1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Balla J, Rathore APS, St. John AL. Maternal IgE Influence on Fetal and Infant Health. Immunol Rev 2025; 331:e70029. [PMID: 40281548 PMCID: PMC12032057 DOI: 10.1111/imr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Immunoglobulin E (IgE) is the most recently discovered and evolved mammalian antibody type, best known for interacting with mast cells (MCs) as immune effectors. IgE-mediated antigen sensing by MC provides protection from parasites, venomous animals, bacteria, and other insults to barrier tissues exposed to the environment. IgE and MCs act as inflammation amplifiers and immune response adjuvants. Thus, IgE production and memory formation are greatly constrained and require specific licensing. Failure of regulation gives rise to allergic disease, one of the top causes of chronic illness. Increasing evidence suggests allergy development often starts early in life, including prenatally, with maternal influence being central in shaping the offspring's immune system. Although IgE often exists before birth, an endogenous source of IgE-producing B cells has not been identified. This review discusses the mechanisms of maternal IgE transfer into the offspring, its interactions with offspring MCs and antigen-presenting cells, and the consequences for allergic inflammation and allergen sensitization development. We discuss the multifaceted effects of pre-existing IgG, IgE, and their glycosylation on maternal IgE transfer and functionality in the progeny. Understanding the IgE-mediated mechanisms predisposing for early life allergy development may allow their targeting with existing therapeutics and guide the development of new ones.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Abhay P. S. Rathore
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ashley L. St. John
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- SingHealth Duke‐NUS Global Health InstituteSingaporeSingapore
| |
Collapse
|
3
|
Radhouani M, Farhat A, Hakobyan A, Zahalka S, Pimenov L, Fokina A, Hladik A, Lakovits K, Brösamlen J, Dvorak V, Nunes N, Zech A, Idzko M, Krausgruber T, Köhl J, Uluckan O, Kovarik J, Hoehlig K, Vater A, Eckhard M, Sombke A, Fortelny N, Menche J, Knapp S, Starkl P. Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation. Sci Immunol 2025; 10:eadp6231. [PMID: 40184438 DOI: 10.1126/sciimmunol.adp6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium Staphylococcus aureus persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.
Collapse
Affiliation(s)
- Mariem Radhouani
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Hakobyan
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Sophie Zahalka
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisabeth Pimenov
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Alina Fokina
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Jessica Brösamlen
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | | | - Natalia Nunes
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Andreas Zech
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ozge Uluckan
- Novartis Biomedical Research, Basel, Switzerland
| | - Jiri Kovarik
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jörg Menche
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Philipp Starkl
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
5
|
Chandrakar P, Nelson CS, Podestà MA, Cavazzoni CB, Gempler M, Lee JM, Richardson S, Zhang H, Samarpita S, Ciofani M, Chatila T, Kuchroo VK, Sage PT. Progressively differentiated T FH13 cells are stabilized by JunB to mediate allergen germinal center responses. Nat Immunol 2025; 26:473-483. [PMID: 39891019 DOI: 10.1038/s41590-025-02077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Allergic diseases are common and affect a large proportion of the population. Interleukin-13 (IL-13)-expressing follicular helper T (TFH13) cells are a newly identified population of TFH cells that have been associated with high-affinity IgE responses. However, the origins, developmental signals, transcriptional programming and precise functions of TFH13 cells are unknown. Here, we examined the developmental signals for TFH13 cells and found a direct and progressive differentiation pathway marked by the production of IL-21. These two pathways differed in kinetics and extrinsic requirements. However, both pathways converged, forming transcriptionally similar TFH13 cells that express the transcription factor JunB as a critical stabilizing factor. Using an intersectional genetics-based TFH13-diphtheria toxin receptor model to perturb these cells, we found that TFH13 cells were essential to drive broad germinal center responses and allergen-specific IgG and IgE. Moreover, we found that IL-21 is a broad positive regulator of allergen germinal center B cells and synergizes with IL-13 produced by TFH13 cells to amplify allergic responses. Thus, TFH13 cells orchestrate multiple features of allergic inflammation.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cody S Nelson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel A Podestà
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Gempler
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sierra Richardson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Snigdha Samarpita
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Ciofani
