1
|
Bao YT, Lv M, Huang XJ, Zhao XY. The mechanisms and countermeasures for CAR-T cell expansion and persistence deficiency. Cancer Lett 2025; 626:217771. [PMID: 40320041 DOI: 10.1016/j.canlet.2025.217771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological malignancies, particularly B-cell malignancies. However, its high risk of relapse and low efficacy in malignancies such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) have limited its clinical utility. The expansion, infiltration and persistence of CAR-T cells are key determinants of their efficacy. It has been recognized that limited expansion and lack of persistence are major contributors to non-remission and early relapse, highlighting the need to elucidate their mechanisms and countermeasures. In this review, we described features of CAR-T cell expansion and persistence in various hematogenic malignancies and solid tumors. Then, current knowledge on the mechanisms underlying deficiency in CAR-T cell expansion and persistence is presented, focusing on the intrinsic deficiency of CAR-T cells as well as their interaction with the systemic and local immune environment. Finally, we summarize approaches to enhance CAR-T cell expansion and persistence by improving CAR-T cell quality and overcoming the immunosuppressive environment.
Collapse
Affiliation(s)
- Yu-Tong Bao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China.
| |
Collapse
|
2
|
Liu D, Wang X, Han Y, Wang J, Sun Y, Hou Y, Wu Q, Zeng C, Ding X, Chang Y, Hu J, Huang X, Lu L. A donor PD-1 +CD8 + T SCM-like regulatory subset mobilized by G-CSF alleviates recipient acute graft-versus-host-disease. Signal Transduct Target Ther 2025; 10:120. [PMID: 40175340 PMCID: PMC11965471 DOI: 10.1038/s41392-025-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
Donor selection determines the occurrence of acute graft-versus-host-disease (aGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). To optimize the current clinical donor selection criteria and identify putative donor lymphocyte subsets associated with better recipient outcomes, we analyzed the peripheral CD4+ and CD8+ subsets in 80 granulocyte colony-stimulating factor (G-CSF) mobilized donors and examined the aGVHD incidence of the corresponding 80 haploidentical and identical allo-HSCT recipients. The G-CSF-induced expansion of subsets varied among donors. We discovered a novel PD-1+CD8+CD45RA+CCR7+ T lymphocyte subset in suitable donors that was significantly correlated with lower incidence of aGVHD and post-transplant anti-infection. The anti-aGVHD activity of this subset was confirmed in a validation cohort (n = 30). Single-cell RNA sequencing revealed that this T cell subset exhibited transcriptomic features of stem cell-like memory T cell (TSCM) with both Treg and Teff activities which indicated its dual functions in aGVHD inhibition and graft-versus-leukemia (GVL) effect. Intriguingly, upon G-CSF mobilization, the donor PD-1+CD8+ TSCM-like regulatory cells increased the PD-1 expression in a BCL6-dependent manner. Next, we showed that the mouse counterpart of this subset (PD-1+CD8+CD44-CD62L+) ameliorated aGVHD, and confirmed the existence of this subset in clinical recipients. In summary, we, for the first time, identified a novel donor peripheral T cell subset suppressing aGVHD while promoting the immune reconstitution of recipients. It may serve as an indicator for optimal haploidentical and identical donor selection. Importantly, the dual Treg and Teff function of these T cells makes it a promising treatment for not only aGVHD but also auto-immune diseases.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Sun
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Hou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Zeng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jiong Hu
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
4
|
Rist M, Kaku M, Coffin JM. Ex vivo HIV DNA integration in STAT3 drives T cell persistence-A model of HIV-associated T cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646272. [PMID: 40236153 PMCID: PMC11996357 DOI: 10.1101/2025.03.31.646272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Oncogenic retroviruses are known for their pathogenesis via insertional mutagenesis, in which the presence of a provirus and its transcriptional control elements alter the expression of a nearby or surrounding host gene. There are reports of proviral integration driving oncogenesis in people with HIV and the use of HIV-derived vectors for gene therapy has raised concern about oncogenic side effects. To study this issue, we used an ex vivo human CD4+ T cell infection model developed in our laboratory to identify HIV-1 integration sites that might influence cell proliferation or survival. Combining integration site analysis and bulk RNA sequencing, we established that an upregulated STAT3 signature due to proviral insertional mutagenesis was associated with persistent HIV-infected CD4+ T cells. HIV+ persistent cells also expressed a STAT3-related anti-apoptotic and cytotoxic phenotype that resembles that of HIV-associated T cell lymphomas. HIV insertional mutagenesis of STAT3 and expression of its downstream targets provides a model of HIV-associated T cell lymphomas that can be used to further determine the oncogenic drivers of HIV-associated lymphomas, both AIDS- and gene therapy-associated, and, potentially, to evaluate therapeutics against these HIV-associated cancers. Author Summary The effects of HIV proviral insertional mutagenesis have been demonstrated in a handful of HIV-associated T cell lymphomas, where integration of an HIV provirus within intron 1 of STAT3 , results in increased expression of the STAT3 protein. To study the effects of HIV insertional mutagenesis, we established an ex vivo culture protocol of primary human CD4+ T cells infected with a replication-incompetent HIV vector with a gfp-reporter. After infection, the HIV/GFP+ cells from all three donors declined, but, over time, 3/6 replicates from one donor populations of infected cells rebounded. The resurgent HIV/GFP+ cells contained a provirus integrated within intron 1 of STAT3 , which led to increases in gene expression, STAT3 activation, and upregulation of a STAT3 -associated anti-apoptotic and cytotoxic phenotype. The STAT3 -associated gene signature shared similarities to the HIV-associated lymphomas with similar integration sites. Additionally, in all 3 replicates, insertional mutagenesis of genes other than STAT3 may have also contributed to clonal expansion of HIV/GFP+ T cells. Overall, we have demonstrated that HIV provirus insertional mutagenesis can influence T cell persistence. Our study provides a primary T cell culture model system that can be used to further study how proviral insertional mutagenesis influences HIV-associated T cell lymphomas and the safety of lentiviral vectors used in gene and cell therapies.
