vascular smooth muscle cell plasticity and phenotype switching during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612298. [PMID: 39314286 PMCID: PMC11418980 DOI: 10.1101/2024.09.10.612298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.
Collapse
|
7
|
Huang C, Zhang L, Shen P, Wu Z, Li G, Huang Y, Ao T, Luo L, Hu C, Wang N, Quzhuo R, Tian L, Huangfu C, Liao Z, Gao Y. Cannabidiol mitigates radiation-induced intestine ferroptosis via facilitating the heterodimerization of RUNX3 with CBFβ thereby promoting transactivation of GPX4. Free Radic Biol Med 2024; 222:288-303. [PMID: 38830513 DOI: 10.1016/j.freeradbiomed.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor β (CBFβ) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
Collapse
Affiliation(s)
- Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liangliang Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zekun Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yijian Huang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lin Luo
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Changkun Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Renzeng Quzhuo
- Department of General Internal Medicine, Naqu People's Hospital, Nagqu, Xizang Autonomous Region, 852007, China
| | - Lishan Tian
- Navy Qingdao Special Service Recuperation Center, Qingdao, 266071, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
8
|
Rafiei A, Gualandi M, Yang CL, Woods R, Kumar A, Brunner K, Sigrist J, Ebersbach H, Coats S, Renner C, Marroquin Belaunzaran O. IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity. Cancers (Basel) 2024; 16:2902. [PMID: 39199672 PMCID: PMC11352577 DOI: 10.3390/cancers16162902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Richard Woods
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | | | - John Sigrist
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | - Steve Coats
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | - Christoph Renner
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
9
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
10
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Cen Q, Chen J, Guo J, Chen M, Wang H, Wu S, Zhang H, Xie X, Li Y. CLPs-miR-103a-2-5p inhibits proliferation and promotes cell apoptosis in AML cells by targeting LILRB3 and Nrf2/HO-1 axis, regulating CD8 + T cell response. J Transl Med 2024; 22:278. [PMID: 38486250 PMCID: PMC10938737 DOI: 10.1186/s12967-024-05070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND LILRB3, a member of the leukocyte immunoglobulin-like receptor B (LILRB) family, has immunosuppressive functions and directly regulates cancer development, which indicates that LILRB3 is an attractive target for cancer diagnosis and therapy. Novel therapeutic treatments for acute myeloid leukemia (AML) are urgent and important, and RNA therapeutics including microRNAs (miRNAs) could be an effective option. Here, we investigate the role of dysregulated miRNA targeting LILRB3 in the AML microenvironment. METHODS Potential miRNAs binding to the 3'-untranslated region (3'-UTR) of the LILRB3 mRNA were predicted by bioinformatics websites. Then, we screened miRNAs targeting LILRB3 by quantitative real-time PCR, and the dual luciferase reporter assay. The expression of LILRB3 and microRNA (miR)-103a-2-5p in AML were determined and then their interactions were also analyzed. In vitro, the effects of miR-103a-2-5p were determined by CCK8, colony formation assay, and transwell assay, while cell apoptosis and cell cycle were analyzed by flow cytometry. Cationic liposomes (CLPs) were used for the delivery of miR-103a-2-5p in the AML mouse model, which was to validate the potential roles of miR-103a-2-5p in vivo. RESULTS LILRB3 was upregulated in AML cells while miR-103a-2-5p was dramatically downregulated. Thus, a negative correlation was found between them. MiR-103a-2-5p directly targeted LILRB3 in AML cells. Overexpressed miR-103a-2-5p significantly suppressed the mRNA and protein levels of LILRB3, thereby inhibiting AML cell growth and reducing CD8 + T cell apoptosis. In addition, overexpressed miR-103a-2-5p reduced both the relative expression of Nrf2/HO-1 pathway-related proteins and the ratio of GSH/ROS, leading to the excessive intracellular ROS that may promote AML cell apoptosis. In the mouse model, the delivery of miR-103a-2-5p through CLPs could inhibit tumor growth. CONCLUSIONS MiR-103a-2-5p serves as a tumor suppressor that could inhibit AML cell proliferation and promote their apoptosis by downregulating LILRB3 expression, suppressing the Nrf2/HO-1 axis, and reducing the ratio of GSH/ROS. Besides, our findings indicate that miR-103a-2-5p may enhance the CD8 + T cell response by inhibiting LILRB3 expression. Therefore, the delivery of miR-103a-2-5p through CLPs could be useful for the treatment of AML.
Collapse
Affiliation(s)
- Qingyan Cen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jiaxin Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Mu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Suwan Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Nechanitzky R, Ramachandran P, Nechanitzky D, Li WY, Wakeham AC, Haight J, Saunders ME, Epelman S, Mak TW. CaSSiDI: novel single-cell "Cluster Similarity Scoring and Distinction Index" reveals critical functions for PirB and context-dependent Cebpb repression. Cell Death Differ 2024; 31:265-279. [PMID: 38383888 PMCID: PMC10923835 DOI: 10.1038/s41418-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada.
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Wanda Y Li
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
- Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Pathology Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Kirschenbaum D, Xie K, Ingelfinger F, Katzenelenbogen Y, Abadie K, Look T, Sheban F, Phan TS, Li B, Zwicky P, Yofe I, David E, Mazuz K, Hou J, Chen Y, Shaim H, Shanley M, Becker S, Qian J, Colonna M, Ginhoux F, Rezvani K, Theis FJ, Yosef N, Weiss T, Weiner A, Amit I. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 2024; 187:149-165.e23. [PMID: 38134933 DOI: 10.1016/j.cell.2023.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.
Collapse
Affiliation(s)
- Daniel Kirschenbaum
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Florian Ingelfinger
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Kathleen Abadie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Pascale Zwicky
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Yofe
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Kfir Mazuz
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soeren Becker
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Assaf Weiner
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
14
|
Mai S, Hodges A, Chen HM, Zhang J, Wang YL, Liu Y, Nakatsu F, Wang X, Fang J, Xu Y, Davidov V, Kang K, Pingali SR, Ganguly S, Suzuki M, Konopleva M, Prinzing B, Zu Y, Gottschalk S, Lu Y, Chen SH, Pan PY. LILRB3 Modulates Acute Myeloid Leukemia Progression and Acts as an Effective Target for CAR T-cell Therapy. Cancer Res 2023; 83:4047-4062. [PMID: 38098451 PMCID: PMC11932437 DOI: 10.1158/0008-5472.can-22-2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 12/18/2023]
Abstract
Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.