- Department of Integrative Immunology, Duke University Medical Center, Durham, NC, USA
| | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammatory Diseases, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Blank S, Korošec P, Slusarenko BO, Ollert M, Hamilton RG. Venom Component Allergen IgE Measurement in the Diagnosis and Management of Insect Sting Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:1-14. [PMID: 39097146 DOI: 10.1016/j.jaip.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Accurate identification of allergy-eliciting stinging insect(s) is essential to ensuring effective management of Hymenoptera venom-allergic individuals with venom-specific immunotherapy. Diagnostic testing using whole-venom extracts with skin tests and serologic-based analyses remains the first level of discrimination for honeybee versus vespid venom sensitization in patients with a positive clinical history. As a second-level evaluation, serologic testing using molecular venom allergens can further discriminate genuine sensitization (honeybee venom: Api m 1, 3, 4, and 10 vs yellow jacket venom/Polistes dominula venom Ves v 1/Pol d 1 and Ves v 5/Pol d 5) from interspecies cross-reactivity (hyaluronidases [Api m 2, Ves v 2, and Pol d 2] and dipeptidyl peptidases IV [Api m 5, Ves v 3, and Pol d 3]). Clinical laboratories use a number of singleplex, oligoplex, and multiplex immunoassays that employ both extracted whole-venom and molecular venom allergens (highlighted earlier) for confirmation of allergic venom sensitization. Established quantitative singleplex autoanalyzers have general governmental regulatory clearance worldwide for venom-allergic patient testing with maximally achievable analytical sensitivity (0.1 kUA/L) and confirmed reproducibility (interassay coefficient of variation <10%). Emerging oligoplex and multiplex (fixed-panel) assays conserve on serum and are more cost-effective, but they need regulatory clearance in some countries and are prone to higher rates of detecting asymptomatic sensitization. Ultimately, the patient's clinical history, combined with proof of sensitization, is the final arbiter in the diagnosis of Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Benjamin O Slusarenko
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Centre, Odense Research Center for Anaphylaxis, Odense University Hospital, Odense, Denmark
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md.
| |
Collapse
|
8
|
Plum T, Feyerabend TB, Rodewald HR. Beyond classical immunity: Mast cells as signal converters between tissues and neurons. Immunity 2024; 57:2723-2736. [PMID: 39662090 DOI: 10.1016/j.immuni.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Mast cells are regarded as effectors in immune defense against parasites and venoms and play an essential role in the pathology of allergic diseases. More recently, mast cells have been shown to receive stimuli derived from type 2 immunity, tissue damage, stress, and inflammation. Mast cells then rapidly convert these diverse signals into appropriate, organ-specific protective reflexes that can limit inflammation or reduce tissue damage. In this review, we consider functions of mast cells in sensations-such as pain, itch, and nausea-arising from tissue insults and inflammation and the ensuing protective responses. In light of emerging data highlighting the involvement of mast cells in neuroimmune communication, we also propose that mast cells are "signal converters" linking immunological and tissue states with nervous system responses.
Collapse
Affiliation(s)
- Thomas Plum
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
McCraw AJ, Palhares LCGF, Hendel JL, Gardner RA, Santaolalla A, Crescioli S, McDonnell J, Van Hemelrijck M, Chenoweth A, Spencer DIR, Wagner GK, Karagiannis SN. IgE glycosylation and impact on structure and function: A systematic review. Allergy 2024; 79:2625-2661. [PMID: 39099223 DOI: 10.1111/all.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The impact of human IgE glycosylation on structure, function and disease mechanisms is not fully elucidated, and heterogeneity in different studies renders drawing conclusions challenging. Previous reviews discussed IgE glycosylation focusing on specific topics such as health versus disease, FcεR binding or impact on function. We present the first systematic review of human IgE glycosylation conducted utilizing the PRISMA guidelines. We sought to define the current consensus concerning the roles of glycosylation on structure, biology and disease. Despite diverse analytical methodologies, source, expression systems and the sparsity of data on IgE antibodies from non-allergic individuals, collectively evidence suggests differential glycosylation profiles, particularly in allergic diseases compared with healthy states, and indicates functional impact, and contributions to IgE-mediated hypersensitivities and atopic diseases. Beyond allergic diseases, dysregulated terminal glycan structures, including sialic acid, may regulate IgE metabolism. Glycan sites such as N394 may contribute to stabilizing IgE structure, with alterations in these glycans likely influencing both structure and IgE-FcεR interactions. This systematic review therefore highlights critical IgE glycosylation attributes in health and disease that may be exploitable for therapeutic intervention, and the need for novel analytics to explore pertinent research avenues.