Collapse
|
5
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
AlYafie R, Velayutham D, van Panhuys N, Jithesh PV. The genetics of hyper IgE syndromes. Front Immunol 2025; 16:1516068. [PMID: 40040707 PMCID: PMC11876172 DOI: 10.3389/fimmu.2025.1516068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Hyper IgE syndromes (HIES) form a rare group of primary immunodeficiency disorders (PIDs) distinguished by persistent skin abscesses, dermatitis, allergies, and infections, in addition to their characteristic high serum IgE levels. Autosomal dominant (AD) and autosomal recessive (AR) genetic defects have been reported in HIES. From a clinical perspective, AD-HIES cases generally exhibit several non-immunologic features, including connective tissue, dental and skeletal abnormalities, whilst AR-HIES conditions have a higher incidence of neurologic complications and cutaneous viral infections. Genetic defects associated with HIES lead to impaired immune signaling, affecting pathways crucial for immune cell development, function, and immune response to pathogens/allergens. As a result, HIES patients are predisposed to recurrent bacterial and/or fungal infections, as well as atopic allergic responses. In many cases, the exact biological mechanisms responsible for the variations observed in the clinical phenotypes between the two inherited forms of HIES are still unclear. In this review, we describe the genetic basis of HIES with a distinction between the AR-HIES and AD-HIES forms, to better comprehend the different underlying molecular mechanisms, a distinction which is imperative for the accurate diagnosis, management, and development of targeted therapies for HIES patients.
Collapse
Affiliation(s)
- Randa AlYafie
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | - Dinesh Velayutham
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Nicholas van Panhuys
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
7
|
Samra S, Bergerson JRE, Freeman AF, Turvey SE. JAK-STAT signaling pathway, immunodeficiency, inflammation, immune dysregulation, and inborn errors of immunity. J Allergy Clin Immunol 2025; 155:357-367. [PMID: 39369964 DOI: 10.1016/j.jaci.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling cascade is an evolutionarily conserved signal transduction pathway that regulates many vital cellular processes, including immune function and hematopoiesis. Human genetic variants that disrupt JAK-STAT signaling are being found to cause a rapidly increasing number of diseases, including both germline-encoded inborn errors of immunity (IEI) and acquired somatic variants, causing a so-called phenocopy of the IEI. Multiple genetic mechanisms are responsible for this growing group of JAK-STAT diseases including loss-of-function, gain-of-function, and dominant negative effects. In this review, we discuss the clinical presentation and pathogenesis of all currently described JAK-STAT defects, as well as provide an overview of the guiding principles to consider in diagnosing and treating these conditions.
Collapse
Affiliation(s)
- Simran Samra
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Wang C, Freeman AF. Infections in Inborn Errors of STATs. Pathogens 2024; 13:955. [PMID: 39599507 PMCID: PMC11597637 DOI: 10.3390/pathogens13110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is highly conserved and essential for numerous biological functions triggered by extracellular signals, including cell proliferation, metabolism, immune response, and inflammation. Defects in STATs, either loss-of-function or gain-of-function defects, lead to a broad spectrum of clinical phenotypes in humans, including a wide range of infectious complications. The susceptibility to pathogens can stem from defects in immune cells within the hematopoietic compartment, impaired barrier functions of non-hematopoietic compartment, or a combination of both, depending on the specific STAT defect as well as the pathogen exposure history. Effective management involves antimicrobial prophylaxis tailored to the patient's infection risk and improving disease control with targeted therapies and/or hematopoietic cell transplantation.
Collapse
Affiliation(s)
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Karim A, Garg R, Saikia B, Tiwari A, Sahu S, Malhotra M, Minz RW, Rawat A, Singh S, Suri D. Unraveling the unphosphorylated STAT3-unphosphorylated NF-κB pathway in loss of function STAT3 Hyper IgE syndrome. Front Immunol 2024; 15:1332817. [PMID: 39229272 PMCID: PMC11369709 DOI: 10.3389/fimmu.2024.1332817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Patients with loss of function signal transducer and activator of transcription 3-related Hyper IgE Syndrome (LOF STAT3 HIES) present with recurrent staphylococcal skin and pulmonary infections along with the elevated serum IgE levels, eczematous rashes, and skeletal and facial abnormalities. Defective STAT3 signaling results in reduced Th17 cells and an impaired IL-17/IL-22 response primarily due to a compromised canonical Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway that involves STAT3 phosphorylation, dimerization, nuclear translocation, and gene transcription. The non-canonical pathway involving unphosphorylated STAT3 and its role in disease pathogenesis, however, is unexplored in HIES. Objective This study aims to elucidate the role of unphosphorylated STAT3-unphosphorylated NF-κB (uSTAT3-uNF-κB) activation pathway in LOF STAT3 HIES patients. Methodology The mRNA expression of downstream molecules of unphosphorylated STAT3-unphosphorylated NF-κB pathway was studied in five LOF STAT3 HIES patients and transfected STAT3 mutants post-IL-6 stimulation. Immunoprecipitation assays were performed to assess the binding of STAT3 and NF-κB to RANTES promoter. Results A reduced expression of the downstream signaling molecules of the uSTAT3-uNF-κB complex pathway, viz., RANTES, STAT3, IL-6, IL-8, ICAM1, IL-8, ZFP36L2, CSF1, MRAS, and SOCS3, in LOF STAT3 HIES patients as well as the different STAT3 mutant plasmids was observed. Immunoprecipitation studies showed a reduced interaction of STAT3 and NF-κB to RANTES in HIES patients. Conclusion The reduced expression of downstream signaling molecules, specially RANTES and STAT3, confirmed the impaired uSTAT3-uNF-κB pathway in STAT3 LOF HIES. Decreased levels of RANTES and STAT3 could be a significant component in the disease pathogenesis of Hyper IgE Syndrome.
Collapse
Affiliation(s)
- Adil Karim
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashi Garg
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abha Tiwari
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mehak Malhotra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W. Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
11
|
Mukhopadhyay S, Pahuja I, Okieh AA, Pandey D, Yadav V, Bhaskar A, Dwivedi VP. Bergenin potentiates BCG efficacy by enriching mycobacteria-specific adaptive memory responses via the Akt-Foxo-Stat4 axis. Tuberculosis (Edinb) 2024; 147:102517. [PMID: 38733881 DOI: 10.1016/j.tube.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The extensive inability of the BCG vaccine to produce long-term immune protection has not only accelerated the disease burden but also progressed towards the onset of drug resistance. In our previous study, we have reported the promising effects of Bergenin (Berg) in imparting significant protection as an adjunct immunomodulator against tuberculosis (TB). In congruence with our investigations, we delineated the impact of Berg on T cells, wherein it enhanced adaptive memory responses by modulating key transcription factors, STAT4 and Akt. We translated this finding into the vaccine model of TB and observed a notable reduction in the burden of Mycobacterium tuberculosis (M.tb) in BCG-Berg co-immunized mice as compared to BCG vaccination. Moreover, Berg, along with BCG, also aided in a heightened proinflammatory response milieu that corroborates the host protective immune response against TB. Furthermore, this response aligns with the escalated central and resident memory responses by modulating the Akt-Foxo-Stat4 axis, which plays a crucial role in enhancing the vaccine efficacy of BCG. These findings showcase the utilization of immunomodulator Berg as an immunoprophylactic agent to upgrade immunological memory, making it a more effective defender against TB.