Collapse
Affiliation(s)
- Sunny Mai
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| | - Hui-Ming Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Jilu Zhang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yi-Ling Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yongbin Liu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Fumiko Nakatsu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Xiaoxuan Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Jing Fang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yitian Xu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Vitaliy Davidov
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| | - Kyeongah Kang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Sai Ravi Pingali
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, TX
| | - Siddhartha Ganguly
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, TX
| | - Masataka Suzuki
- Center for Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Youli Zu
- Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston Texas 77030
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Yong Lu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York, NY 10065
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| |
Collapse
|
15
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, Dodd D, Francis C, Alzate-Correa D, Ortega-Pineda L, Lemmerman L, Rincon-Benavides MA, Dathathreya K, Lawrence W, Ott N, Zhang J, Deng B, Wang S, Santander SP, McComb DW, Reategui E, Palmer AF, Carson WE, Higuita-Castro N, Gallego-Perez D. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci 2023; 11:6834-6847. [PMID: 37646133 PMCID: PMC10591940 DOI: 10.1039/d3bm00573a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.
Collapse
Affiliation(s)
| | - Ana I Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Daniel Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Diego Alzate-Correa
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Luke Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Maria A Rincon-Benavides
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - William Lawrence
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Neil Ott
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Binbin Deng
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
| | - Shipeng Wang
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Sandra P Santander
- Juan N. Corpas University Foundation, Center of Phytoimmunomodulation Department of Medicine, Bogota, Colombia
| | - David W McComb
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
- The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 43210, USA
| | - Eduardo Reategui
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Andre F Palmer
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
- The Ohio State University, Department of Neurological Surgery, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Gao Y, Yuan Y, Wen S, Chen Y, Zhang Z, Feng Y, Jiang B, Ma S, Hu R, Fang C, Ruan X, Yuan Y, Fang X, Luo C, Meng Z, Wang X, Guo X. Dual role of ANGPTL8 in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis. Oncogenesis 2023; 12:26. [PMID: 37188659 PMCID: PMC10185523 DOI: 10.1038/s41389-023-00473-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The interplay between hepatocellular carcinoma (HCC) cells and the tumor microenvironment is essential for hepatocarcinogenesis, but their contributions to HCC development are incompletely understood. We assessed the role of ANGPTL8, a protein secreted by HCC cells, in hepatocarcinogenesis and the mechanisms through which ANGPTL8 mediates crosstalk between HCC cells and tumor-associated macrophages. Immunohistochemical, Western blotting, RNA-Seq, and flow cytometry analyses of ANGPTL8 were performed. A series of in vitro and in vivo experiments were conducted to reveal the role of ANGPTL8 in the progression of HCC. ANGPTL8 expression was positively correlated with tumor malignancy in HCC, and high ANGPTL8 expression was associated with poor overall survival (OS) and disease-free survival (DFS). ANGPTL8 promoted HCC cell proliferation in vitro and in vivo, and ANGPTL8 KO inhibited the development of HCC in both DEN-induced and DEN-plus-CCL4-induced mouse HCC tumors. Mechanistically, the ANGPTL8-LILRB2/PIRB interaction promoted polarization of macrophages to the immunosuppressive M2 phenotype in macrophages and recruited immunosuppressive T cells. In hepatocytes, ANGPTL8-mediated stimulation of LILRB2/PIRB regulated the ROS/ERK pathway and upregulated autophagy, leading to the proliferation of HCC cells. Our data support the notion that ANGPTL8 has a dual role in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis.
Collapse
Grants
- 82073232, 82101632, 81700769, 81641028 National Natural Science Foundation of China (National Science Foundation of China)
- The Hubei Science & Technology Department Foundation (2020CFB558, 2018ACA162), the Key Projects of Hubei Education (D20202103), the Department of Biomedical Research Foundation, Hubei University of Medicine (HBMUPI201803), the Department of Education Cultivating Project for Young Scholars at Hubei University of Medicine (2018QDJZR02), the Innovative Research Program for Graduates of Hubei University of Medicine (YC2020039, YC2020002, YC2019003, YC2019008), the Advantages Discipline Group (medicine) Project in Higher Education of Hubei Province (2022XKQT3,2022XKQY1) and the Scientific Research Project of Shiyan Science and Technology Bureau, 21Y06, 21Y38).Hubei Province’s Outstanding Medical Academic Leader Program.
Collapse
Affiliation(s)
- Yujiu Gao
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
- Department of Nephrology, Taihe Hospital, 442000, Shiyan, China
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China
| | - Yue Yuan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
- College of Pharmacy, Hubei University of Medicine, 442000, Shiyan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Shu Wen
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Yanghui Chen
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Zongli Zhang
- Institute of Pediatric Disease, Taihe Hospital, 442000, Shiyan, China
| | - Ying Feng
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, 442000, Shiyan, China
| | - Shinan Ma
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Rong Hu
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Chen Fang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Xuzhi Ruan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Yahong Yuan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Xinggang Fang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Chao Luo
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, 442000, Shiyan, China.
| | - Xiaoli Wang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China.
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China.
| | - Xingrong Guo
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China.
