1
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Graham JB, Swarts JL, Koehne AL, Watson CE, Lund JM. Regulatory T cells restrict immunity and pathology in distal tissue sites following a localized infection. Mucosal Immunol 2024; 17:923-938. [PMID: 38908483 PMCID: PMC11484473 DOI: 10.1016/j.mucimm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Regulatory T cells (Tregs) are well-known to mediate peripheral tolerance at homeostasis, and there is a growing appreciation for their role in modulating infectious disease immunity. Following acute and chronic infections, Tregs can restrict pathogen-specific T cell responses to limit immunopathology. However, it is unclear if Tregs mediate control of pathology and immunity in distal tissue sites during localized infections. We investigated the role of Tregs in immunity and disease in various tissue compartments in the context of "mild" vaginal Zika virus infection. We found that Tregs are critical to generating robust virus-specific CD8 T cell responses in the initial infection site. Further, Tregs limit inflammatory cytokines and immunopathology during localized infection; a dysregulated immune response in Treg-depleted mice leads to increased T cell infiltrates and immunopathology in both the vagina and the central nervous system (CNS). Importantly, these CNS infiltrates are not present at the same magnitude during infection of Treg-sufficient mice, in which there is no CNS immunopathology. Our data suggest that Tregs are necessary to generate a robust virus-specific response at the mucosal site of infection, while Treg-mediated restriction of bystander inflammation limits immunopathology both at the site of infection as well as distal tissue sites.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amanda L Koehne
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine E Watson
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Tsuda H, Keslar KS, Baldwin WM, Heeger PS, Valujskikh A, Fairchild RL. p40 homodimers bridge ischemic tissue inflammation and heterologous alloimmunity in mice via IL-15 transpresentation. J Clin Invest 2024; 134:e172760. [PMID: 38271093 PMCID: PMC10940089 DOI: 10.1172/jci172760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Virus-induced memory T cells often express functional cross-reactivity, or heterologous immunity, to other viruses and to allogeneic MHC molecules that is an important component of pathogenic responses to allogeneic transplants. During immune responses, antigen-reactive naive and central memory T cells proliferate in secondary lymphoid organs to achieve sufficient cell numbers to effectively respond, whereas effector memory T cell proliferation occurs directly within the peripheral inflammatory microenvironment. Mechanisms driving heterologous memory T cell proliferation and effector function expression within peripheral tissues remain poorly understood. Here, we dissected proliferation of heterologous donor-reactive memory CD8+ T cells and their effector functions following infiltration into heart allografts with low or high intensities of ischemic inflammation. Proliferation within both ischemic conditions required p40 homodimer-induced IL-15 transpresentation by graft DCs, but expression of effector functions mediating acute allograft injury occurred only in high-ischemic allografts. Transcriptional responses of heterologous donor-reactive memory CD8+ T cells were distinct from donor antigen-primed memory CD8+ T cells during early activation in allografts and at graft rejection. Overall, the results provide insights into mechanisms driving heterologous effector memory CD8+ T cell proliferation and the separation between proliferation and effector function that is dependent on the intensity of inflammation within the tissue microenvironment.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen S. Keslar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peter S. Heeger
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anna Valujskikh
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L. Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8 + T cells with specificities against immunogenic viral antigens. Cell Rep 2023; 42:113279. [PMID: 37883974 PMCID: PMC10729740 DOI: 10.1016/j.celrep.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
8
|
Bach FA, Muñoz Sandoval D, Mazurczyk M, Themistocleous Y, Rawlinson TA, Harding AC, Kemp A, Silk SE, Barrett JR, Edwards NJ, Ivens A, Rayner JC, Minassian AM, Napolitani G, Draper SJ, Spence PJ. A systematic analysis of the human immune response to Plasmodium vivax. J Clin Invest 2023; 133:e152463. [PMID: 37616070 PMCID: PMC10575735 DOI: 10.1172/jci152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.
Collapse
Affiliation(s)
- Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Insitute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, and
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Allers K, Moos V, Hofmann J, Witkowski M, Haibel H, Angermair S, Schneider T. Cytolytic CD8 + T cell response to SARS-CoV-2 and non-SARS-CoV-2-related viruses is associated with severe manifestation of COVID-19. Clin Immunol 2023; 254:109712. [PMID: 37506745 DOI: 10.1016/j.clim.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Little is known about the CD8+ T cell functionality in the coronavirus disease 2019 (COVID-19). Therefore, we examined twenty-five hospitalized COVID-19 patients with moderate (MD) or severe disease (SD) as well as seventeen SARS-CoV-2-unexposed persons regarding the cytolytic and cytokine-producing reactivity of their CD8+ T cells. Reactive CD8+ T cells were detectable in 90% of the unexposed persons, confirming high cross-reactive immune memory in the general population. Compared to unexposed persons and MD patients, SD patients had higher numbers of SARS-CoV-2 reactive CD8+ T cells with cytolytic function that can simultaneously produce inflammatory cytokines. In addition, SD patients showed higher CD8+ T cell reactivity against non-SARS-CoV-2-related viruses, which was mainly mediated by cytolytic response. Sequence alignments showed that cross-reactivities with the Spike protein could contribute to the expansion of such cells. Since insufficiently regulated cytolytic CD8+ T cells can damage peripheral and vascular tissue structures, high levels of both SARS-CoV-2-reactive and heterologously activated cytolytic CD8+ T cells could favor severe disease progression.
Collapse
Affiliation(s)
- Kristina Allers
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Verena Moos
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan Angermair
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Thomas Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
11
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
12
|
Arkatkar T, Davé V, Cruz Talavera I, Graham JB, Swarts JL, Hughes SM, Bell TA, Hock P, Farrington J, Shaw GD, Kirby A, Fialkow M, Huang ML, Jerome KR, Ferris MT, Hladik F, Schiffer JT, Prlic M, Lund JM. Memory T cells possess an innate-like function in local protection from mucosal infection. J Clin Invest 2023; 133:e162800. [PMID: 36951943 PMCID: PMC10178838 DOI: 10.1172/jci162800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Mucosal infections pose a significant global health burden. Antigen-specific tissue-resident T cells are critical to maintaining barrier immunity. Previous studies in the context of systemic infection suggest that memory CD8+ T cells may also provide innate-like protection against antigenically unrelated pathogens independent of T cell receptor engagement. Whether bystander T cell activation is also an important defense mechanism in the mucosa is poorly understood. Here, we investigated whether innate-like memory CD8+ T cells could protect against a model mucosal virus infection, herpes simplex virus 2 (HSV-2). We found that immunization with an irrelevant antigen delayed disease progression from lethal HSV-2 challenge, suggesting that memory CD8+ T cells may mediate protection despite the lack of antigen specificity. Upon HSV-2 infection, we observed an early infiltration, rather than substantial local proliferation, of antigen-nonspecific CD8+ T cells, which became bystander-activated only within the infected mucosal tissue. Critically, we show that bystander-activated CD8+ T cells are sufficient to reduce early viral burden after HSV-2 infection. Finally, local cytokine cues within the tissue microenvironment after infection were sufficient for bystander activation of mucosal tissue memory CD8+ T cells from mice and humans. Altogether, our findings suggest that local bystander activation of CD8+ memory T cells contributes a fast and effective innate-like response to infection in mucosal tissue.