Collapse
Affiliation(s)
- Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ahmed Abdallah Okieh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Darshana Pandey
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
12
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
13
|
Setoguchi R, Sengiku T, Kono H, Kawakami E, Kubo M, Yamamoto T, Hori S. Memory CD8 T cells are vulnerable to chronic IFN-γ signals but not to CD4 T cell deficiency in MHCII-deficient mice. Nat Commun 2024; 15:4418. [PMID: 38806459 PMCID: PMC11133459 DOI: 10.1038/s41467-024-48704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.
Collapse
Affiliation(s)
- Ruka Setoguchi
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Tomoya Sengiku
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Kono
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, 260-8670, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tadashi Yamamoto
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Formerly Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| |
Collapse
|
14
|
Yoshikawa T, Ito Y, Wu Z, Kasuya H, Nakashima T, Okamoto S, Amaishi Y, Zhang H, Li Y, Matsukawa T, Inoue S, Kagoya Y. Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells. Cell Rep Med 2024; 5:101526. [PMID: 38670095 PMCID: PMC11148643 DOI: 10.1016/j.xcrm.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/06/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.
Collapse
Affiliation(s)
- Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Zhiwen Wu
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya 467-8601, Japan
| | | | | | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Ge Y, Chen R, Ling T, Liu B, Huang J, Cheng Y, Lin Y, Chen H, Xie X, Xia G, Luo G, Yuan S, Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 2024; 134:e177932. [PMID: 39007267 PMCID: PMC11245160 DOI: 10.1172/jci177932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biaodi Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongxuan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiongmei Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guomeng Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Ramirez NJ, Schulze JJ, Walter S, Werner J, Mrovecova P, Olek S, Sachsenmaier C, Grimbacher B, Salzer U. Epigenetic immune cell quantification for diagnostic evaluation and monitoring of patients with inborn errors of immunity and secondary immune deficiencies. Clin Immunol 2024; 260:109920. [PMID: 38307474 DOI: 10.1016/j.clim.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Early detection and monitoring of primary immunodeficiencies (PID) in humans require quantitative determination of immune cells from fresh blood analyzed by flow cytometry. However, epigenetic immune cell quantification allows analysis from fresh, frozen, or dried blood samples. We demonstrate the utility of epigenetic immune cell quantification for patients with PID. METHODS Epigenetic quantification of basic lymphocyte subpopulations of 259 samples from PID patients were compared to flow cytometric data. Epigenetic analysis was extended to T-cell subsets (Treg, Th17, Tfh, PD-1+, CCR6+) and memory B-cells and compared between venous EDTA and dried blood. RESULTS A high correlation of >0.9 was observed for basic T- and B-cell subsets. Extended epigenetic analysis showed quantitative trends within PID subgroups, but individually these varied substantially within these groups. Epigenetic analysis of dried blood samples was equivalent to EDTA blood. CONCLUSION Epigenetic immune cell quantification is suitable for immune cell profiling in PID patients.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Pavla Mrovecova
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven Olek
- Ivana Turbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | | | - Bodo Grimbacher
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| |
Collapse
|
18
|
Kagoya Y. Cytokine signaling in chimeric antigen receptor T-cell therapy. Int Immunol 2024; 36:49-56. [PMID: 37591521 PMCID: PMC10872714 DOI: 10.1093/intimm/dxad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce robust antitumor responses against hematologic malignancies. However, its efficacy is not durable in the majority of the patients, warranting further improvement of T-cell functions. Cytokine signaling is one of the key cascades regulating T-cell survival and effector functions. In addition to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic engineering is one promising strategy to augment their therapeutic efficacy. These strategies include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages can be accomplished through genetic modification of CAR-T cells. In this review, I will outline recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related toxicities.
Collapse
Affiliation(s)
- Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
20
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
21
|
Lehikoinen J, Valori M, Jääskeläinen AJ, Laakso SM, Arstila TP, Tienari PJ. High Epstein-Barr virus capsid antigen IgG level associates with the carriership of CD8+ T cell somatic mutations in the STAT3 SH2 domain. Clin Immunol 2023; 255:109733. [PMID: 37572949 DOI: 10.1016/j.clim.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
High carrier prevalence of STAT3 SH2 domain somatic mutations was recently discovered in CD8+ T cells. We found these low-allele-fraction clones in 26% of donors, without difference between multiple sclerosis (MS) patients and controls. Here we tested whether anti-viral antibodies associate with the carriership of these mutant clones. We compared antibody responses against common viruses in mutation carriers vs. non-carriers. Plasma samples of 152 donors (92 MS patients, 60 controls) were analyzed for antibodies against cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus-6A and parvovirus B19. The mutation carrier status associated with EBV VCA IgG level (p = 0.005) and remained significant after logistic regression (p = 0.036). This association was contributed similarly by MS patients and controls. These results suggest that EBV contributes to the generation or growth of these clones. The pathogenic role of the STAT3 mutant clones in MS is presently unclear, but their detailed characterization warrants further study.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland.
| | - Miko Valori
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anne J Jääskeläinen
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital
| | - Sini M Laakso
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Bacteriology and Immunology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Chang Y, Jiang M, Wang Y, Fu Q, Lin S, Wu J, Di W. Erucic acid improves the progress of pregnancy complicated with systemic lupus erythematosus by inhibiting the effector function of CD8 + T cells. MedComm (Beijing) 2023; 4:e382. [PMID: 37771913 PMCID: PMC10522964 DOI: 10.1002/mco2.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023] Open
Abstract
Pathogenic CD8+ T cells are pivotal contributors to the onset of systemic lupus erythematosus (SLE). Erucic acid (EA) has been proven to have anti-inflammatory activity. However, the capacity of EA to regulate pathogenic CD8+ T cells in the context of pregnancy complicated with SLE (pSLE) remains unclear. In our investigation, we observed augmented CD8+ T cell effector function juxtaposed with diminished EA levels in pSLE patients relative to healthy pregnant controls. Significantly, plasma EA levels exhibited a negative correlation with the severity of pSLE-associated complications. In blood from patients with pSLE, EA inhibited the effector function of CD8+ T cells, concurrently dampening the maintenance of stem cell-like memory CD8+ T cells. Mechanistically, EA orchestrated the inhibition of CD8+ T cell effector function by impeding signal transducer and activator of transcription 3 phosphorylation and promoting ferroptosis. Moreover, EA supplementation in pregnant MRL/lpr mice manifested as the attenuation of uterine CD8+ T cell effector function, culminating in the mitigation of placental pathological damage. Our findings uncover the immune response modulatory effects of EA upon pathogenic CD8+ cells, thereby unveiling new perspectives for therapeutic strategies targeting pSLE patients.