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China.
| |
Collapse
|
19
|
Li L, Mou Y, Zhai Q, Yan C, Zhang X, Du M, Li Y, Wang Q, Xiao Z. PirB negatively regulates the inflammatory activation of astrocytes in a mouse model of sleep deprivation. Neuropharmacology 2023; 235:109571. [PMID: 37146940 DOI: 10.1016/j.neuropharm.2023.109571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Reactive astrocytes play a potential regulatory role in sleep deprivation (SD). Paired immunoglobulin-like receptor B (PirB) is expressed in reactive astrocytes, suggesting that PirB may participate in regulating the inflammatory response of astrocytes. We used lentiviral and adeno-associated viral approaches to interfere with the expression of PirB in vivo and in vitro. C57BL/6 mice were sleep deprived for 7 days and neurological function was measured via behavioral tests. We found that overexpressed PirB in SD mice could decrease the number of neurotoxic reactive astrocytes, alleviate cognitive deficits, and promote reactive astrocytes tended to be neuroprotective state. IL-1α, TNFα, and C1q were used to induce neurotoxic reactive astrocytes in vitro. Overexpression of PirB relieved the toxicity of neurotoxic astrocytes. Silencing PirB expression had the opposite effect and exacerbated the transition of reactive astrocytes to a neurotoxic state in vitro. Moreover, PirB-impaired astrocytes demonstrated STAT3 hyperphosphorylation which could be reversed by stattic (p-STAT3 inhibitor). Furthermore, Golgi-Cox staining confirmed that dendrite morphology defects and synapse-related protein were significantly increased in PirB-overexpressed SD mice. Our data demonstrated that SD induced neurotoxic reactive astrocytes and contributed to neuroinflammation and cognitive deficits. PirB performs a negative regulatory role in neurotoxic reactive astrocytes via the STAT3 signaling pathway in SD.
Collapse
Affiliation(s)
- Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yan Mou
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
20
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
21
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
22
|
Wang A, Kang X, Wang J, Zhang S. IFIH1/IRF1/STAT1 promotes sepsis associated inflammatory lung injury via activating macrophage M1 polarization. Int Immunopharmacol 2023; 114:109478. [PMID: 36462334 PMCID: PMC9709523 DOI: 10.1016/j.intimp.2022.109478] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND A growing body of research has shown that the phenotypic change in macrophages from M0 to M1 is essential for the start of the inflammatory process in septic acute respiratory distress syndrome (ARDS). Potential treatment targets might be identified with more knowledge of the molecular regulation of M1 macrophages in septic ARDS. METHODS A multi-microarray interrelated analysis of high-throughput experiments from ARDS patients and macrophage polarization was conducted to identify the hub genes associated with macrophage M1 polarization and septic ARDS. Lipopolysaccharide (LPS) and Poly (I:C) were utilized to stimulate bone marrow-derived macrophages (BMDMs) for M1-polarized macrophage model construction. Knock down of the hub genes on BMDMs via shRNAs was used to screen the genes regulating macrophage M1 polarization in vitro. The cecal ligation and puncture (CLP) mouse model was constructed in knockout (KO) mice and wild-type (WT) mice to explore whether the screened genes regulate macrophage M1 polarization in septic ARDS in vivo. ChIP-seq and further experiments on BMDMs were performed to investigate the molecular mechanism. RESULTS The bioinformatics analysis of gene expression profiles from a clinical cohort of 26 ARDS patients and macrophage polarization found that the 5 hub genes (IFIH1, IRF1, STAT1, IFIT3, GBP1) may have a synergistic effect on macrophage M1 polarization in septic ARDS. Further in vivo investigations indicated that IFIH1, STAT1 and IRF1 contribute to macrophage M1 polarization. The histological evaluation and immunohistochemistry of the lungs from the IRF1-/- and WT mice indicated that knockout of IRF1 markedly alleviated CLP-induced lung injury and M1-polarized infiltration. Moreover, the molecular mechanism investigations indicated that knockdown of IFIH1 markedly promoted IRF1 translocation into the nucleus. Knockout of IRF1 significantly decreases the expression of STAT1. ChIP-seq and PCR further confirmed that IRF1, as a transcription factor of STAT1, binds to the promoter region of STAT1. CONCLUSION IRF1 was identified as the key molecule that regulates macrophage M1polarization and septic ARDS development in vivo and in vitro. Moreover, as the adaptor in response to infection mimics irritants, IFIH1 promotes IRF1 (transcription factor) translocation into the nucleus to initiate STAT1 transcription.
Collapse
Affiliation(s)
- Ailing Wang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueli Kang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shi Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Corresponding author
| |
Collapse
|
23
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
24
|
Tan L, Shi G, Zhao J, Xia X, Li D, Wang S, Liang J, Hou Y, Dou H. MDSCs participate in the pathogenesis of diffuse pulmonary hemorrhage in murine lupus through mTOR-FoxO1 signaling. Biochem Biophys Rep 2022; 32:101351. [PMID: 36164563 PMCID: PMC9507990 DOI: 10.1016/j.bbrep.2022.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Junyu Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Saiwen Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
25
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
26
|
Chen G, Li X, Ji C, Liu P, Zhou L, Xu D, Wang D, Li J, Yu J. Early myeloid-derived suppressor cells accelerate epithelial-mesenchymal transition by downregulating ARID1A in luminal A breast cancer. Front Bioeng Biotechnol 2022; 10:973731. [PMID: 36329699 PMCID: PMC9623091 DOI: 10.3389/fbioe.2022.973731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Early myeloid-derived suppressor cells (eMDSCs) are a newly characterized subclass of MDSCs, which exhibit more potent immunosuppressive capacity than classical MDSCs. Previously, we found high eMDSCs infiltration was correlated with poor prognosis of breast cancer, though the regulatory mechanisms have not been fully understood. Here, we constructed a 21-gene signature to evaluate the status of eMDSCs infiltration within breast cancer tissues and found that highly infiltrated eMDSCs affected the prognosis of breast cancer patients, especially in luminal A subtype. We also found that eMDSCs promoted epithelial-mesenchymal transition (EMT) and accelerated cell migration and invasion in vitro. Meanwhile, eMDSCs significantly downregulated ARID1A expression in luminal A breast cancer, which was closely associated with EMT and was an important prognostic factor in breast cancer patients. Moreover, significant changes of EMT-related genes were detected in luminal A breast cancer cells after co-cultured with eMDSCs or ARID1A knock-down and overexpression of ARID1A significantly reversed this procedure. These results implied that eMDSCs might suppress the ARID1A expression to promote EMT in luminal A breast cancer cells, which might provide a new light on developing novel treatment regimens for relapsed luminal A breast cancer after conventional therapies.