Collapse
Affiliation(s)
- Tanvi Arkatkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Irene Cruz Talavera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joe Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Kirby
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Michael Fialkow
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| |
Collapse
|
13
|
von Borstel A, Nguyen TH, Rowntree LC, Ashhurst TM, Allen LF, Howson LJ, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Cheng AC, Kent SJ, Rossjohn J, Kedzierska K, Davey MS. Circulating effector γδ T cell populations are associated with acute coronavirus disease 19 in unvaccinated individuals. Immunol Cell Biol 2023; 101:321-332. [PMID: 36698330 DOI: 10.1111/imcb.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Critical Care, University of Melbourne, Parkville, VIC, Australia.,Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia.,Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Assy L, Khalil SM, Attia M, Salem ML. IL-12 conditioning of peripheral blood mononuclear cells from breast cancer patients promotes the zoledronate-induced expansion of γδ T cells in vitro and enhances their cytotoxic activity and cytokine production. Int Immunopharmacol 2023; 114:109402. [PMID: 36481526 DOI: 10.1016/j.intimp.2022.109402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a series of our preclinical studies, we have reported that conditioning of α/β CD8+ T cells in vitro with interleukin-12 (IL-12) during their expansion improves their homing phenotype and anti-tumor cytolytic function upon their adoptive transfer in vivo. Vγ9+Vδ2+ T cells can also be expanded in vitro with amino bisphosphonates such as zoledronate (ZOL) for the purpose of adoptive therapy. AIM We aimed in this study to use IL-12 to enhance the expansion and cytotoxic functions of ZOL-expanded Vγ9+Vδ2+T cells. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were separated from healthy donors and stage II breast cancer patients. PBMCs (1 × 106 cells/mL) were cultured and treated with ZOL/IL2, ZOL/IL2/IL12, or IL2/IL12. Cultured cells were harvested on days 7 and 14 of culture and their numbers, phenotype, and cytolytic activity were assessed. The levels of pro- and inflammatory cytokines/chemokines in the plasma and supernatants of the cultured cells were analyzed by Luminex. RESULTS In healthy subjects, the addition of IL-12 to ZOL/IL2-stimulated PBMCs increased the expansion and the cytotoxic activity of Vγ9+Vδ2+ T cells on days 7 and 14 of culture. The latter was measured by the expression level of the cytolytic molecules granzyme B (GZB) and perforin (PER). Of note, αβ CD8 + T cells were also activated under the same condition but with a lesser extent addition of IL-12 to ZOL/IL2-stimulated PBMCs from cancer patients also induced similar effects but were lower than in control subjects. Interestingly, ZOL/IL2/IL12-treated PBMCs showed higher levels of cytokines/chemokines, in particular, CCL, CCL4, GM-CSF, IL-1rα; IL-12, IL-13, TNF, and IFNγ measured on days 7 and 14. CONCLUSION The addition of IL12 at the start of the expansion protocol can enhance the activity of γδ T cells which might be mediated in part by the activation of αβ T cells.
Collapse
Affiliation(s)
- Lobna Assy
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Sohaila M Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt.
| |
Collapse
|
15
|
Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8 + T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation. Int J Mol Sci 2022; 23:ijms232214122. [PMID: 36430600 PMCID: PMC9698886 DOI: 10.3390/ijms232214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
Collapse
|
16
|
Chang A, Sholukh AM, Wieland A, Jaye DL, Carrington M, Huang ML, Xie H, Jerome KR, Roychoudhury P, Greninger AL, Koff JL, Cohen JB, Koelle DM, Corey L, Flowers CR, Ahmed R. Herpes simplex virus lymphadenitis is associated with tumor reduction in a patient with chronic lymphocytic leukemia. J Clin Invest 2022; 132:e161109. [PMID: 35862190 PMCID: PMC9479599 DOI: 10.1172/jci161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Hong Xie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - Jonathon B. Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - David M. Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
| | | | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| |
Collapse
|
17
|
Significance of bystander T cell activation in microbial infection. Nat Immunol 2022; 23:13-22. [PMID: 34354279 DOI: 10.1038/s41590-021-00985-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.
Collapse
|
18
|
Lefevre M, Nosbaum A, Rozieres A, Lenief V, Mosnier A, Cortial A, Prieux M, De Bernard S, Nourikyan J, Jouve P, Buffat L, Hacard F, Ferrier‐Lebouedec M, Pralong P, Dzviga C, Herman A, Baeck M, Nicolas J, Vocanson M. Unique molecular signatures typify skin inflammation induced by chemical allergens and irritants. Allergy 2021; 76:3697-3712. [PMID: 34174113 DOI: 10.1111/all.14989] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Skin exposure to chemicals may induce an inflammatory disease known as contact dermatitis (CD). Distinguishing the allergic and irritant forms of CD often proves challenging in the clinic. METHODS To characterize the molecular signatures of chemical-induced skin inflammation, we conducted a comprehensive transcriptomic analysis on the skin lesions of 47 patients with positive patch tests to reference contact allergens and nonallergenic irritants. RESULTS A clear segregation was observed between allergen- and irritant-induced gene profiles. Distinct modules pertaining to the epidermal compartment, metabolism, and proliferation were induced by both contact allergens and irritants; whereas only contact allergens prompted strong activation of adaptive immunity, notably of cytotoxic T-cell responses. Our results also confirmed that: (a) unique pathways characterize allergen- and irritant-induced dermatitis; (b) the intensity of the clinical reaction correlates with the magnitude of immune activation. Finally, using a machine-learning approach, we identified and validated several minimal combinations of biomarkers to distinguish contact allergy from irritation. CONCLUSION These results highlight the value of molecular profiling of chemical-induced skin inflammation for improving the diagnosis of allergic versus irritant contact dermatitis.