Collapse
Affiliation(s)
- Yanling Chang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Meng Jiang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - You Wang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Qiong Fu
- Department of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of RheumatologyShanghaiChina
| | - Sihan Lin
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Jiayue Wu
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Wen Di
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
- Department of Obstetrics and Gynecology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
23
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
24
|
Béziat V, Fieschi C, Momenilandi M, Migaud M, Belaid B, Djidjik R, Puel A. Inherited human ZNF341 deficiency. Curr Opin Immunol 2023; 82:102326. [PMID: 37080116 PMCID: PMC10620851 DOI: 10.1016/j.coi.2023.102326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Typical hyper-IgE syndromes (HIES) are caused by autosomal-dominant-negative (DN) variants of STAT3 (Signal Transducer And Activator Of Transcription 3) or IL6ST (Interleukin 6 Cytokine Family Signal Transducer), biallelic partial loss-of-function (LOF) variants of IL6ST, or biallelic complete LOF variants of ZNF341 (Zinc Finger Protein 341). Including the two new cases described in this review, only 20 patients with autosomal-recessive (AR) ZNF341 deficiency have ever been reported. Patients with AR ZNF341 deficiency have clinical and immunological phenotypes resembling those of patients with autosomal-dominant STAT3 deficiency, but with a usually milder clinical presentation and lower NK (Natural Killer) cell counts. ZNF341-deficient cells have 50% the normal level of STAT3 in the resting state. However, as there is no clear evidence that STAT3 haploinsufficiency causes HIES, this decrease alone is probably insufficient to explain the HIES phenotype observed in the ZNF341-deficient patients. The combination of decreased basal expression level and impaired autoinduction of STAT3 observed in ZNF341-deficient lymphocytes is considered a more likely pathophysiological mechanism. We review here what is currently known about the ZNF341 gene and ZNF341 deficiency, and briefly discuss possible roles for this protein in addition to its control of STAT3 activity.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France; Department of Clinical Immunology, University of Paris Cité, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France
| | - Brahim Belaid
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria; Faculty of Pharmacy, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria; Faculty of Pharmacy, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
25
|
Hsu BW, Chen BS. Genetic and Epigenetic Host-Virus Network to Investigate Pathogenesis and Identify Biomarkers for Drug Repurposing of Human Respiratory Syncytial Virus via Real-World Two-Side RNA-Seq Data: Systems Biology and Deep-Learning Approach. Biomedicines 2023; 11:1531. [PMID: 37371627 DOI: 10.3390/biomedicines11061531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) affects more than 33 million people each year, but there are currently no effective drugs or vaccines approved. In this study, we first constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via big-data mining. Then, we employed reversed dynamic methods via two-side host-pathogen RNA-seq time-profile data to prune false positives in candidate HPI-GWGEN to obtain the real HPI-GWGEN. With the aid of principal-network projection and the annotation of KEGG pathways, we can extract core signaling pathways during hRSV infection to investigate the pathogenic mechanism of hRSV infection and select the corresponding significant biomarkers as drug targets, i.e., TRAF6, STAT3, IRF3, TYK2, and MAVS. Finally, in order to discover potential molecular drugs, we trained a DNN-based DTI model by drug-target interaction databases to predict candidate molecular drugs for these drug targets. After screening these candidate molecular drugs by three drug design specifications simultaneously, i.e., regulation ability, sensitivity, and toxicity. We finally selected acitretin, RS-67333, and phenformin to combine as a potential multimolecule drug for the therapeutic treatment of hRSV infection.
Collapse
Affiliation(s)
- Bo-Wei Hsu
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
26
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
27
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Park S, Yun J, Choi SY, Jeong D, Gu JY, Lee JS, Seong MW, Chang YH, Yun H, Kim HK. Distinct mutational pattern of T-cell large granular lymphocyte leukemia combined with pure red cell aplasia: low mutational burden of STAT3. Sci Rep 2023; 13:7280. [PMID: 37142644 PMCID: PMC10160083 DOI: 10.1038/s41598-023-33928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
T-cell large granular lymphocyte leukemia (T-LGL) is often accompanied by pure red cell aplasia (PRCA). A high depth of next generation sequencing (NGS) was used for detection of the mutational profiles in T-LGL alone (n = 25) and T-LGL combined with PRCA (n = 16). Beside STAT3 mutation (41.5%), the frequently mutated genes included KMT2D (17.1%), TERT (12.2%), SUZ12 (9.8%), BCOR (7.3%), DNMT3A (7.3%), and RUNX1 (7.3%). Mutations of the TERT promoter showed a good response to treatment. 3 of 41 (7.3%) T-LGL patients with diverse gene mutations were revealed as T-LGL combined with myelodysplastic syndrome (MDS) after review of bone marrow slide. T-LGL combined with PRCA showed unique features (low VAF level of STAT3 mutation, low lymphocyte count, old age). Low ANC was detected in a STAT3 mutant with a low level of VAF, suggesting that even the low mutational burden of STAT3 is sufficient for reduction of ANC. In retrospective analysis of 591 patients without T-LGL, one MDS patient with STAT3 mutation was revealed to have subclinical T-LGL. T-LGL combined with PRCA may be classified as unique subtype of T-LGL. High depth NGS can enable sensitive detection of concomitant MDS in T-LGL. Mutation of the TERT promoter may indicate good response to treatment of T-LGL, thus, its addition to an NGS panel may be recommended.
Collapse
Affiliation(s)
- Sooyong Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung Yoon Choi
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Drillet G, Pastoret C, Moignet A, Lamy T, Marchand T. Large granular lymphocyte leukemia: An indolent clonal proliferative disease associated with an array of various immunologic disorders. Rev Med Interne 2023:S0248-8663(23)00119-4. [PMID: 37087371 DOI: 10.1016/j.revmed.2023.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic lymphoproliferative disorder characterized by the proliferation of T or NK cytotoxic cells in the peripheral blood, the spleen and the bone marrow. Neutropenia leading to recurrent infections represents the main manifestation of LGLL. One specificity of LGLL is its frequent association with auto-immune disorders, among them first and foremost rheumatoid arthritis, and other hematologic diseases, including pure red cell aplasia and bone marrow failure. The large spectrum of manifestations and the classical indolent course contribute to the diagnosis difficulties and the frequency of underdiagnosed cases. Of importance, the dysimmune manifestations disappear with the treatment of LGLL as the blood cell counts normalize, giving a strong argument for a pathological link between the two entities. The therapeutic challenge results from the high rate of relapses following the first line of immunosuppressive drugs. New targeted agents, some of which are currently approved in autoimmune diseases, appear to be relevant therapeutic strategies to treat LGLL, by targeting key activated pathways involved in the pathogenesis of the disease, including JAK-STAT signaling.