Collapse
Affiliation(s)
- Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xingchen Li
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chenyan Ji
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
27
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
28
|
Su W, Liang L, Zhou L, Cao Y, Zhou X, Liu S, Wang Q, Zhang H. Macrophage Paired Immunoglobulin-Like Receptor B Deficiency Promotes Peripheral Atherosclerosis in Apolipoprotein E–Deficient Mice. Front Cell Dev Biol 2022; 9:783954. [PMID: 35321392 PMCID: PMC8936951 DOI: 10.3389/fcell.2021.783954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Peripheral atherosclerotic disease (PAD) is the narrowing or blockage of arteries that supply blood to the lower limbs. Given its complex nature, bioinformatics can help identify crucial genes involved in the progression of peripheral atherosclerosis. Materials and Methods: Raw human gene expression data for 462 PAD arterial plaque and 23 normal arterial samples were obtained from the GEO database. The data was analyzed using an integrated, multi-layer approach involving differentially-expressed gene analysis, KEGG pathway analysis, GO term enrichment analysis, weighted gene correlation network analysis, and protein-protein interaction analysis. The monocyte/macrophage-expressed leukocyte immunoglobulin-like receptor B2 (LILRB2) was strongly associated with the human PAD phenotype. To explore the role of the murine LILRB2 homologue PirB in vivo, we created a myeloid-specific PirB-knockout Apoe−/− murine model of PAD (PirBMΦKO) to analyze femoral atherosclerotic burden, plaque features of vulnerability, and monocyte recruitment to femoral atherosclerotic lesions. The phenotypes of PirBMΦKO macrophages under various stimuli were also investigated in vitro. Results:PirBMΦKO mice displayed increased femoral atherogenesis, a more vulnerable plaque phenotype, and enhanced monocyte recruitment into lesions. PirBMΦKO macrophages showed enhanced pro-inflammatory responses and a shift toward M1 over M2 polarization under interferon-γ and oxidized LDL exposure. PirBMΦKO macrophages also displayed enhanced efferocytosis and reduced lipid efflux under lipid exposure. Conclusion: Macrophage PirB reduces peripheral atherosclerotic burden, stabilizes peripheral plaque composition, and suppresses macrophage accumulation in peripheral lesions. Macrophage PirB inhibits pro-inflammatory activation, inhibits efferocytosis, and promotes lipid efflux, characteristics critical to suppressing peripheral atherogenesis.
Collapse
Affiliation(s)
- Wenhua Su
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Liwen Liang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
29
|
Pinho S, Wei Q, Maryanovich M, Zhang D, Balandrán JC, Pierce H, Nakahara F, Di Staulo A, Bartholdy BA, Xu J, Borger DK, Verma A, Frenette PS. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nat Cell Biol 2022; 24:290-298. [PMID: 35210567 PMCID: PMC8930732 DOI: 10.1038/s41556-022-00849-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Haematopoietic stem cells (HSCs) home to the bone marrow via, in part, interactions with vascular cell adhesion molecule-1 (VCAM1)1-3. Once in the bone marrow, HSCs are vetted by perivascular phagocytes to ensure their self-integrity. Here we show that VCAM1 is also expressed on healthy HSCs and upregulated on leukaemic stem cells (LSCs), where it serves as a quality-control checkpoint for entry into bone marrow by providing 'don't-eat-me' stamping in the context of major histocompatibility complex class-I (MHC-I) presentation. Although haplotype-mismatched HSCs can engraft, Vcam1 deletion, in the setting of haplotype mismatch, leads to impaired haematopoietic recovery due to HSC clearance by mononuclear phagocytes. Mechanistically, VCAM1 'don't-eat-me' activity is regulated by β2-microglobulin MHC presentation on HSCs and paired Ig-like receptor-B (PIR-B) on phagocytes. VCAM1 is also used by cancer cells to escape immune detection as its expression is upregulated in multiple cancers, including acute myeloid leukaemia (AML), where high expression associates with poor prognosis. In AML, VCAM1 promotes disease progression, whereas VCAM1 inhibition or deletion reduces leukaemia burden and extends survival. These results suggest that VCAM1 engagement regulates a critical immune-checkpoint gate in the bone marrow, and offers an alternative strategy to eliminate cancer cells via modulation of the innate immune tolerance.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan Carlos Balandrán
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Di Staulo
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Boris A. Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel K. Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
30
|
Chen HM, Sun L, Pan PY, Wang LH, Chen SH. Nutrient supplements from selected botanicals mediated immune modulation of the tumor microenvironment and antitumor mechanism. Cancer Immunol Immunother 2021; 70:3435-3449. [PMID: 33877384 DOI: 10.1007/s00262-021-02927-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Specific extracts of selected vegetables (SV) have been shown to benefit the survival of stage IIIb/IV non-small cell lung cancer patients in phase I/II studies and is currently in a phase III trial. However, the underlying mechanism of SV-mediated antitumor immune responses has not been elucidated. Our results indicate that SV modulated the NK and adoptive T cell immune responses in antitumor efficacy. Furthermore, antitumor effects of SV were also mediated by innate myeloid cell function, which requires both TLR and β-glucan signaling in a MyD88/TRIF and Dectin-1-dependent manner, respectively. Additionally, SV treatment reduced granulocytic myeloid-derived suppressor cell (MDSC) infiltration into the tumor and limited monocytic MDSC toward the M2-like functional phenotype. Importantly, SV treatment enhanced antigen-specific immune responses by augmenting the activation of antigen-specific TH1/TH17 cells in secondary lymphoid organs and proliferative response, as well as by reducing the Treg population in the tumor microenvironment, which was driven by SV-primed activated M-MDSC. Our results support the idea that SV can subvert immune-tolerance state in the tumor microenvironment and inhibit tumor growth. The present study suggests that features, such as easy accessibility, favorable clinical efficacy, no detectable side effects and satisfactory safety make SV a feasible, appealing and convincing adjuvant therapy for the treatment of cancer patients and prevent tumor recurrence and/or metastases.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA
| | - Linus Sun
- Department of Ophthalmology, Columbia University, New York, 10027, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medical Research Center, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA.