Collapse
Affiliation(s)
- Marine‐Alexia Lefevre
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Dermatology and Allergology Centre Hospitalier Universitaire de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Audrey Nosbaum
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | - Aurore Rozieres
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Vanina Lenief
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Amandine Mosnier
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Angèle Cortial
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Margaux Prieux
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | | | | | | | | | - Florence Hacard
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | | | - Pauline Pralong
- Department of Dermatology, Allergology and Photobiology Centre Hospitalier Universitaire Grenoble Alpes La Tronche France
| | - Charles Dzviga
- Department of Dermatology and Allergology Centre Hospitalier Universitaire de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Anne Herman
- Department of Dermatology Cliniques universitaires Saint‐Luc Université Catholique de Louvain Brussels Belgium
| | - Marie Baeck
- Department of Dermatology Cliniques universitaires Saint‐Luc Université Catholique de Louvain Brussels Belgium
| | - Jean‐François Nicolas
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | - Marc Vocanson
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| |
Collapse
|
19
|
Van Den Eeckhout B, Huyghe L, Van Lint S, Burg E, Plaisance S, Peelman F, Cauwels A, Uzé G, Kley N, Gerlo S, Tavernier J. Selective IL-1 activity on CD8 + T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer 2021; 9:jitc-2021-003293. [PMID: 34772757 PMCID: PMC8593706 DOI: 10.1136/jitc-2021-003293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 01/31/2023] Open
Abstract
Background Clinical success of therapeutic cancer vaccines depends on the ability to mount strong and durable antitumor T cell responses. To achieve this, potent cellular adjuvants are highly needed. Interleukin-1β (IL-1β) acts on CD8+ T cells and promotes their expansion and effector differentiation, but toxicity and undesired tumor-promoting side effects hamper efficient clinical application of this cytokine. Methods This ‘cytokine problem’ can be solved by use of AcTakines (Activity-on-Target cytokines), which represent fusions between low-activity cytokine mutants and cell type-specific single-domain antibodies. AcTakines deliver cytokine activity to a priori selected cell types and as such evade toxicity and unwanted off-target side effects. Here, we employ subcutaneous melanoma and lung carcinoma models to evaluate the antitumor effects of AcTakines. Results In this work, we use an IL-1β-based AcTakine to drive proliferation and effector functionality of antitumor CD8+ T cells without inducing measurable toxicity. AcTakine treatment enhances diversity of the T cell receptor repertoire and empowers adoptive T cell transfer. Combination treatment with a neovasculature-targeted tumor necrosis factor (TNF) AcTakine mediates full tumor eradication and establishes immunological memory that protects against secondary tumor challenge. Interferon-γ was found to empower this AcTakine synergy by sensitizing the tumor microenvironment to TNF. Conclusions Our data illustrate that anticancer cellular immunity can be safely promoted with an IL-1β-based AcTakine, which synergizes with other immunotherapies for efficient tumor destruction.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gilles Uzé
- IRMB, University Montpellier, INSERM, CNRS, Montpellier, France
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, Massachusetts, USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Orionis Biosciences Inc, Waltham, Massachusetts, USA
| |
Collapse
|
20
|
Boutet M, Benet Z, Guillen E, Koch C, M’Homa Soudja S, Delahaye F, Fooksman D, Lauvau G. Memory CD8 + T cells mediate early pathogen-specific protection via localized delivery of chemokines and IFNγ to clusters of monocytes. SCIENCE ADVANCES 2021; 7:eabf9975. [PMID: 34516896 PMCID: PMC8442869 DOI: 10.1126/sciadv.abf9975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
While cognate antigen drives clonal expansion of memory CD8+ T (CD8+ TM) cells to achieve sterilizing immunity in immunized hosts, not much is known on how cognate antigen contributes to early protection before clonal expansion occurs. Here, using distinct models of immunization, we establish that cognate antigen recognition by CD8+ TM cells on dendritic cells initiates their rapid and coordinated production of a burst of CCL3, CCL4, and XCL1 chemokines under the transcriptional control of interferon (IFN) regulatory factor 4. Using intravital microscopy imaging, we reveal that CD8+ TM cells undergo antigen-dependent arrest in splenic red pulp clusters of CCR2+Ly6C+ monocytes to which they deliver IFNγ and chemokines. IFNγ enables chemokine-induced microbicidal activities in monocytes for protection. Thus, rapid and effective CD8+ TM cell responses require spatially and temporally coordinated events that quickly restrict microbial pathogen growth through the local delivery of activating chemokines to CCR2+Ly6C+ monocytes.
Collapse
Affiliation(s)
- Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zachary Benet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik Guillen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Caroline Koch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Saidi M’Homa Soudja
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Institut Pasteur de Lille, UMR1283/8199, 59000 Lille, France
| | - David Fooksman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
21
|
Muñoz M, Hegazy AN, Brunner TM, Holecska V, Marek RM, Fröhlich A, Löhning M. Th2 cells lacking T-bet suppress naive and memory T cell responses via IL-10. Proc Natl Acad Sci U S A 2021; 118:e2002787118. [PMID: 33526653 PMCID: PMC8017670 DOI: 10.1073/pnas.2002787118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exacerbated immune responses and loss of self-tolerance lead to the development of autoimmunity and immunopathology. Novel therapies to target autoreactive T cells are still needed. Here, we report that Th2-polarized T cells lacking the transcription factor T-bet harbor strong immunomodulatory potential and suppress antigen-specific CD8+ T cells via IL-10. Tbx21-/- Th2 cells protected mice against virus-induced type 1 diabetes development and suppressed not only naive but also memory CD8+ T cell responses. IL-10-producing, but not IL-10-deficient Tbx21-/- Th2 cells down-regulated costimulatory molecules on dendritic cells and reduced their IL-12 production after lymphocytic choriomeningitis virus infection. Impaired dendritic cell activation hindered effector and cytotoxic CD8+ T cell development after infection. These findings indicate that Tbx21-/- Th2 cells strongly suppress proinflammatory responses of naive and memory T cells via IL-10. Thus, in vivo IL-10-secreting Th2 cells could harbor a therapeutic potential for the treatment of T cell-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Melba Muñoz
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
| | - Ahmed N Hegazy
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Vivien Holecska
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Roman M Marek
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Anja Fröhlich
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| |
Collapse
|
22
|