Collapse
Affiliation(s)
- G Drillet
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France.
| | - C Pastoret
- Laboratoire d'hématologie, centre hospitalier universitaire de Rennes, Rennes, France
| | - A Moignet
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France
| | - T Lamy
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France; Université Rennes 1, Rennes, France; CIC 1414, Rennes, France; Institut national de la santé et de la recherche médicale (INSERM) U1236, Rennes, France
| | - T Marchand
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France; Université Rennes 1, Rennes, France; Institut national de la santé et de la recherche médicale (INSERM) U1236, Rennes, France
| |
Collapse
|
30
|
Peng JJ, Wang L, Li Z, Ku CL, Ho PC. Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol 2023; 8:eabq3016. [PMID: 37058548 DOI: 10.1126/sciimmunol.abq3016] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have achieved true clinical success in treating hematological malignancy patients, laying the foundation of CAR T cells as a new pillar of cancer therapy. Although these promising effects have generated strong interest in expanding the treatment of CAR T cells to solid tumors, reproducible demonstration of clinical efficacy in the setting of solid tumors has remained challenging to date. Here, we review how metabolic stress and signaling in the tumor microenvironment, including intrinsic determinants of response to CAR T cell therapy and extrinsic obstacles, restrict the efficacy of CAR T cell therapy in cancer treatment. In addition, we discuss the use of novel approaches to target and rewire metabolic programming for CAR T cell manufacturing. Last, we summarize strategies that aim to improve the metabolic adaptability of CAR T cells to enhance their potency in mounting antitumor responses and survival within the tumor microenvironment.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Limei Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Zhiyu Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Cheng-Lung Ku
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
31
|
Sun Q, Zhao X, Li R, Liu D, Pan B, Xie B, Chi X, Cai D, Wei P, Xu W, Wei K, Zhao Z, Fu Y, Ni L, Dong C. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. J Exp Med 2023; 220:e20220686. [PMID: 36688918 PMCID: PMC9884582 DOI: 10.1084/jem.20220686] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
In cancer, persistent antigens drive CD8+ T cell differentiation into exhausted progenitor (Texprog) and terminally exhausted (Texterm) cells. However, how the extrinsic and intrinsic regulatory mechanisms cooperate during this process still remains not well understood. Here, we found that STAT3 signaling plays essential roles in promoting intratumor Texterm cell development by enhancing their effector functions and survival, which results in better tumor control. In tumor microenvironments, STAT3 is predominantly activated by IL-10 and IL-21, but not IL-6. Besides, STAT3 also plays critical roles in the development and function of terminally differentiated effector CD8+ T cells in acute infection. Mechanistically, STAT3 transcriptionally promotes the expression of effector function-related genes, while it suppresses those expressed by the progenitor Tex subset. Moreover, STAT3 functions in collaboration with BATF and IRF4 to mediate chromatin activation at the effector gene loci. Thus, we have elucidated the roles of STAT3 signaling in terminally differentiated CD8+ T cell development, especially in cancer, which benefits the development of more effective immunotherapies against tumors.
Collapse
Affiliation(s)
- Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Dingfeng Liu
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Birui Pan
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Bowen Xie
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xinxin Chi
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Dongli Cai
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Peng Wei
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Yujie Fu
- Institute for Immunology, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
32
|
Withaferin A Protects against Primary and Recurrent Tuberculosis by Modulating Mycobacterium-Specific Host Immune Responses. Microbiol Spectr 2023:e0058323. [PMID: 36916966 PMCID: PMC10100980 DOI: 10.1128/spectrum.00583-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The fate of Mycobacterium tuberculosis infection is governed by immune signaling pathways that can either eliminate the pathogen or result in tuberculosis (TB). Anti-TB therapy (ATT) is extensive and is efficacious only against active, drug-sensitive strains of M. tuberculosis. Due to severe side effects, ATT often causes impairment of host immunity, making it imperative to use novel immunotherapeutics for better clinical outcomes. In this study, we have explored the immunomodulatory potential of withaferin A (WA) as an immunotherapeutic against TB. Here, we demonstrate that WA can constrain intracellular drug-sensitive and -resistant strains of M. tuberculosis by augmenting host immune responses. We also established the potential of WA treatment in conjunction with isoniazid. We show that WA directs the host macrophages toward defensive M1 polarization and enhances TH1 and TH17 immune responses against M. tuberculosis infection. The reduced bacterial burden upon T cell adoptive transfer further corroborated the augmented T cell responses. Interestingly, WA stimulated the generation of T cell memory populations by instigating STAT signaling, thereby reducing the rate of TB recurrence due to reactivation and reinfection. We substantiate the prospects of WA as a potent adjunct immunomodulator that enriches protective memory cells by prompting STAT signaling and improves host defense against M. tuberculosis. IMPORTANCE Despite being extensive, conventional antituberculosis therapy (ATT) is barely proficient in providing sterile immunity to tuberculosis (TB). Failure to constrain the escalating global TB burden due to the emergence of drug-resistant bacterial strains and immune dampening effects of ATT necessitates adjunct immunotherapeutics for better clinical outcomes. We evaluated the prospects of withaferin A (WA), an active constituent of Withania somnifera, as an adjunct immunomodulator against diverse M. tuberculosis strains. WA efficiently restricts the progression of TB by stimulating antimycobacterial host responses, protective immune signaling, and activation of diverse immune cell populations. Protective effects of WA can be attributed to the enrichment of memory T cells by induction of STAT signaling, thereby enhancing resistance to reinfections and reactivation of disease. We ascertained the immunotherapeutic potential of WA in boosting host immune responses against M. tuberculosis.