| |
Collapse
|
31
|
Fu H, Liu X, Jin L, Lang J, Hu Z, Mao W, Cheng C, Shou Q. Safflower yellow reduces DEN-induced hepatocellular carcinoma by enhancing liver immune infiltration through promotion of collagen degradation and modulation of gut microbiota. Food Funct 2021; 12:10632-10643. [PMID: 34585698 DOI: 10.1039/d1fo01321a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Safflower yellow (SY) is the main active ingredient isolated from the traditional Chinese medicine Carthamus tinctorius, which is a valuable natural edible pigment that is widely used to treat cerebrovascular and cardiovascular diseases. However, the effect of SY on hepatocellular carcinoma (HCC) remains unclear. In this study, we showed that SY decreased the degree of injury and inhibited the release of inflammatory factors in the liver of a diethylnitrosamine (DEN)-induced HCC mouse model. Flow cytometry and immunoblotting showed that SY increased the infiltration of CD8+ T cells and Gr-1+ macrophages to improve the immune microenvironment by affecting the expression of collagen fibers. Further cellular experiments showed that SY degraded the collagens in the liver cells through the TGF-β/Smad signalling pathway. SY also regulated the gut microbiota which may contribute to the immune microenvironment. In conclusion, SY exhibited a potent effect on the development of HCC by enhancing liver immune infiltration by promoting collagen degradation and modulating the gut microbiota. This study provides novel insights into the mechanism of SY as a candidate for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Huiying Fu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Xia Liu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Lu Jin
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Jiali Lang
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhiming Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | - Wen Mao
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Changpei Cheng
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiyang Shou
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| |
Collapse
|
32
|
Rowaiye AB, Asala T, Oli AN, Uzochukwu IC, Akpa A, Esimone CO. The Activating Receptors of Natural Killer Cells and Their Inter-Switching Potentials. Curr Drug Targets 2021; 21:1733-1751. [PMID: 32914713 DOI: 10.2174/1389450121666200910160929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
The global incidence of cancer is on the increase and researchers are prospecting for specific and non-selective therapies derived from the immune system. The killer activating receptors of NK cells are known to be involved in immunosurveillance against tumor and virally-infected cells. These receptors belong to two main categories, namely the immunoglobulin like and C-lectin like families. Though they have different signal pathways, all the killer activating receptors have similar effector functions which include direct cytotoxicity and the release of inflammatory cytokines such as IFN-gamma and TNF-alpha. To transduce signals that exceed the activation threshold for cytotoxicity, most of these receptors require synergistic effort. This review profiles 21 receptors: 13 immunoglobulin-like, 5 lectin-like, and 3 others. It critically explores their structural uniqueness, role in disease, respective transduction signal pathways and their status as current and prospective targets for cancer immunotherapy. While the native ligands of most of these receptors are known, much work is required to prospect for specific antibodies, peptides and multi-target small molecules with high binding affinities.
Collapse
Affiliation(s)
| | - Titilayo Asala
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Ikemefuna Chijioke Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Alex Akpa
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Charles Okechukwu Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| |
Collapse
|
33
|
Increased expression of IFI16 predicts adverse prognosis in multiple myeloma. THE PHARMACOGENOMICS JOURNAL 2021; 21:520-532. [PMID: 33712724 DOI: 10.1038/s41397-021-00230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells and does not have sufficient prognostic indicators. Interferon gamma inducible protein 16 (IFI16) plays a crucial role in B-cell differentiation. Several studies have shown that IFI16 predicted prognosis in many cancers. However, the relationship between MM prognosis and IFI16 expression has not been studied. In our study, we analyzed the prognostic role of IFI16 expression and explored the possible mechanism in MM progression by using 4498 myeloma patients and 52 healthy donors from 13 independent gene expression omnibus (GEO) datasets. The IFI16 expression increased with myeloma progression, ISS stage, 1q21 amplification, and relapse (all P < 0.01). MM patients with higher IFI16 expression had shorter survival in six datasets (all P < 0.05). Furthermore, multivariate analysis indicated that enhanced IFI16 expression was an independent poor prognostic factor for EFS and OS (P = 0.007, 0.009, respectively). And PPI, GO, KEGG, and GSEA also confirmed that IFI16 promoted MM progression by participating in tumor-related pathways. In conclusion, our study confirmed that IFI16 was a poor prognostic biomarker in MM.
Collapse
|
34
|
Zhang Q, Zheng Y, Ning M, Li T. KLRD1, FOSL2 and LILRB3 as potential biomarkers for plaques progression in acute myocardial infarction and stable coronary artery disease. BMC Cardiovasc Disord 2021; 21:344. [PMID: 34271875 PMCID: PMC8285847 DOI: 10.1186/s12872-021-01997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) contributes to high mortality and morbidity and can also accelerate atherosclerosis, thus inducing recurrent event due to status changing of coronary artery walls or plaques. The research aimed to investigate the differentially expressed genes (DEGs), which may be potential therapeutic targets for plaques progression in stable coronary artery disease (CAD) and ST-elevated MI (STEMI). METHODS Two human datasets (GSE56885 and GSE59867) were analyzed by GEO2R and enrichment analysis was applied through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. To explore the seed genes, the protein-protein interaction (PPI) network was constructed and seed genes, as well as top30 ranking neighbours were screened out. To validate these findings, one human dataset GSE120521 was analyzed. Linear regression analysis and ROC curve were also performed to determine which seed genes above mentioned could be independent factors for plaques progression. Mice MI model and ELISA of seed genes were applied and ROC curve was also performed for in vivo validation. RESULTS 169 DEGs and 573 DEGs were screened out in GSE56885 and GSE59867, respectively. Utilizing GO and KEGG analysis, these DEGs mainly enriched in immune system response and cytokines interaction. PPI network analysis was carried out and 19 seed genes were screened out. To validate these findings, GSE120521 was analyzed and three genes were demonstrated to be targets for plaques progression and stable CAD progression, including KLRD1, FOSL2 and LILRB3. KLRD1 and LILRB3 were demonstrated to be high-expressed at 1d after MI compared to SHAM group and FOSL2 expression was low-expressed at 1d and 1w. To investigate the diagnostic abilities of seed genes, ROC analysis was applied and the AUCs of KLRD1, FOSL2 and LILRB3, were 0.771, 0.938 and 0.972, respectively. CONCLUSION This study provided the screened seed genes, KLRD1, FOSL2 and LILRB3, as credible molecular biomarkers for plaques status changing in CAD progression and MI recurrence. Other seed genes, such as FOS, SOCS3 and MCL1, may also be potential targets for treatment due to their special clinical value in cardiovascular diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Yue Zheng
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Meng Ning
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Tong Li
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China.