Guo J, Yu Z, Sun D, Zou Y, Liu Y, Huang L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer 2021; 20:10. [PMID: 33407548 PMCID: PMC7786897 DOI: 10.1186/s12943-020-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND FOLFOX is a combinational regimen of folinic acid (FnA, FOL), fluorouracil (5-Fu, F) and oxaliplatin (OxP, OX), and has been long considered as the standard treatment of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Recent developments of nano delivery systems have provided profound promise for improving anticancer efficacy and alleviating side effects of FOLFOX. Previously, a nanoformulation (termed Nano-Folox) containing OxP derivative and FnA was developed in our laboratory using nanoprecipitation technique. Nano-Folox induced OxP-mediated immunogenic cell death (ICD)-associated antitumor immunity, which significantly suppressed tumor growth in the orthotopic CRC mouse model when administrated in combination with free 5-Fu. METHODS A nanoformulation (termed Nano-FdUMP) containing FdUMP (5-Fu active metabolite) was newly developed using nanoprecipitation technique and used in combination with Nano-Folox for CRC and HCC therapies. RESULTS Synergistic efficacy was achieved in orthotopic CRC and HCC mouse models. It resulted mainly from the fact that Nano-FdUMP mediated the formation of reactive oxygen species (ROS), which promoted the efficacy of ICD elicited by Nano-Folox. In addition, combination of Nano-Folox/Nano-FdUMP and anti-PD-L1 antibody significantly inhibited CRC liver metastasis, leading to long-term survival in mice. CONCLUSION This study provides proof of concept that combination of two nano delivery systems can result in successful FOLFOX-associated CRC and HCC therapies. Further optimization in terms of dosing and timing will enhance clinical potential of this combination strategy for patients.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Liao W, Liu Y, Ma C, Wang L, Li G, Mishra S, Srinivasan S, Fan KKH, Wu H, Li Q, Zhao M, Liu X, Demel EL, Zhang X, Qiu Y, Lu Q, Zhang N. The downregulation of IL-18R defines bona fide kidney-resident CD8 + T cells. iScience 2021; 24:101975. [PMID: 33474536 PMCID: PMC7803637 DOI: 10.1016/j.isci.2020.101975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Stepwise induction of CD69 and CD103 marks distinct differentiation stages of mucosal Trms. But the majority of non-mucosal Trm lacks CD103 expression. The expression of CD69 alone cannot faithfully define Trm cells in heavily vascularized non-mucosal tissues, such as the kidney. Here, we found that a subset of kidney Trms downregulated IL-18 receptor during differentiation. Via global transcriptional analysis and parabiosis experiments, we have discovered that the downregulation of interleukin-18 receptor (IL-18R) is associated with the establishment of tissue residency. Together with the expression of CD69, IL-18Rlo exclusively identify tissue-resident cells whereas IL-18Rhi population contains both tissue-resident and migratory ones. Local cytokines including transforming growth factor β (TGF-β) and interferon α (IFN-α)/β as well as TGF-β-dependent suppression of transcription factor Tcf-1 are essential for IL-18R downregulation during kidney Trm differentiation. Together, we identified a convenient surface marker to distinguish bona fide kidney-resident CD8+ T cells as well as underlying molecular mechanisms controlling this differentiation process. CD8+ Trm cells downregulate IL-18 receptor during differentiation IL-18Rhi population is composed of both migratory and resident subsets IL-18Rlo population is exclusively tissue-resident TGF-β promotes, whereas IFN-α/β inhibits, IL-18R downregulation
Collapse
Affiliation(s)
- Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yong Liu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Guo Li
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kenneth Ka-Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianwen Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xun Liu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Erika L Demel
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
24
|
Gonçalves P, El Daker S, Vasseur F, Serafini N, Lim A, Azogui O, Decaluwe H, Guy-Grand D, Freitas AA, Di Santo JP, Rocha B. Microbiota stimulation generates LCMV-specific memory CD8 + T cells in SPF mice and determines their TCR repertoire during LCMV infection. Mol Immunol 2020; 124:125-141. [PMID: 32563081 DOI: 10.1016/j.molimm.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Both mouse and human harbour memory phenotype CD8+ T cells specific for antigens in hosts that have not been previously exposed to these antigens. The origin and the nature of the stimuli responsible for generation of CD44hi CD8+ T cells in specific pathogen-free (SPF) mice remain controversial. It is known that microbiota plays a crucial role in the prevention and resolution of systemic infections by influencing myelopoiesis, regulating dendritic cells, inflammasome activation and promoting the production of type I and II interferons. By contrast, here we suggest that microbiota has a direct effect on generation of memory phenotype CD44hiGP33+CD8+ T cells. In SPF mice, it generates a novel GP33+CD44hiCD8+ T cell sub-population associating the properties of innate and genuine memory cells. These cells are highly enriched in the bone marrow, proliferate rapidly and express immediate effector functions. They dominate the response to LCMV and express particular TCRβ chains. The sequence of these selected TCRβ chains overlaps with that of GP33+CD8+ T cells directly selected by microbiota in the gut epithelium of SPF mice, demonstrating a common selection mechanism in gut and peripheral CD8+ T cell pool. Therefore microbiota has a direct role in priming T cell immunity in SPF mice and in the selection of TCRβ repertoires during systemic infection. We identify a mechanism that primes T cell immunity in SPF mice and may have a major role in colonization resistance and protection from infection.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France; Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France.
| | - Sary El Daker
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Florence Vasseur
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Nicolas Serafini
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | | | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Helene Decaluwe
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Delphine Guy-Grand
- INSERM U1223, Paris 75015, France; Lymphopoiesis Unit, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris 75015, France
| | - Antonio A Freitas
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | - Benedita Rocha
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France.
| |
Collapse
|
25
|
Relaxin-FOLFOX-IL-12 triple combination therapy engages memory response and achieves long-term survival in colorectal cancer liver metastasis. J Control Release 2019; 319:213-221. [PMID: 31899270 DOI: 10.1016/j.jconrel.2019.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Induction of memory T cell response is inefficient in colorectal cancer (CRC) liver metastasis following existing therapies due to abundant stroma and immunosuppressive environment within the metastatic liver, which leads to fast disease progression, high recurrence rate, and short survival. Two fundamental steps are involved to elicit extensive memory T cell response: stimulation of naive T cells with robust and persistent antigen signals; and maintenance of differentiated memory T cells with survival factors. Here, we demonstrate a rational design of triple combination regimen, including relaxin (RLN), FOLFOX (combination of 5-fluorouracil, leucovorin, and oxaliplatin), and IL-12, successfully stimulates central memory T cells and achieves long-term survival in an aggressive experimental CRC liver metastasis model. Sequential administration of FOLFOX and IL-12 gene therapy following stromal deactivation by RLN gene therapy completely cured established CRC liver metastases in ~50% of mice and provided long-lasting protection against tumor recurrence. The study here may highlight the potential of evoking memory response as a curative therapy for the treatment of CRC liver metastasis.