Collapse
Affiliation(s)
- Alexandra J McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Jenifer L Hendel
- Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | | | - Aida Santaolalla
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - James McDonnell
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Mieke Van Hemelrijck
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, UK
| | | | - Gerd K Wagner
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, UK
| |
Collapse
|
10
|
Wang X, Zhang P, Tang Y, Chen Y, Zhou E, Gao K. Mast cells: a double-edged sword in inflammation and fibrosis. Front Cell Dev Biol 2024; 12:1466491. [PMID: 39355120 PMCID: PMC11442368 DOI: 10.3389/fcell.2024.1466491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
As one of the key components of the immune system, mast cells are well known for their role in allergic reactions. However, they are also involved in inflammatory and fibrotic processes. Mast cells participate in all the stages of acute inflammatory responses, playing an immunomodulatory role in both innate and adaptive immunity. Mast cell-derived histamine, TNF-α, and IL-6 contribute to the inflammatory processes, while IL-10 mediates the suppression of inflammation. Crosstalk between mast cells and other immune cells is also involved in the development of inflammation. The cell-cell adhesion of mast cells and fibroblasts is crucial for fibrosis. Mast cell mediators, including cytokines and proteases, play contradictory roles in the fibrotic process. Here, we review the double-edged role of mast cells in inflammation and fibrosis.
Collapse
Affiliation(s)
- Xufang Wang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuxin Tang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanlin Chen
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
12
|
Galli SJ. Mast cell β1 integrin localizes mast cells in close proximity to blood vessels and enhances their rapid responsiveness to intravenous antigen. J Allergy Clin Immunol 2024; 154:549-551. [PMID: 39038588 PMCID: PMC11521101 DOI: 10.1016/j.jaci.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University, Stanford, Calif.
| |
Collapse
|
13
|
Wu CC, Ding DS, Lo YH, Pan CY, Wen ZH. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. BIOLOGY 2024; 13:384. [PMID: 38927264 PMCID: PMC11201049 DOI: 10.3390/biology13060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.
Collapse
Affiliation(s)
- Chang-Cheng Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
- Department of Nursing, Shu-Zen Junior of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
14
|
Zielinski CE. T helper cell subsets: diversification of the field. Eur J Immunol 2023; 53:e2250218. [PMID: 36792132 DOI: 10.1002/eji.202250218] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Polarized T helper cell (Th cell) responses are important determinants of host protection. Th cell subsets tailor their functional repertoire of cytokines to their cognate antigens to efficiently contribute to their clearance. In contrast, in settings of immune abrogation, these polarized cytokine patterns of Th cells can mediate tissue damage and pathology resulting in allergy or autoimmunity. Recent technological developments in single-cell genomics and proteomics as well as advances in the high-dimensional bioinformatic analysis of complex datasets have challenged the prevailing Th cell subset classification into Th1, Th2, Th17, and other subsets. Additionally, systems immunology approaches have revealed that instructive input from the peripheral tissue microenvironment can have differential effects on the overall phenotype and molecular wiring of Th cells depending on their spatial distribution. Th cells from the blood or secondary lymphoid organs are therefore expected to follow distinct rules of regulation. In this review, the functional heterogeneity of Th cell subsets will be reviewed in the context of new technological developments and T-cell compartmentalization in tissue niches. This work will especially focus on challenges to the traditional boundaries of Th cell subsets and will discuss the underlying regulatory checkpoints, which could reveal new therapeutic strategies for various immune-mediated diseases.
Collapse
Affiliation(s)
- Christina E Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biosciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
15
|
Tauber M, Basso L, Martin J, Bostan L, Pinto MM, Thierry GR, Houmadi R, Serhan N, Loste A, Blériot C, Kamphuis JB, Grujic M, Kjellén L, Pejler G, Paul C, Dong X, Galli SJ, Reber LL, Ginhoux F, Bajenoff M, Gentek R, Gaudenzio N. Landscape of mast cell populations across organs in mice and humans. J Exp Med 2023; 220:e20230570. [PMID: 37462672 PMCID: PMC10354537 DOI: 10.1084/jem.20230570] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.