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China.
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Institute of Hepatobiliary Disease, Tianjin, China.
| |
Collapse
|
35
|
Thomas AM, Beskid NM, Blanchfield JL, Rosado AM, García AJ, Evavold BD, Babensee JE. Localized hydrogel delivery of dendritic cells for attenuation of multiple sclerosis in a murine model. J Biomed Mater Res A 2021; 109:1247-1255. [PMID: 33040412 PMCID: PMC11250987 DOI: 10.1002/jbm.a.37118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
In multiple sclerosis (MS), abnormally activated immune cells responsive to myelin proteins result in widespread damage throughout the central nervous system (CNS) and ultimately irreversible disability. Immunomodulation by delivering dendritic cells (DCs) utilizes a potent and rapid MS disease progression driver therapeutically. Here, we investigated delivering DCs for disease severity attenuation using an experimental autoimmune encephalomyelitis preclinical MS model. DCs treated with interleukin-10 (IL-10) (DC10s) were transplanted using in situ gelling poly(ethylene glycol)-based hydrogel for target site localization. DC delivery increased hydrogel longevity and altered the injection site recruited, endogenous immune cell profile within 2 days postinjection. Furthermore, hydrogel-mediated DC transplantation efficacy depended on the injection-site. DCs delivered to the neck local to MS-associated CNS-draining cervical lymph nodes attenuated paralysis, compared to untreated controls, while delivery to the flank did not alter paralysis severity. This study demonstrates that local delivery of DC10s modulates immune cell recruitment and attenuates disease progression in a preclinical model of MS.
Collapse
Affiliation(s)
- Aline M. Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Nicholas M. Beskid
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
| | | | - Aaron M. Rosado
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
| | | | - Julia E. Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| |
Collapse
|
36
|
Sehgal R, Kaur N, Ramakrishna G, Trehanpati N. Immune Surveillance by Myeloid-Derived Suppressor Cells in Liver Diseases. Dig Dis 2021; 40:301-312. [PMID: 34157708 DOI: 10.1159/000517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are immunosuppressive in nature, originate in the bone marrow, and are mainly found in the blood, spleen, and liver. In fact, liver acts as an important organ for induction and accumulation of MDSCs, especially during infection, inflammation, and cancer. In humans and rodents, models of liver diseases revealed that MDSCs promote regeneration and drive the inflammatory processes, leading to hepatitis, fibrogenesis, and cirrhosis, ultimately resulting in hepatocellular carcinoma. SUMMARY This brief review is focused on the in-depth understanding of the key molecules involved in the expansion and regulation of MDSCs and their underlying immunosuppressive mechanisms in liver diseases. KEY MESSAGE Modulated MDSCs can be used for therapeutic purposes in inflammation, cancer, and sepsis.
Collapse
Affiliation(s)
- Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
37
|
Abstract
Checkpoint blockade therapies that target inhibitory receptors on T cells have revolutionized clinical oncology. Antibodies targeting CTLA-4 or the PD-1/PD-L1 axis are now successfully used alone or in combination with chemotherapy for numerous tumor types. Despite the clinical success of checkpoint blockade therapies, tumors exploit multiple mechanisms to escape or subvert the anti-tumor T cell response. Within the tumor microenvironment, tumor-associated macrophages (TAM) can suppress T cell responses and facilitate tumor growth in various ways, ultimately debilitating clinical responses to T cell checkpoint inhibitors. There is therefore significant interest in identifying biologicals and drugs that target immunosuppressive TAM within the tumor microenvironment and can be combined with immune checkpoint inhibitors. Here we review approaches that are currently being evaluated to convert immunosuppressive TAM into immunostimulatory macrophages that promote T cell responses and tumor elimination. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment that impact anti-tumor immune responses and susceptibility to checkpoint blockade. TAMs are very heterogeneous and can be either immunosuppressive or immunostimulatory. Here, Molgora and Colonna review current strategies that aim to reprogram TAMs to enhance rather than inhibit immune responses.
Collapse
|
38
|
Shang M, Chang X, Niu S, Li J, Zhang W, Wu T, Zhang T, Tang M, Xue Y. The key role of autophagy in silver nanoparticle-induced BV2 cells inflammation and polarization. Food Chem Toxicol 2021; 154:112324. [PMID: 34111491 DOI: 10.1016/j.fct.2021.112324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Abstract
As the release of silver nanoparticles (AgNPs) in the environment continues to increase, great concerns have been raised about their potential toxicity to humans. It is urgent to assess the possible toxicity of AgNPs to the immune cells of the central nervous system due to the continuous accumulation of AgNPs in the brain. This study aimed to evaluate the neurotoxicity of AgNPs and the regulatory mechanism of autophagy in AgNPs-induced inflammation by using mouse microglia BV2 cell lines. AgNPs decreased the microglia cell activity in a concentration and time-dependent manner. The exposure of BV2 cells to AgNPs at a non-cytotoxic level of 5 μg/mL resulted in increase of pro-inflammatory cytokines and decrease of mRNA expression of anti-inflammatory cytokines. AgNPs exposure increased M1 markers of iNOS expression and decreased the expression of M2 markers of CD206 in a time-dependent manner. Meanwhile, the expression of inflammatory proteins IL-1β and NF-κB increased significantly. Additionally, AgNPs induced an increase in autophagosome and upregulation of LC3II, Beclin1, and p62 expression levels. Pretreatment by an autophagy inhibitor, 3-Methyladenine, caused more AgNPs-treated microglia to polarized into pro-inflammatory phenotypes. Inhibition of autophagy also increased the expression of inflammation-associated mRNA and proteins in BV2 cells. These results indicated that AgNPs could induce pro-inflammatory phenotypic polarization of microglia and the autophagy could play a key regulatory role in the pro-inflammatory phenotypic polarization of microglia induced by AgNPs.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Fan J, Li J, Han J, Zhang Y, Gu A, Song F, Duan J, Yin D, Wang L, Yi Y. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol Immunol 2021; 136:82-97. [PMID: 34098344 DOI: 10.1016/j.molimm.