Collapse
|
26
|
Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, Grande S, Redoulès D, Schmitt AM, Nicolas JF, Vocanson M. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J Allergy Clin Immunol 2019; 143:2147-2157.e9. [DOI: 10.1016/j.jaci.2018.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
|
27
|
Unique Type I Interferon, Expansion/Survival Cytokines, and JAK/STAT Gene Signatures of Multifunctional Herpes Simplex Virus-Specific Effector Memory CD8 + T EM Cells Are Associated with Asymptomatic Herpes in Humans. J Virol 2019; 93:JVI.01882-18. [PMID: 30487281 DOI: 10.1128/jvi.01882-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/23/2023] Open
Abstract
A large proportion of the world population harbors herpes simplex virus 1 (HSV-1), a major cause of infectious corneal blindness. HSV-specific CD8+ T cells protect from herpesvirus infection and disease. However, the genomic, phenotypic, and functional characteristics of CD8+ T cells associated with the protection seen in asymptomatic (ASYMP) individuals, who, despite being infected, never experienced any recurrent herpetic disease, remains to be fully elucidated. In this investigation, we compared the phenotype, function, and level of expression of a comprehensive panel of 579 immune genes of memory CD8+ T cells, sharing the same HSV-1 epitope specificities, and freshly isolated peripheral blood from well-characterized cohorts of protected ASYMP and nonprotected symptomatic (SYMP) individuals, with a history of numerous episodes of recurrent herpetic disease, using the high-throughput digital NanoString nCounter system and flow cytometry. Interestingly, our results demonstrated that memory CD8+ T cells from ASYMP individuals expressed a unique set of genes involved in expansion and survival, type I interferon (IFN-I), and JAK/STAT pathways. Frequent multifunctional HSV-specific effector memory CD62Llow CD44high CD8+ TEM cells were detected in ASYMP individuals compared to more of monofunctional central memory CD62Lhigh CD44high CD8+ TCM cells in SYMP individuals. Shedding light on the genotype, phenotype, and function of antiviral CD8+ T cells from "naturally protected" ASYMP individuals will help design future T-cell-based ocular herpes immunotherapeutic vaccines.IMPORTANCE A staggering number of the world population harbors herpes simplex virus 1 (HSV-1) potentially leading to blinding recurrent herpetic disease. While the majority are asymptomatic (ASYMP) individuals who never experienced any recurrent herpetic disease, symptomatic (SYMP) individuals have a history of numerous episodes of recurrent ocular herpetic disease. This study elucidates the phenotype, the effector function, and the gene signatures of memory CD8+ T-cell populations associated with protection seen in ASYMP individuals. Frequent multifunctional HSV-specific effector memory CD8+ TEM cells were detected in ASYMP individuals. In contrast, nonprotected SYMP individuals had more central memory CD8+ TCM cells. The memory CD8+ TEM cells from ASYMP individuals expressed unique gene signatures characterized by higher levels of type I interferon (IFN), expansion and expansion/survival cytokines, and JAK/STAT pathways. Future studies on the genotype, phenotype, and function of antiviral CD8+ T cells from "naturally protected" ASYMP individuals will help in the potential design of T-cell-based ocular herpes vaccines.
Collapse
|
28
|
Pando A, Reagan JL, Nevola M, Fast LD. Induction of anti-leukemic responses by stimulation of leukemic CD3+ cells with allogeneic stimulator cells. Exp Hematol Oncol 2018; 7:25. [PMID: 30323982 PMCID: PMC6172765 DOI: 10.1186/s40164-018-0118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023] Open
Abstract
Background Immunotherapeutic protocols have focused on identification of stimuli that induce effective anti-leukemic immune responses. One potent immune stimulus is the encounter with allogeneic cells. Our group previously showed that the infusion of haploidentical donor white blood cells (1-2 × 108 CD3+ cells/kg) into patients with refractory hematological malignancies induced responses of varying magnitude in over half of the patients. Because donor cells were eliminated within 2 weeks in these patients, it is presumed that the responses of recipient lymphocytes were critically important in achieving prolonged anti-leukemic responses. Methods The role of patient CD3+ cells in anti-leukemic responses was examined by isolating peripheral blood mononuclear cells from newly diagnosed leukemic patients. Immunophenotyping was performed on these peripheral blood mononuclear cells. CD3+ cells were isolated from the peripheral blood mononuclear cells and tested for their ability to proliferate and lyse autologous leukemic cells when stimulated with unrelated allogeneic cells. Results Allostimulated CD3+ cells effectively generated cytolytic responses to autologous CD3-cells in 11/21 patients. Increased numbers of CD4+ cells expressing high levels of granzyme A, B and perforin and CD8+CD39+ cells were found in nonresponsive CD3+ cells. Conclusions These results indicate that CD3+ cells from leukemic patients are capable of generating anti-leukemic responses when stimulated with unrelated allogeneic cells. This model can be used to identify approaches using alloreactive responses by patient lymphocytes to enhance in vivo anti-leukemic responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Martha Nevola
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Loren D Fast
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| |
Collapse
|
29
|
Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. T cell exhaustion implications during transplantation. Immunol Lett 2018; 202:52-58. [PMID: 30130559 DOI: 10.1016/j.imlet.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Exhaustion of lymphocyte function, particularly T cell exhaustion, due to prolonged exposure to a high load of foreign antigen is commonly seen during chronic viral infection as well as antitumor immune responses. This phenomenon has been associated with a determined molecular mechanism and phenotypic manifestations on the cell surface. In spite of investigation of exhaustion, mostly about CD8 responses toward viral infections, recent studies have reported that chronic exposure to antigen may develop exhaustion in CD4 + T cells, B cells, and NK cells. Little is known with respect to lymphocyte exhaustion during transplantation and its effect on aberrant anti-graft responses. Through a same mechanobiology observed during chronic exposure of foreign viral antigens, alloantigen persistence mediated by allograft could develop a favorable circumstance for exhaustion of T cells responding to allograft. However, to achieve better manipulation approaches of this event to reduce the complications during transplantation, we need to be armed with a bulk of knowledge with regard to quality and quantity of T cell exhaustion occurring in various allografts, the kinetics of exhaustion development, the impression of immunosuppressive agents on the exhaustion, and the influence of exhaustion on graft survival and immune tolerance.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Soltanzadeh-Yamchi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
30
|
Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells. Oncotarget 2018; 8:45928-45942. [PMID: 28521284 PMCID: PMC5542238 DOI: 10.18632/oncotarget.17498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells.
Collapse
|
31
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
32
|
Abstract
Abnormal immune activation and expansion of CD8+ T cells, especially of memory and effector phenotypes, take place during HIV-1 infection, and these abnormal features persist during administration of antiretroviral therapy (ART) to infected patients. The molecular mechanisms for CD8+ T-cell expansion remain poorly characterized. In this article, we review the literature addressing features of CD8+ T-cell immune pathology and present an integrated view on the mechanisms leading to abnormal CD8+ T-cell expansion during HIV-1 infection. The expression of molecules important for directing the homing of CD8+ T cells between the circulation and lymphoid tissues, in particular CCR5 and CXCR3, is increased in CD8+ T cells in circulation and in inflamed tissues during HIV-1 infection; these disturbances in the homing capacity of CD8+ T cells have been linked to increased CD8+ T-cell proliferation. The production of IL-15, a cytokine responsible for physiological proliferation of CD8+ T cells, is increased in lymphoid tissues during HIV-1 infection as result of microbial translocation and severe inflammation. IL-15, and additional inflammatory cytokines, may lead to deregulated proliferation of CD8+ T cells and explain the accumulation of CD8+ T cells in circulation. The decreased capacity of CD8+ T cells to localize to gut-associated lymphoid tissue also contributes to the accumulation of these cells in blood. Control of inflammation, through ART administration during primary HIV-1 infection or therapies aimed at controlling inflammation during HIV-1 infection, is pivotal to prevent abnormal expansion of CD8+ T cells during HIV-1 infection.