Collapse
Affiliation(s)
- Marie Tauber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Luciana Bostan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Guilhem R. Thierry
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Camille Blériot
- Institut Necker des Enfants Malades, CNRS UMR8253, Paris, France
| | - Jasper B.J. Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carle Paul
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Toulouse University and Centre Hospitalier Universitaire, Toulouse, France
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Center for Sensory Biology, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Galli
- Departments of Pathology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Laurent L. Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Gentek
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| |
Collapse
|
16
|
Goswami S, Chowdhury JP. Antiviral attributes of bee venom as a possible therapeutic approach against SARS-CoV-2 infection. Future Virol 2023:10.2217/fvl-2023-0127. [PMID: 37970095 PMCID: PMC10630947 DOI: 10.2217/fvl-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
The unprecedented scale of the SARS-CoV-2 pandemic has driven considerable investigation into novel antiviral treatments since effective vaccination strategies cannot completely eradicate the virus. Apitherapy describes the medicinal use of bee venom, which may be an effective treatment against SARS-CoV-2 infection. Bee venom contains chemicals that are antimicrobial and stimulate the immune system to counteract viral load. The present review focuses on the use of bee venom as a possible treatment for COVID-19 and reviews studies on the pharmacodynamics of bee venom.
Collapse
Affiliation(s)
- Soumik Goswami
- Department of Zoology, Sunbeam Women's College, Varuna, Varanasi, 221002, India
| | | |
Collapse
|
17
|
Miranda-Waldetario MCG, Curotto de Lafaille MA. Making good of a tricky start: How IgE and mast cells manage a protective sway in food allergy. Immunity 2023; 56:1988-1990. [PMID: 37703829 DOI: 10.1016/j.immuni.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The immune and nervous systems respond to dangerous stimuli to maintain homeostasis. In a recent issue of Nature, Florsheim et al. and Plum et al. uncover the crosstalk between immunoglobulin E (IgE)-mast-cell-mediated immune activation and neural responses driving behavioral avoidance of allergenic food.
Collapse
Affiliation(s)
- Mariana C G Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maria A Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Plum T, Binzberger R, Thiele R, Shang F, Postrach D, Fung C, Fortea M, Stakenborg N, Wang Z, Tappe-Theodor A, Poth T, MacLaren DAA, Boeckxstaens G, Kuner R, Pitzer C, Monyer H, Xin C, Bonventre JV, Tanaka S, Voehringer D, Vanden Berghe P, Strid J, Feyerabend TB, Rodewald HR. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 2023; 620:634-642. [PMID: 37438525 PMCID: PMC10432277 DOI: 10.1038/s41586-023-06188-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Abstract
The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
Collapse
Affiliation(s)
- Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| | - Rebecca Binzberger
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Robin Thiele
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Fuwei Shang
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Daniel Postrach
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Candice Fung
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Marina Fortea
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Zheng Wang
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duncan A A MacLaren
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Cuiyan Xin
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thorsten B Feyerabend
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
19
|
Florsheim EB, Bachtel ND, Cullen JL, Lima BGC, Godazgar M, Carvalho F, Chatain CP, Zimmer MR, Zhang C, Gautier G, Launay P, Wang A, Dietrich MO, Medzhitov R. Immune sensing of food allergens promotes avoidance behaviour. Nature 2023; 620:643-650. [PMID: 37437602 PMCID: PMC10432274 DOI: 10.1038/s41586-023-06362-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
In addition to its canonical function of protection from pathogens, the immune system can also alter behaviour1,2. The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Here, using mouse models of food allergy, we show that allergic sensitization drives antigen-specific avoidance behaviour. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus and central amygdala. Allergen avoidance requires immunoglobulin E (IgE) antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote avoidance requires cysteinyl leukotrienes and growth and differentiation factor 15. Finally, a comparison of C57BL/6 and BALB/c mouse strains revealed a strong effect of the genetic background on the avoidance behaviour. These findings thus point to antigen-specific behavioural modifications that probably evolved to promote niche selection to avoid unfavourable environments.
Collapse
Affiliation(s)
- Esther B Florsheim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Institute, Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA.