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a group of inhibitory receptors involved in innate immune mainly expressed on lymphoid and myelomonocytic cells. LILRB is proposed to serve as immune checkpoint like PD-1 and CTLA-4 for tumor treatment. We recently reported that the expression of LILRB2 in CD1c+ mDC from tumor tissue might suppress immune for HCC patients. However, the expression of all the LILRB family on other immune cells in peripheral blood and tumor microenvironment of HCC patients has not been systematically studied. METHODS The expression of LILRB family (LILRB1, LILRB2, LILRB3, LILRB4 and LILRB5) on immune cells, including granulocytes, NK cells, NKT cells, monocyte subsets, TAMs, B cells, γδ T cells, CD4+ T cells, CD8+ T cells and MDSC subsets, was analyzed by flow cytometry in the peripheral blood of 20 HCC patients and 20 healthy donors as well as in the tumor and tumor free tissues of 10 HCC patients. RESULTS LILRB1, LILRB2 and LILRB3 in granulocytes from peripheral blood were expressed increased in HCC patients compared with healthy donors. The expression of LILRB5 in NK cells and NKT cells from HCC blood were higher compared with healthy donors` blood. CD14+CD16+ monocyte subsets in blood of HCC patients expressed increased LILRB1 and LILRB4 than that in healthy donors. CD14+CD16- monocyte subsets in blood of HCC patients expressed increased LILRB3 than that in healthy donors. Compared to corresponding TFL, LILRB3, LILRB4 and LILRB5 were expressed enhanced in TAMs from HCC tumors. LILRB1 expressed on the B cells both in the blood and tumor had significantly increased compared with healthy donors or corresponding TFL. Different from peripheral blood, in the HCC microenvironment, CD4+ T cells expressed lower LILRB2, LILRB3 and LILRB4 than that from TFL and CD8+ T cells expressed decreased LILRB2. And γδ T cells expressed LILRB1 in HCC blood and microenvironment. Surprisingly, the percentage of LILRB1 expressed on MDSC from HCC peripheral blood and tumors was lower than that from healthy donors and corresponding TFL. CONCLUSIONS This is the first systemically examination of the LILRB family expression on a variety of immune cells from both peripheral blood and microenvironment in HCC patients. The specific increasing expression of LILRB on immune cells may regulate innate and adaptive immune and impact on HCC progression. Our findings justify further investigation of LILRB function in HCC.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| |
Collapse
|
40
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
41
|
Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, LeBleu VS, Kalluri R. Type I collagen deletion in αSMA + myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 2021; 39:548-565.e6. [PMID: 33667385 PMCID: PMC8423173 DOI: 10.1016/j.ccell.2021.02.007] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Stromal desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC) involves significant accumulation of type I collagen (Col1). However, the precise molecular and mechanistic contribution of Col1 in PDAC progression remains unknown. Activated pancreatic stellate cells/αSMA+ myofibroblasts are major contributors of Col1 in the PDAC stroma. We use a dual-recombinase genetic mouse model of spontaneous PDAC to delete Col1 specifically in myofibroblasts. This results in significant reduction of total stromal Col1 content and accelerates the emergence of PanINs and PDAC, decreasing overall survival. Col1 deletion leads to Cxcl5 upregulation in cancer cells via SOX9. Increase in Cxcl5 is associated with recruitment of myeloid-derived suppressor cells and suppression of CD8+ T cells, which can be attenuated with combined targeting of CXCR2 and CCR2 to restrain accelerated PDAC progression in the setting of stromal Col1 deletion. Our results unravel the fundamental role of myofibroblast-derived Co1l in regulating tumor immunity and restraining PDAC progression.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
42
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
43
|
Gao A, Liu X, Lin W, Wang J, Wang S, Si F, Huang L, Zhao Y, Sun Y, Peng G. Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity. J Immunother Cancer 2021; 9:e001536. [PMID: 33653799 PMCID: PMC7929805 DOI: 10.1136/jitc-2020-001536] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current immunotherapies including checkpoint blockade therapy have limited success rates in certain types of cancers. Identification of alternative checkpoint molecules for the development of effective strategies for tumor immunotherapy is urgently needed. Immunoglobulin-like transcript 4 (ILT4) is an immunosuppressive molecule expressed in both myeloid innate cells and malignant tumor cells. However, the role of tumor-derived ILT4 in regulating cancer biology and tumor immunity remains unclear. METHODS ILT4 expression in tumor cells and patient samples was determined by real-time PCR, flow cytometry, and immunohistochemistry. T cell senescence induced by tumor was evaluated using multiple markers and assays. Moreover, metabolic enzyme and signaling molecule expression and lipid droplets in tumor cells were determined using real-time PCR, western blot and oil red O staining, respectively. Loss-of-function and gain-of-function strategies were used to identify the causative role of ILT4 in tumor-induced T cell senescence. In addition, breast cancer and melanoma mouse tumor models were performed to demonstrate the role of ILT4 as a checkpoint molecule for tumor immunotherapy. RESULTS We reported that ILT4 is highly expressed in human tumor cells and tissues, which is negatively associated with clinical outcomes. Furthermore, tumor-derived ILT4/PIR-B (ILT4 ortholog in mouse) is directly involved in induction of cell senescence in naïve/effector T cells mediated by tumor cells in vitro and in vivo. Mechanistically, ILT4/PIR-B increases fatty acid synthesis and lipid accumulation in tumor cells via activation of MAPK ERK1/2 signaling, resulting in promotion of tumor growth and progression, and induction of effector T cell senescence. In addition, blocking tumor-derived PIR-B can reprogram tumor metabolism, prevent senescence development in tumor-specific T cells, and enhance antitumor immunity in both breast cancer and melanoma mouse models. CONCLUSIONS These studies identify a novel mechanism responsible for ILT4-mediated immune suppression in the tumor microenvironment, and prove a novel concept of ILT4 as a critical checkpoint molecule for tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunosenescence
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Paracrine Communication
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Aiqin Gao
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Shuyun Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
44