Collapse
|
33
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Sorrento Therapeutics, San Diego, CA, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
34
|
Pahuja I, Negi K, Kumari A, Agarwal M, Mukhopadhyay S, Mathew B, Chaturvedi S, Maras JS, Bhaskar A, Dwivedi VP. Berberine governs NOTCH3/AKT signaling to enrich lung-resident memory T cells during tuberculosis. PLoS Pathog 2023; 19:e1011165. [PMID: 36881595 PMCID: PMC9990925 DOI: 10.1371/journal.ppat.1011165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Stimulation of naïve T cells during primary infection or vaccination drives the differentiation and expansion of effector and memory T cells that mediate immediate and long-term protection. Despite self-reliant rescue from infection, BCG vaccination, and treatment, long-term memory is rarely established against Mycobacterium tuberculosis (M.tb) resulting in recurrent tuberculosis (TB). Here, we show that berberine (BBR) enhances innate defense mechanisms against M.tb and stimulates the differentiation of Th1/Th17 specific effector memory (TEM), central memory (TCM), and tissue-resident memory (TRM) responses leading to enhanced host protection against drug-sensitive and drug-resistant TB. Through whole proteome analysis of human PBMCs derived from PPD+ healthy individuals, we identify BBR modulated NOTCH3/PTEN/AKT/FOXO1 pathway as the central mechanism of elevated TEM and TRM responses in the human CD4+ T cells. Moreover, BBR-induced glycolysis resulted in enhanced effector functions leading to superior Th1/Th17 responses in human and murine T cells. This regulation of T cell memory by BBR remarkably enhanced the BCG-induced anti-tubercular immunity and lowered the rate of TB recurrence due to relapse and re-infection. These results thus suggest tuning immunological memory as a feasible approach to augment host resistance against TB and unveil BBR as a potential adjunct immunotherapeutic and immunoprophylactic against TB.
Collapse
Affiliation(s)
- Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Kriti Negi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anjna Kumari
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (AB); (VPD)
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (AB); (VPD)
| |
Collapse
|
35
|
Oladipo OO, Adedeji BO, Adedokun SP, Gbadamosi JA, Salaudeen M. Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunol Res 2022; 71:314-327. [PMID: 36571657 DOI: 10.1007/s12026-022-09353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.
Collapse
Affiliation(s)
- Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Bernard O Adedeji
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Samson P Adedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Jibriil A Gbadamosi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Marzuq Salaudeen
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
36
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Valori M, Lehikoinen J, Jansson L, Clancy J, Lundgren SA, Mustjoki S, Tienari P. High prevalence of low-allele-fraction somatic mutations in STAT3 in peripheral blood CD8+ cells in multiple sclerosis patients and controls. PLoS One 2022; 17:e0278245. [PMID: 36441748 PMCID: PMC9704626 DOI: 10.1371/journal.pone.0278245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Somatic mutations have a central role in cancer, but there are also a few rare autoimmune diseases in which somatic mutations play a major role. We have recently shown that nonsynonymous somatic mutations with low allele fractions are preferentially detectable in CD8+ cells and that the STAT3 gene is a promising target for screening. Here, we analyzed somatic mutations in the STAT3 SH2 domain in peripheral blood CD8+ cells in a set of 94 multiple sclerosis (MS) patients and 99 matched controls. PCR amplicons targeting the exons 20 and 21 of STAT3 were prepared and sequenced using the Illumina MiSeq instrument with 2x300bp reads. We designed a novel variant calling method, optimized for large number of samples, high sequencing depth (>25,000x) and small target genomic area. Overall, we discovered 64 STAT3 somatic mutations in the 193 donors, of which 63 were non-synonymous and 77% have been previously reported in cancer or lymphoproliferative disease. The overall median variant allele fraction was 0.065% (range 0.007-1.2%), without significant difference between MS and controls (p = 0.82). There were 26 (28%) MS patients vs. 24 (24%) controls with mutations (p = 0.62). Two or more mutations were found in 9 MS patients vs. 2 controls (p = 0.03, pcorr = 0.12). Carriership of mutations associated with older age and lower neutrophil counts. These results demonstrate that STAT3 SH2 domain is a hotspot for somatic mutations in CD8+ cells with a prevalence of 26% among the participants. There were no significant differences in the mutation prevalences between MS patients and controls. Further research is needed to elucidate the role of antigenic stimuli in the expansion of the mutant clones. Furthermore, the high discovered prevalence of STAT3 somatic mutations makes it feasible to analyze these mutations directly in tissue-infiltrating CD8+ cells in autoimmune diseases.
Collapse
Affiliation(s)
- Miko Valori
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Joonas Lehikoinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Lilja Jansson
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Jonna Clancy
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Sofie A. Lundgren
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Satu Mustjoki
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Pentti Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Neurocenter, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
38
|
Rodriguez-Marquez P, Calleja-Cervantes ME, Serrano G, Oliver-Caldes A, Palacios-Berraquero ML, Martin-Mallo A, Calviño C, Español-Rego M, Ceballos C, Lozano T, San Martin-Uriz P, Vilas-Zornoza A, Rodriguez-Diaz S, Martinez-Turrillas R, Jauregui P, Alignani D, Viguria MC, Redondo M, Pascal M, Martin-Antonio B, Juan M, Urbano-Ispizua A, Rodriguez-Otero P, Alfonso-Pierola A, Paiva B, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, San-Miguel J, Fernandez de Larrea C, Hernaez M, Rodriguez-Madoz JR, Prosper F. CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome. SCIENCE ADVANCES 2022; 8:eabo0514. [PMID: 36179026 PMCID: PMC9524842 DOI: 10.1126/sciadv.abo0514] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.