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime L Cullen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bruna G C Lima
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mahdieh Godazgar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Fernando Carvalho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina P Chatain
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Marcelo R Zimmer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory Gautier
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| | - Pierre Launay
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| | - Andrew Wang
- Department of Medicine (Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcelo O Dietrich
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
21
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
22
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
23
|
Stevens WW, Kraft M, Eisenbarth SC. Recent insights into the mechanisms of anaphylaxis. Curr Opin Immunol 2023; 81:102288. [PMID: 36848746 PMCID: PMC10023498 DOI: 10.1016/j.coi.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
Anaphylaxis is an acute life-threatening systemic allergic reaction that can have a wide range of clinical manifestations. The most common triggers for anaphylaxis include food, medication, and venom. What is curious regarding anaphylaxis is how so many different agents can induce a severe systemic clinical response but only in a select subgroup of patients. Over the past decade, several important advances have been made in understanding the underlying cellular and molecular mechanisms contributing to anaphylaxis, with mast cells (MCs) being an essential component. Classically, cross-linked immunoglobulin E (IgE) bound to its high- affinity receptor induces MC mediator release. However, toll-like, complement, or Mas-related G-protein-coupled receptors also activate mouse and human MCs. While anaphylaxis secondary to foods historically has been more extensively characterized clinically and mechanistically, more recent studies have shifted focus toward understanding drug-induced anaphylaxis. The focus of this review is to highlight recent basic science developments and compare what is currently known regarding anaphylaxis to food, medications, and venom.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Magdalena Kraft
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephanie C Eisenbarth
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
McDaniel MM, Lara HI, von Moltke J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol 2023; 16:86-97. [PMID: 36642383 DOI: 10.1016/j.mucimm.2022.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
Although seemingly unrelated, parasitic worms, venoms, and allergens all induce a type 2 immune response. The effector functions and clinical features of type 2 immunity are well-defined, but fundamental questions about the initiation of type 2 immunity remain unresolved. How are these enormously diverse type 2 stimuli first detected? How are type 2 helper T cells primed and regulated? And how do mechanisms of type 2 initiation vary across tissues? Here, we review the common themes governing type 2 immune sensing and explore aspects of T cell priming and effector reactivation that make type 2 helper T cells a unique T helper lineage. Throughout the review, we emphasize the importance of non-hematopoietic cells and highlight how the unique anatomy and physiology of each barrier tissue shape mechanisms of type 2 immune initiation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, USA.
| | - Heber I Lara
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
25
|
Florsheim EB, Bachtel ND, Cullen J, Lima BGC, Godazgar M, Zhang C, Carvalho F, Gautier G, Launay P, Wang A, Dietrich MO, Medzhitov R. Immune sensing of food allergens promotes aversive behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524823. [PMID: 36712030 PMCID: PMC9882358 DOI: 10.1101/2023.01.19.524823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.
Collapse
Affiliation(s)
- Esther B. Florsheim
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Centre for Immunotherapy, Vaccines, and Virotherapy (CIVV), Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA,Correspondence: and
| | - Nathaniel D. Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jaime Cullen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruna G. C. Lima
- Department of Pharmacology, University of São Paulo, São Paulo, SP 05508-000 SP, Brazil,Centre for Immunotherapy, Vaccines, and Virotherapy (CIVV), Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Mahdieh Godazgar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Fernando Carvalho
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gregory Gautier
- INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d’excellence INFLAMEX, Paris 75018, France
| | - Pierre Launay
- INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d’excellence INFLAMEX, Paris 75018, France
| | - Andrew Wang
- Department of Internal Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marcelo O. Dietrich
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Howard Hughes Medical Institute,Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA,Correspondence: and
| |
Collapse
|
26
|
Akdis CA, Akdis M, Boyd SD, Sampath V, Galli SJ, Nadeau KC. Allergy: Mechanistic insights into new methods of prevention and therapy. Sci Transl Med 2023; 15:eadd2563. [PMID: 36652536 DOI: 10.1126/scitranslmed.add2563] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades, the prevalence of allergic diseases has increased worldwide. Here, we review the etiology and pathophysiology of allergic diseases, including the role of the epithelial barrier, the immune system, climate change, and pollutants. Our current understanding of the roles of early life and infancy; diverse diet; skin, respiratory, and gut barriers; and microbiome in building immune tolerance to common environmental allergens has led to changes in prevention guidelines. Recent developments on the mechanisms involved in allergic diseases have been translated to effective treatments, particularly in the past 5 years, with additional treatments now in advanced clinical trials.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos CH-7265, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
James LK. B cells defined by immunoglobulin isotypes. Clin Exp Immunol 2022; 210:230-239. [PMID: 36197112 PMCID: PMC9985177 DOI: 10.1093/cei/uxac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to generate antibodies and provide long-lived protective immunity is the cornerstone of vaccination and has contributed to the success of modern medicine. The nine different antibody subclasses produced by humans have effector functions that differ according to antigen type and route of exposure. Expression of the appropriate isotype is critical for effective humoral immunity, and it is becoming clear that subclass specificity is to some extent reflected at the cellular level. Understanding the mechanisms that govern the induction, expansion, and maintenance of B cells expressing different antibody subclasses informs the strategic manipulation of responses to benefit human health. This article provides an overview of the mechanisms by which the different human antibody subclasses regulate immunity, presents an update on how antibody subclass expression is regulated at the cellular level and highlights key areas for future research.