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Zhang S, Chu C, Wu Z, Liu F, Xie J, Yang Y, Qiu H. IFIH1 Contributes to M1 Macrophage Polarization in ARDS. Front Immunol 2021; 11:580838. [PMID: 33519803 PMCID: PMC7841399 DOI: 10.3389/fimmu.2020.580838] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Accumulated evidence has demonstrated that the macrophage phenotypic switch from M0 to M1 is crucial in the initiation of the inflammatory process of acute respiratory distress syndrome (ARDS). Better insight into the molecular control of M1 macrophages in ARDS may identify potential therapeutic targets. In the current study, 36 candidate genes associated with the severity of ARDS and simultaneously involved in M1-polarized macrophages were first screened through a weighted network algorithm on all gene expression profiles from the 26 ARDS patients and empirical Bayes analysis on the gene expression profiles of macrophages. STAT1, IFIH1, GBP1, IFIT3, and IRF1 were subsequently identified as hub genes according to connectivity degree analysis and multiple external validations. Among these candidate genes, IFIH1 had the strongest connection with ARDS through the RobustRankAggreg algorithm. It was selected as a crucial gene for further investigation. For in vitro validation, the RAW264.7 cell line and BMDMs were transfected with shIFIH1 lentivirus and plasmid expression vectors of IFIH1. Cellular experimental studies further confirmed that IFIH1 was a novel regulator for promoting M1 macrophage polarization. Moreover, gene set enrichment analysis (GSEA) and in vitro validations indicated that IFIH1 regulated M1 polarization by activating IRF3. In addition, previous studies demonstrated that activation of IFIH1-IRF3 was stimulated by viral RNAs or RNA mimics. Surprisingly, the current study found that LPS could also induce IFIH1-IRF3 activation via a MyD88-dependent mechanism. We also found that only IFIH1 expression without LPS or RNA mimic stimulation could not affect IRF3 activation and M1 macrophage polarization. These findings were validated on two types of macrophages, RAW264.7 cells and BMDMs, which expanded the knowledge on the inflammatory roles of IFIH1 and IRF3, suggesting IFIH1 as a potential target for ARDS treatment.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zongsheng Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
46
|
Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, Zhang C, Meehl M, Chiang DY, Ranganath SH, Rosenzweig M, Brandish PE. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells. Mol Cancer Res 2020; 19:702-716. [PMID: 33372059 DOI: 10.1158/1541-7786.mcr-20-0622] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells that accumulate in the tumor microenvironment (TME). MDSCs have been shown to dampen antitumor immune responses and promote tumor growth; however, the mechanisms of MDSC induction and their role in promoting immune suppression in cancer remain poorly understood. Here, we characterized the phenotype and function of monocytic MDSCs (M-MDSC) generated by coculture of human peripheral blood mononuclear cells with SK-MEL-5 cancer cells in vitro. We selected the SK-MEL-5 human melanoma cell line to generate M-MDSCs because these cells form subcutaneous tumors rich in myeloid cells in humanized mice. M-MDSCs generated via SK-MEL-5 coculture expressed low levels of human leukocyte antigen (HLA)-DR, high levels of CD33 and CD11b, and suppressed both CD8+ T-cell proliferation and IFNγ secretion. M-MDSCs also expressed higher levels of immunoglobulin-like transcript 3 (ILT3, also known as LILRB4) and immunoglobulin-like transcript 4 (ILT4, also known as LILRB2) on the cell surface compared with monocytes. Therefore, we investigated how ILT3 targeting could modulate M-MDSC cell function. Treatment with an anti-ILT3 antibody impaired the acquisition of the M-MDSC suppressor phenotype and reduced the capacity of M-MDSCs to cause T-cell suppression. Finally, in combination with anti-programmed cell death protein 1 (PD1), ILT3 blockade enhanced T-cell activation as assessed by IFNγ secretion. IMPLICATIONS: These results suggest that ILT3 expressed on M-MDSCs has a role in inducing immunosuppression in cancer and that antagonism of ILT3 may be useful to reverse the immunosuppressive function of M-MDSCs and enhance the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Latika Singh
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts.
| | - Eric S Muise
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | | | - Jeff Grein
- Genetics and Pharmacogenomics, Merck & Co., Inc., South San Francisco, California
| | - Sarah Javaid
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Peter Stivers
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Jun Zhang
- Immunology, Merck & Co., Inc., Boston, Massachusetts
| | - Yujie Qu
- Immunology, Merck & Co., Inc., Boston, Massachusetts
| | | | - Andrey Loboda
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Chunsheng Zhang
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | - Michael Meehl
- Biologics Discovery, Merck & Co., Inc., Boston, Massachusetts
| | - Derek Y Chiang
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts
| | | | | | | |
Collapse
|
47
|
Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, Nee K, Hernandez G, Evans K, Torosian L, Silva A, Walsh C, Kessenbrock K. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol 2020; 5:5/44/eaay6017. [PMID: 32086381 PMCID: PMC7219211 DOI: 10.1126/sciimmunol.aay6017] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we sought to determine the molecular features of breast cancer-associated MDSCs using the widely studied mouse model based on the mouse mammary tumor virus (MMTV) promoter-driven expression of the polyomavirus middle T oncoprotein (MMTV-PyMT). To identify MDSCs in an unbiased manner, we used single-cell RNA sequencing to compare MDSC-containing splenic myeloid cells from breast tumor-bearing mice with wild-type controls. Our computational analysis of 14,646 single-cell transcriptomes revealed that MDSCs emerge through an aberrant neutrophil maturation trajectory in the spleen that confers them an immunosuppressive cell state. We establish the MDSC-specific gene signature and identify CD84 as a surface marker for improved detection and enrichment of MDSCs in breast cancers.
Collapse
Affiliation(s)
- Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pathology, University of Hail, Hail 2440, Saudi Arabia
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Laura Lynn McIntyre
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jan Akara Rath
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Grace Hernandez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Katrina Evans
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Leona Torosian
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Anushka Silva
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Craig Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
48
|
Myeloid Cell Memory via PIR-A: A Game Changer in Allograft Rejection Cascade? Transplantation 2020; 104:2246-2248. [PMID: 33122589 DOI: 10.1097/tp.0000000000003358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020; 11:1842. [PMID: 32983100 PMCID: PMC7492293 DOI: 10.3389/fimmu.2020.01842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.
Collapse
Affiliation(s)
- Vitaliy Davidov
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Garrett Jensen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Sunny Mai
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-Hsia Chen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Ping-Ying Pan
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
50
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|