Collapse
Affiliation(s)
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Guillermo Serrano
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Aina Oliver-Caldes
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | | | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Cristina Calviño
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Marta Español-Rego
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Candela Ceballos
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Rebeca Martinez-Turrillas
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Diego Alignani
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Mariona Pascal
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
- Immunotherapy platform Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Paula Rodriguez-Otero
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ana Alfonso-Pierola
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Jesus San-Miguel
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Carlos Fernandez de Larrea
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Mikel Hernaez
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
39
|
Zhou M, Zhang P, Da M, Yang R, Ma Y, Zhao J, Ma T, Xia J, Shen G, Chen Y, Chen D. A pan-cancer analysis of the expression of STAT family genes in tumors and their relationship to the tumor microenvironment. Front Oncol 2022; 12:925537. [PMID: 36176415 PMCID: PMC9513395 DOI: 10.3389/fonc.2022.925537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe signal transducer and activator of transcription (STAT) protein family, a group of seven members (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6), has been widely used to investigate numerous biological functions including cell proliferation, differentiation, apoptosis, and immune regulation. However, not much is known about the role of the STAT family genes in pan-cancer.MethodsTumor Immune Estimation Resource (TIMER), Sangerbox, cBioPortal, GSCALite, Xena Shiny, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), and Metascape were used to analyze the relationship between STAT gene expression, clinical outcome, gene variation, methylation status, pathway activity, tumor immune infiltration, and microenvironment in different cancer types and screened drugs that could potentially influence STATs.ResultsThe Cancer Genome Atlas (TCGA) pan-cancer data showed that most STAT family genes were extensively changed in most tumors compared to the adjacent normal tissues. We also found that STAT gene expression could be used to predict patient survival in various cancers. The STAT gene family formed a network of interaction networks that was associated with several pathways. By mining the of Genomics Drug Sensitivity in Cancer (GDSC) database, we discovered a number of potential drugs that might target STAT regulators. Importantly, the close correlation between STATs and immunocell infiltration suggested the important role of dysregulation of STATs in tumor immune escape. Finally, the relation between STAT gene expression and the tumor microenvironment (TME) indicated that the higher expression of STAT regulators, the higher the degree of tumor stem cells.ConclusionConsidering these genomic alterations and clinical features of STAT family members across cancer types, it will be possible to change the relationship between STATs and tumorigenesis. It was beneficial to treat cancer by targeting these STAT regulators.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yulian Ma
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Tao Ma
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| |
Collapse
|
40
|
Lodi L, Faletti LE, Maccari ME, Consonni F, Groß M, Pagnini I, Ricci S, Heeg M, Simonini G, Azzari C, Ehl S. STAT3-confusion-of-function: beyond the loss and gain dualism. J Allergy Clin Immunol 2022; 150:1237-1241.e3. [PMID: 35750105 DOI: 10.1016/j.jaci.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline mutations of signal transducer and activator of transcription 3 (STAT3) are responsible for two distinct human diseases: autosomal-dominant hyper-immunoglobulin E syndrome (AD-HIES) caused by STAT3 loss-of-function (STAT3-LOF) mutations and STAT3 gain-of-function (STAT3-GOF) disease. So far, these entities have been regarded as antithetic, with AD-HIES mainly associated with characteristic infections and a connective tissue phenotype and STAT3-GOF characterized by lymphoproliferation and poly-autoimmunity. The R335W substitution in the DNA binding domain of STAT3 was initially described in 2 patients with typical AD-HIES, but paradoxically, recent functional analysis demonstrated a GOF effect of this variant. OBJECTIVE We describe a patient with Sjögren syndrome and features of AD-HIES with this mutation and further characterize its molecular consequences. METHODS We provide a clinical and immunological description of the patient. We studied STAT phosphorylation in primary patient cells and used A4 cells transfected with the patient allele to study phosphorylation kinetics, transcriptional activity and target-gene induction. RESULTS The hybrid clinical features of the patient were associated with normal Th17 cells. We observed enhanced and prolonged STAT3 phosphorylation, an increased STAT3 driven luciferase reporter activity upon interleukin-6 stimulation, but reduced IL-6 induced SOCS3 production. CONCLUSION The germline R335W-STAT3 variant displays a mixed behavior in vitro that mainly shows gain-of-function, but also loss-of-function features. This is matched by an ambiguous clinical and immunological phenotype which dismantles the classical antithetic dualism of gain- versus loss-of-function. Germline STAT3 mutation related-disease represents a pathological spectrum with the p.R335W associated phenotype locating between the two recognized clinical disease patterns.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Laura Eva Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Filippo Consonni
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ilaria Pagnini
- Rheumatology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gabriele Simonini
- Rheumatology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy; NEUROFARBA Department, University of Florence, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
41
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
42
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, Blish CA, Baric RS, Su LL, Garcia KC. Facile discovery of surrogate cytokine agonists. Cell 2022; 185:1414-1430.e19. [PMID: 35325595 PMCID: PMC9021867 DOI: 10.1016/j.cell.2022.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.
Collapse
Affiliation(s)
- Michelle Yen
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junming Ren
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingxiang Liu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Bitsch R, Kurzay A, Özbay Kurt F, De La Torre C, Lasser S, Lepper A, Siebenmorgen A, Müller V, Altevogt P, Utikal J, Umansky V. STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice. J Immunother Cancer 2022; 10:jitc-2021-004384. [PMID: 35301236 PMCID: PMC8932276 DOI: 10.1136/jitc-2021-004384] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) represent a negative prognostic factor in malignant melanoma. These cells are generated under chronic inflammatory conditions typical of cancer. The transcription factor signal transducer and activator of transcription 3 (STAT3) orchestrates MDSC accumulation and acquisition of immunosuppressive properties. Here we studied STAT3 inhibition by Napabucasin as a way to block MDSC accumulation and activity and its potential to treat malignant melanoma. Methods In vitro generated murine MDSC and primary MDSC from melanoma-bearing mice were used to investigate the effects of Napabucasin on MDSC in vitro. The RET transgenic mouse model of malignant melanoma was used to examine Napabucasin therapy efficiency and its underlying mechanisms in vivo. Furthermore, STAT3 activation and its correlation with survival were explored in MDSC from 19 patients with malignant melanoma and human in vitro generated monocytic myeloid-derived suppressor cell (M-MDSC) were used to evaluate the effects of Napabucasin. Results Napabucasin was able to abrogate the capacity of murine MDSC to suppress CD8+ T-cell proliferation. The STAT3 inhibitor induced apoptosis in murine MDSC, significantly increased expression of molecules associated with antigen processing and presentation, as well as slightly decreased expression of immunosuppressive factors on these cells. RET transgenic mice treated with Napabucasin showed prolonged survival accompanied by a strong accumulation of tumor-infiltrating antigen-presenting cells and activation of CD8+ and CD4+ T cells. Interestingly, patients with malignant melanoma with high expression of activated STAT3 in circulating M-MDSC showed significantly worse progression-free survival (PFS) than patients with low levels of activated STAT3. In addition, Napabucasin was able to abrogate suppressive capacity of human in vitro generated M-MDSC. Conclusion Our findings demonstrate that STAT3 inhibitor Napabucasin completely abrogated the immunosuppressive capacity of murine MDSC and human M-MDSC and improved melanoma-bearing mouse survival. Moreover, patients with malignant melanoma with high expression levels of activated STAT3 in M-MDSC displayed shorter PFS, indicating its role as a promising therapeutic target in patients with malignant melanoma and a predictive marker for their clinical outcome.