Collapse
Affiliation(s)
- A Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - F Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Tsuda H, Su CA, Tanaka T, Ayasoufi K, Min B, Valujskikh A, Fairchild RL. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells. JCI Insight 2018; 3:96940. [PMID: 29467328 PMCID: PMC5916254 DOI: 10.1172/jci.insight.96940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade-induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig-resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig-resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell-graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
| | - Charles A. Su
- Lerner Research Institute and
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Toshiaki Tanaka
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
| | | | | | | | - Robert L. Fairchild
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Passarelli A, Mannavola F, Stucci LS, Tucci M, Silvestris F. Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget 2017; 8:106132-106142. [PMID: 29285320 PMCID: PMC5739707 DOI: 10.18632/oncotarget.22190] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of “targeted therapies” on tumor microenvironment for combination strategies.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
35
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
36
|
Guo J, Guo X, Wang Y, Tian F, Luo W, Zou Y. Cytokine response to Hantaan virus infection in patients with hemorrhagic fever with renal syndrome. J Med Virol 2017; 89:1139-1145. [PMID: 27943332 DOI: 10.1002/jmv.24752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022]
Abstract
Hantaan virus (HTNV) infection of the human body causes a severe acute infectious disease known as hemorrhagic fever renal syndrome (HFRS). The aim of this study was to correlate patient cytokine profiles to HFRS severity. In this study, we discuss the clinical significance of evaluating HFRS treatment outcomes using cytokine information. The levels of 18 cytokines were quantitatively determined in three groups: 34 HTNV IgM+ cases, 63 HTNV IgM- negative cases, and 78 healthy volunteers. The level of 14 serum cytokines were higher in the patient group than that in the healthy control group. In the 34 HTNV IgM+ patient sera, a set of 27 cytokines was further assessed. The cytokines of TNF-β, IL-1ra, and IL-6 were detected at higher level in the IgM+ group than that in the IgM- group. The deterioration of HFRS was accompanied with multiple cytokines increased, such as IL-1ra, IL-12p70, IL-10, IP-10, IL-17, IL-2, and IL-6. Our data indicate that serum cytokine levels are associated with the progression of HFRS.
Collapse
Affiliation(s)
- Jing Guo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Immunology, School of Medicine, Ji Shou University, Hunan, China
| | - Xuli Guo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Weiguang Luo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province, Hunan, China
| |
Collapse
|
37
|
Li Y, Wu Y, Zheng X, Cong J, Liu Y, Li J, Sun R, Tian ZG, Wei HM. Cytoplasm-Translocated Ku70/80 Complex Sensing of HBV DNA Induces Hepatitis-Associated Chemokine Secretion. Front Immunol 2016; 7:569. [PMID: 27994596 PMCID: PMC5136554 DOI: 10.3389/fimmu.2016.00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious disease, mainly due to its severe pathological consequences, which are difficult to cure using current therapies. When the immune system responds to hepatocytes experiencing rapid HBV replication, effector cells (such as HBV-specific CD8+ T cells, NK cells, NKT cells, and other subtypes of immune cells) infiltrate the liver and cause hepatitis. However, the precise recruitment of these cells remains unclear. In the present study, we found that the cytoplasm-translocated Ku70/80 complex in liver-derived cells sensed cytosolic HBV DNA and promoted hepatitis-associated chemokine secretion. Upon sensing HBV DNA, DNA-dependent protein kinase catalytic subunit and PARP1 were assembled. Then, IRF1 was activated and translocated into the nucleus, which upregulated CCL3 and CCL5 expression. Because CCR5, a major chemokine receptor for CCL3 and CCL5, is known to be critical in hepatitis B, Ku70/80 sensing of HBV DNA likely plays a critical role in immune cell recruitment in response to HBV infection.
Collapse
Affiliation(s)
- Young Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yang Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Jingjing Cong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Zhigang G Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Haiming M Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
38
|
Brinza L, Djebali S, Tomkowiak M, Mafille J, Loiseau C, Jouve PE, de Bernard S, Buffat L, Lina B, Ottmann M, Rosa-Calatrava M, Schicklin S, Bonnefoy N, Lauvau G, Grau M, Wencker M, Arpin C, Walzer T, Leverrier Y, Marvel J. Immune signatures of protective spleen memory CD8 T cells. Sci Rep 2016; 6:37651. [PMID: 27883012 PMCID: PMC5121635 DOI: 10.1038/srep37651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023] Open
Abstract
Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.
Collapse
Affiliation(s)
- Lilia Brinza
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Sophia Djebali
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Martine Tomkowiak
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Julien Mafille
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Céline Loiseau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | | | | | | | - Bruno Lina
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France.,Laboratoire de Virologie, CNR des virus influenza, Hospices Civils de Lyon, Lyon, France
| | - Michèle Ottmann
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Manuel Rosa-Calatrava
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Stéphane Schicklin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U896; Université Montpellier 1; CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | - Morgan Grau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Mélanie Wencker
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Christophe Arpin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Yann Leverrier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| |
Collapse
|
39
|
Vacaflores A, Freedman SN, Chapman NM, Houtman JCD. Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production. Mol Immunol 2016; 81:1-15. [PMID: 27883938 DOI: 10.1016/j.molimm.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 10/24/2022]
Abstract
During the immune response to pathogens and autoantigens, CD8T cells are exposed to numerous inflammatory agents including the cytokine IL-12. Previous studies have focused on how IL-12 regulates T cell functions when present during or after the activation of the T cell receptor (TCR). However, recent studies suggest that prior exposure to IL-12 also alters the TCR responsiveness of murine T cells. Whether similar phenomena occur in human activated CD8T cells and the mechanisms mediating these effects remain unexplored. In this study, we observed that pretreatment of human activated CD8T cells with IL-12 results in increased cytokine mRNA and protein production following subsequent TCR challenge. The potentiation of TCR-mediated cytokine release was transient and required low doses of IL-12 for at least 24h. Mechanistically, prior exposure to IL-12 increased the TCR induced activation of select MAPKs and AKT without altering the activation of more proximal TCR signaling molecules, suggesting that the IL-12 mediated changes in TCR signaling are responsible for the increased production of cytokines. Our data suggest that prior treatment with IL-12 potentiates human CD8T cell responses at sites of infection and inflammation, expanding our understanding of the function of this clinically important cytokine.