Collapse
Affiliation(s)
- Rebekka Bitsch
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Annina Kurzay
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Feyza Özbay Kurt
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Alisa Lepper
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Alina Siebenmorgen
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Verena Müller
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit/ Department of Dermatology, Venerology and Allergology, German Cancer Research Center (DKFZ), University Medical Centre Mannheim, Heidelberg, Mannheim, Germany .,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| |
Collapse
|
44
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
45
|
Xiao L, Ma X, Ye L, Su P, Xiong W, Bi E, Wang Q, Xian M, Yang M, Qian J, Yi Q. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J Clin Invest 2022; 132:153247. [PMID: 35192544 PMCID: PMC8970676 DOI: 10.1172/jci153247] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro–polarized, transferred IL-9–secreting CD8+ Tc9 (cytotoxic T lymphocyte subset 9) cells exert greater persistence and antitumor efficacy than Tc1 cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell–derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistance to tumor- or ROS-induced ferroptosis in the tumor microenvironment. IL-9 signaling deficiency, inhibiting STAT3, or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also exhibited lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL9 and higher lipid peroxidation– and ferroptosis-related genes than circulating CD8+ T cells in patients with melanoma. This study indicates that lipid peroxidation regulates Tc9 cell longevity and antitumor effects via the IL-9/STAT3/fatty acid oxidation pathway and regulating T cell lipid peroxidation can be used to enhance T cell–based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Liuling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Xingzhe Ma
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Lingqun Ye
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Pan Su
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Wei Xiong
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Enguang Bi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Qiang Wang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Miao Xian
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Maojie Yang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Jianfei Qian
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Research Institute, Houston, United States of America
| |
Collapse
|
46
|
Blanco R, Gómez de Cedrón M, Gámez-Reche L, Martín-Leal A, González-Martín A, Lacalle RA, Ramírez de Molina A, Mañes S. The Chemokine Receptor CCR5 Links Memory CD4 + T Cell Metabolism to T Cell Antigen Receptor Nanoclustering. Front Immunol 2021; 12:722320. [PMID: 34950130 PMCID: PMC8688711 DOI: 10.3389/fimmu.2021.722320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The inhibition of anabolic pathways, such as aerobic glycolysis, is a metabolic cornerstone of memory T cell differentiation and function. However, the signals that hamper these anabolic pathways are not completely known. Recent evidence pinpoints the chemokine receptor CCR5 as an important player in CD4+ T cell memory responses by regulating T cell antigen receptor (TCR) nanoclustering in an antigen-independent manner. This paper reports that CCR5 specifically restrains aerobic glycolysis in memory-like CD4+ T cells, but not in effector CD4+ T cells. CCR5-deficient memory CD4+ T cells thus show an abnormally high glycolytic/oxidative metabolism ratio. No CCR5-dependent change in glucose uptake nor in the expression of the main glucose transporters was detected in any of the examined cell types, although CCR5-deficient memory cells did show increased expression of the hexokinase 2 and pyruvate kinase M2 isoforms, plus the concomitant downregulation of Bcl-6, a transcriptional repressor of these key glycolytic enzymes. Further, the TCR nanoclustering defects observed in CCR5-deficient antigen-experienced CD4+ T cells were partially reversed by incubation with 2-deoxyglucose (2-DG), suggesting a link between inhibition of the glycolytic pathway and TCR nanoscopic organization. Indeed, the treatment of CCR5-deficient lymphoblasts with 2-DG enhanced IL-2 production after antigen re-stimulation. These results identify CCR5 as an important regulator of the metabolic fitness of memory CD4+ T cells, and reveal an unexpected link between T cell metabolism and TCR organization with potential influence on the response of memory T cells upon antigen re-encounter.
Collapse
Affiliation(s)
- Raquel Blanco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Laura Gámez-Reche
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain.,Department of Biochemistry, Universidad Autónoma de Madrid, and Instituto de Investigaciones Biomédicas Alberto Sols (IIB/CSIC), Madrid, Spain
| | - Ana Martín-Leal
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Alicia González-Martín
- Department of Biochemistry, Universidad Autónoma de Madrid, and Instituto de Investigaciones Biomédicas Alberto Sols (IIB/CSIC), Madrid, Spain
| | - Rosa A Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| |
Collapse
|
47
|
Ghahri-Saremi N, Akbari B, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Genetic Modification of Cytokine Signaling to Enhance Efficacy of CAR T Cell Therapy in Solid Tumors. Front Immunol 2021; 12:738456. [PMID: 34721401 PMCID: PMC8552010 DOI: 10.3389/fimmu.2021.738456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown unprecedented success in treating advanced hematological malignancies. Its effectiveness in solid tumors has been limited due to heterogeneous antigen expression, a suppressive tumor microenvironment, suboptimal trafficking to the tumor site and poor CAR T cell persistence. Several approaches have been developed to overcome these obstacles through various strategies including the genetic engineering of CAR T cells to blunt the signaling of immune inhibitory receptors as well as to modulate signaling of cytokine/chemokine molecules and their receptors. In this review we offer our perspective on how genetically modifying cytokine/chemokine molecules and their receptors can improve CAR T cell qualities such as functionality, persistence (e.g. resistance to pro-apoptotic signals) and infiltration into tumor sites. Understanding how such modifications can overcome barriers to CAR T cell effectiveness will undoubtedly enhance the potential of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Chen YH, Spencer S, Laurence A, Thaventhiran JE, Uhlig HH. Inborn errors of IL-6 family cytokine responses. Curr Opin Immunol 2021; 72:135-145. [PMID: 34044328 PMCID: PMC8591178 DOI: 10.1016/j.coi.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023]
Abstract
The IL-6 family of cytokines mediates functions in host protective immunity, development of multiple organs, tissue regeneration and metabolism. Inborn errors in cytokines or cytokine receptor units highlight specific roles for IL-6, IL-11, LIF, OSM, and CLC signaling whereas incomplete loss-of-function variants in the common receptor chain GP130 encoded by IL6ST or the transcription factor STAT3, as well as genes that affect either GP130 glycosylation (PGM3) or STAT3 transcriptional control (ZNF341) lead to complex phenotypes including features of hyper-IgE syndrome. Gain-of-function variants in the GP130-STAT3 signaling pathway cause immune dysregulation disorders. Insights into IL-6 family cytokine signaling inform on therapeutic application in immune-mediated disorders and potential side effects such as infection susceptibility.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah Spencer
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Biomedical Research Center, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Escobar G, Mangani D, Anderson AC. T cell factor 1: A master regulator of the T cell response in disease. Sci Immunol 2021; 5:5/53/eabb9726. [PMID: 33158974 DOI: 10.1126/sciimmunol.abb9726] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have redefined a role for T cell factor 1 (TCF1) that goes beyond T cell development and T memory formation and encompasses new functions in the regulation of T cell biology. Here, we discuss the multifaceted and context-dependent role of TCF1 in peripheral T cells, particularly during disease-induced inflammatory states such as autoimmunity, cancer, and chronic infections. Understanding how TCF1 fine-tunes peripheral T cell biology holds the potential to tailor improved immune-targeted therapies.
Collapse
Affiliation(s)
- Giulia Escobar
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
50
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|