Collapse
Affiliation(s)
- Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
40
|
Hosking MP, Flynn CT, Whitton JL. TCR independent suppression of CD8(+) T cell cytokine production mediated by IFNγ in vivo. Virology 2016; 498:69-81. [PMID: 27564543 PMCID: PMC5045820 DOI: 10.1016/j.virol.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023]
Abstract
CD8(+) memory T cells produce IFNγ within hours of secondary infection, but this is quickly terminated in vivo despite the presence of stimulatory viral antigen, suggesting that active suppression occurs. Herein, we investigated the in vivo effector function of CD8(+) memory T cells during successive encounters with viral antigen. CD8(+) T cells in immune mice receiving prior viral or peptide challenge failed to reproduce IFNγ during LCMV rechallenge. Surprisingly, this refractory state was induced even in memory cells that had not encountered their cognate antigen, indicating that the silencing of CD8(+) T cell responses is TCR-independent. Direct injection of IFNγ also suppressed the ability of virus-specific memory cells to respond to subsequent viral challenge. We propose the existence of a negative feedback loop whereby IFNγ, produced by memory CD8(+) T cells to combat viral challenge, acts - directly or indirectly - to limit its further production.
Collapse
Affiliation(s)
- Martin P Hosking
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Claudia T Flynn
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - J Lindsay Whitton
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Abstract
Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the “innate nature” of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the “unconventional” and the “conventional” memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
- * E-mail: (GL); (SG)
| | - Stanislas Goriely
- WELBIO and Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail: (GL); (SG)
| |
Collapse
|
42
|
Billroth-MacLurg AC, Ford J, Rosenberg A, Miller J, Fowell DJ. Regulatory T Cell Numbers in Inflamed Skin Are Controlled by Local Inflammatory Cues That Upregulate CD25 and Facilitate Antigen-Driven Local Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2208-18. [PMID: 27511734 PMCID: PMC5157695 DOI: 10.4049/jimmunol.1502575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) are key immune suppressors that regulate immunity in diverse tissues. The tissue and/or inflammatory signals that influence the magnitude of the Treg response remain unclear. To define signals that promote Treg accumulation, we developed a simple system of skin inflammation using defined Ags and adjuvants that induce distinct cytokine milieus: OVA protein in CFA, aluminum salts (Alum), and Schistosoma mansoni eggs (Sm Egg). Polyclonal and Ag-specific Treg accumulation in the skin differed significantly between adjuvants. CFA and Alum led to robust Treg accumulation, with >50% of all skin CD4(+) T cells being Foxp3(+) In contrast, Tregs accumulated poorly in the Sm Egg-inflamed skin. Surprisingly, we found no evidence of inflammation-specific changes to the Treg gene program between adjuvant-inflamed skin types, suggesting a lack of selective recruitment or adaptation to the inflammatory milieu. Instead, Treg accumulation patterns were linked to differences in CD80/CD86 expression by APC and the regulation of CD25 expression, specifically in the inflamed skin. Inflammatory cues alone, without cognate Ag, differentially supported CD25 upregulation (CFA and Alum > Sm Egg). Only in inflammatory milieus that upregulated CD25 did the provision of Ag enhance local Treg proliferation. Reduced IL-33 in the Sm Egg-inflamed environment was shown to contribute to the failure to upregulate CD25. Thus, the magnitude of the Treg response in inflamed tissues is controlled at two interdependent levels: inflammatory signals that support the upregulation of the important Treg survival factor CD25 and Ag signals that drive local expansion.
Collapse
Affiliation(s)
- Alison C Billroth-MacLurg
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
43
|
Seedhom MO, Hickman HD, Wei J, David A, Yewdell JW. Protein Translation Activity: A New Measure of Host Immune Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1498-506. [PMID: 27385780 DOI: 10.4049/jimmunol.1600088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
Abstract
We describe the in vivo ribopuromycylation (RPM) method, which uses a puromycin-specific Ab to fluorescently label ribosome-bound puromycylated nascent chains, enabling measurement of translational activity via immunohistochemistry or flow cytometry. Tissue staining provides a unique view of virus-induced activation of adaptive, innate, and stromal immune cells. RPM flow precisely quantitates virus-induced activation of lymphocytes and innate immune cells, and it provides a unique measure of immune cell deactivation and quiescence. Using RPM we find that high endothelial cells in draining lymph nodes rapidly increase translation in the first day of vaccinia virus infection. We also find a population of constitutively activated splenic T cells in naive mice and further that most bone marrow T cells activate 3 d after vaccinia virus infection. Bone marrow T cell activation is nonspecific, IL-12-dependent, and induces innate memory T cell phenotypic markers. Thus, RPM measures translational activity to uniquely identify cell populations that participate in the immune response to pathogens, other foreign substances, and autoantigens.
Collapse
Affiliation(s)
- Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexandre David
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A, Wagner I, Drexler I, Pinschewer D, Korn T, Merkler D. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J Exp Med 2016; 213:1571-87. [PMID: 27377586 PMCID: PMC4986533 DOI: 10.1084/jem.20151916] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
During viral infections, brain tissue–resident memory T cells (bTRM) prevent fatal brain infection after acquiring perforin- and IFN-γ–dependent effector functions through a pathway that involves presentation of cognate antigen on MHC-I. Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8+ memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ–dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity.
Collapse
Affiliation(s)
- Karin Steinbach
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Andreas Muschaweckh
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| | - Ingo Drexler
- Institute of Virology, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Daniel Pinschewer
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Doron Merkler
- Departement de Pathologie et Immunologie, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Serbanescu MA, Ramonell KM, Hadley A, Margoles LM, Mittal R, Lyons JD, Liang Z, Coopersmith CM, Ford ML, McConnell KW. Attrition of memory CD8 T cells during sepsis requires LFA-1. J Leukoc Biol 2016; 100:1167-1180. [PMID: 27286793 DOI: 10.1189/jlb.4a1215-563rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 12/29/2022] Open
Abstract
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69+CD25intCD62LHI) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain "unactivated" (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis.
Collapse
Affiliation(s)
- Mara A Serbanescu
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kimberly M Ramonell
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Annette Hadley
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay M Margoles
- Department of Infectious Diseases and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Rohit Mittal
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Lyons
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kevin W McConnell
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
46
|
Vacaflores A, Chapman NM, Harty JT, Richer MJ, Houtman JCD. Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism. PLoS One 2016; 11:e0157175. [PMID: 27280403 PMCID: PMC4900534 DOI: 10.1371/journal.pone.0157175] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
Human CD4 T cells are constantly exposed to IL-12 during infections and certain autoimmune disorders. The current paradigm is that IL-12 promotes the differentiation of naïve CD4 T cells into Th1 cells, but recent studies suggest IL-12 may play a more complex role in T cell biology. We examined if exposure to IL-12 alters human CD4 T cell responses to subsequent TCR stimulation. We found that IL-12 pretreatment increased TCR-induced IFN-γ, TNF-α, IL-13, IL-4 and IL-10 production. This suggests that prior exposure to IL-12 potentiates the TCR-induced release of a range of cytokines. We observed that IL-12 mediated its effects through both transcriptional and post-transcriptional mechanisms. IL-12 pretreatment increased the phosphorylation of AKT, p38 and LCK following TCR stimulation without altering other TCR signaling molecules, potentially mediating the increase in transcription of cytokines. In addition, the IL-12-mediated enhancement of cytokines that are not transcriptionally regulated was partially driven by increased oxidative metabolism. Our data uncover a novel function of IL-12 in human CD4 T cells; specifically, it enhances the release of a range of cytokines potentially by altering TCR signaling pathways and by enhancing oxidative metabolism.
Collapse
Affiliation(s)
- Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole M. Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Martin J. Richer
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. D. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Lauvau G, Boutet M, Williams TM, Chin SS, Chorro L. Memory CD8(+) T Cells: Innate-Like Sensors and Orchestrators of Protection. Trends Immunol 2016; 37:375-385. [PMID: 27131432 DOI: 10.1016/j.it.2016.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Abstract
Recent findings have revealed roles for systemic and mucosa-resident memory CD8(+) T cells in the orchestration of innate immune responses critical to host defense upon microbial infection. Here we integrate these findings into the current understanding of the molecular and cellular signals controlling memory CD8(+) T cell reactivation and the mechanisms by which these cells mediate effective protection in vivo. The picture that emerges presents memory CD8(+) T cells as early sensors of danger signals, mediating protective immunity both through licensing of cellular effectors of the innate immune system and via the canonical functions associated with memory T cells. We discuss implications for the development of T cell vaccines and therapies and highlight important areas in need of further investigation.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA.
| | - Marie Boutet
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Tere M Williams
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Shu Shien Chin
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Laurent Chorro
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| |
Collapse
|
48
|
Petrozziello E, Sturmheit T, Mondino A. Exploiting cytokines in adoptive T-cell therapy of cancer. Immunotherapy 2016; 7:573-84. [PMID: 26065481 DOI: 10.2217/imt.15.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adoptive immunotherapy with tumor-reactive autologous T cells, either expanded from tumor specimens or genetically engineered to express tumor-reactive T-cell receptors and chimeric antigen receptors, is holding promising results in clinical trials. Several critical issues have been identified and results underline the possibility to exploit cytokines to further ameliorate the efficacy of current treatment protocols, also encompassing adoptive T-cell therapy. Here we review latest developments on the use of cytokines to better direct the nature of the T-cell infusion product, T-cell function and persistence in vivo, as well as to modulate the tumor microenvironment.
Collapse
Affiliation(s)
- Elisabetta Petrozziello
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Tabea Sturmheit
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy.,Vita-Salute San Raffaele University, San Raffaele Scientific Institute Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| |
Collapse
|
49
|
Goldeck D, Larsen LA, Christiansen L, Christensen K, Hamprecht K, Pawelec G, Derhovanessian E. Genetic Influence on the Peripheral Blood CD4+ T-cell Differentiation Status in CMV Infection. J Gerontol A Biol Sci Med Sci 2016; 71:1537-1543. [PMID: 26755680 DOI: 10.1093/gerona/glv230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022] Open
Abstract
A latent infection with cytomegalovirus (CMV), a ubiquitous beta herpesvirus, is associated with an accumulation of late-differentiated memory T-cells, often accompanied by a reciprocal reduced frequency of early-differentiated cells (commonly also referred to as "naïve"). However, this impact of CMV on T-cell phenotypes is variable between individuals. Our previous findings in a subgroup of participants in the Leiden familial Longevity Study indicated an important role of genetics. For further testing, we have analyzed middle-aged monozygotic (MZ, n = 42) and dizygotic (DZ, n = 39) twin pairs from the Danish Twin Registry for their T-cell differentiation status, assessed by surface expression of CD27, CD28, CD57, and KLRG-1. We observed a significant intraclass correlation between cotwins of MZ, but not DZ pairs for the differentiation status of CD4+ and CD8+ subsets. Classical heritability analysis confirmed a substantial contribution of genetics to the differentiation status of T-cells in CMV infection. The humoral (IgG) response to different CMV antigens also seems to be genetically influenced, suggesting that a similar degree of immune control of the virus in MZ twins might be responsible for their similar T-cell differentiation status. Thus, the way T-cells differentiate in the face of a latent CMV infection, and the parallel humoral responses, both controlling the virus, are genetically influenced.
Collapse
Affiliation(s)
- David Goldeck
- Second Department of Internal Medicine, Center for Medical Research, University of Tübingen Medical School, Germany
| | | | | | - Kaare Christensen
- The Danish Twin Registry, University of Southern Denmark, Odense.,Department of Clinical Genetics and.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Klaus Hamprecht
- Institute of Medical Virology, University of Tübingen, Germany
| | - Graham Pawelec
- Second Department of Internal Medicine, Center for Medical Research, University of Tübingen Medical School, Germany.
| | - Evelyna Derhovanessian
- Second Department of Internal Medicine, Center for Medical Research, University of Tübingen Medical School, Germany.,Present address: BioNTech AG, An der Goldgrube 12, D-55131 Mainz, Germany
| |
Collapse
|
50
|
Regulation of effector and memory CD8(+) T cell function by inflammatory cytokines. Cytokine 2015; 82:16-23. [PMID: 26688544 DOI: 10.1016/j.cyto.2015.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023]
Abstract
Cells communicate with each other through the production and secretion of cytokines, which are integral to the host response to infection. Once recognized by specific cytokine receptors expressed on the cell surface, these exogenous signals direct the biological function of a cell in order to adapt to their microenvironment. CD8(+) T cells are critical immune cells that play an important role in the control and elimination of intracellular pathogens. Current findings have demonstrated that cytokines influence all aspects of the CD8(+) T cell response to infection or immunization. The cytokine milieu induced at the time of activation impacts the overall magnitude and function of the effector CD8(+) T cell response and the generation of functional memory CD8(+) T cells. This review will focus on the impact of inflammatory cytokines on different aspects of CD8(+) T cell biology.
Collapse
|