Collapse
|
28
|
Costa Silva RCM, Bandeira-Melo C, Paula Neto HA, Vale AM, Travassos LH. COVID-19 diverse outcomes: Aggravated reinfection, type I interferons and antibodies. Med Hypotheses 2022; 167:110943. [PMID: 36105250 PMCID: PMC9461281 DOI: 10.1016/j.mehy.2022.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022]
Abstract
SARS-CoV-2 infection intrigued medicine with diverse outcomes ranging from asymptomatic to severe acute respiratory syndrome (SARS) and death. After more than two years of pandemic, reports of reinfection concern researchers and physicists. Here, we will discuss potential mechanisms that can explain reinfections, including the aggravated ones. The major topics of this hypothesis paper are the disbalance between interferon and antibodies responses, HLA heterogeneity among the affected population, and increased proportion of cytotoxic CD4+ T cells polarization in relation to T follicular cells (Tfh) subtypes. These features affect antibody levels and hamper the humoral immunity necessary to prevent or minimize the viral burden in the case of reinfections.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Afonso Paula Neto
- Laboratório de Alvos Moleculares, Faculdade de Farmácia, Departamento de Biotecnologia Farmacêutica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Macedo Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
32
|
Agaronyan K, Sharma L, Vaidyanathan B, Glenn K, Yu S, Annicelli C, Wiggen TD, Penningroth MR, Hunter RC, Dela Cruz CS, Medzhitov R. Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity 2022; 55:895-911.e10. [PMID: 35483356 PMCID: PMC9123649 DOI: 10.1016/j.immuni.2022.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.
Collapse
Affiliation(s)
- Karen Agaronyan
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lokesh Sharma
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bharat Vaidyanathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Keith Glenn
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Charles Annicelli
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Talia D Wiggen
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mitchell R Penningroth
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles S Dela Cruz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 2022; 22:294-308. [PMID: 34611316 DOI: 10.1038/s41577-021-00622-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations - for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.
Collapse
|
34
|
Abstract
A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.
Collapse
Affiliation(s)
- Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Helena Aegerter
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Homeostatic serum IgE is secreted by plasma cells in the thymus and enhances mast cell survival. Nat Commun 2022; 13:1418. [PMID: 35301301 PMCID: PMC8930980 DOI: 10.1038/s41467-022-29032-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Increased serum levels of immunoglobulin E (IgE) is a risk factor for various diseases, including allergy and anaphylaxis. However, the source and ontogeny of B cells producing IgE under steady state conditions are not well defined. Here, we show plasma cells that develop in the thymus and potently secrete IgE and other immunoglobulins, including IgM, IgA, and IgG. The development of these IgE-secreting plasma cells are induced by IL-4 produced by invariant Natural Killer T cells, independent of CD1d-mediated interaction. Single-cell transcriptomics suggest the developmental landscape of thymic B cells, and the thymus supports development of transitional, mature, and memory B cells in addition to plasma cells. Furthermore, thymic plasma cells produce polyclonal antibodies without somatic hypermutation, indicating they develop via the extra-follicular pathway. Physiologically, thymic-derived IgEs increase the number of mast cells in the gut and skin, which correlates with the severity of anaphylaxis. Collectively, we define the ontogeny of thymic plasma cells and show that steady state thymus-derived IgEs regulate mast cell homeostasis, opening up new avenues for studying the genetic causes of allergic disorders. Elevated levels of IgE is associated with a range of allergic pathology but the source of such IgE producing B cells during the steady state is poorly understood. Here, Kwon et al. show that homeostatic IgE is secreted by plasma cells in the thymus and link this to mast cell survival.
Collapse
|
36
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
37
|
Starkl P, Gaudenzio N, Marichal T, Reber LL, Sibilano R, Watzenboeck ML, Fontaine F, Mueller AC, Tsai M, Knapp S, Galli SJ. IgE antibodies increase honeybee venom responsiveness and detoxification efficiency of mast cells. Allergy 2022; 77:499-512. [PMID: 33840121 PMCID: PMC8502784 DOI: 10.1111/all.14852] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND In contrast to their clearly defined roles in allergic diseases, the physiologic functions of Immunoglobulin E antibodies (IgEs) and mast cells (MCs) remain enigmatic. Recent research supports the toxin hypothesis, showing that MCs and IgE-related type 2 immune responses can enhance host defense against certain noxious substances, including honeybee venom (BV). However, the mechanisms by which MCs can interfere with BV toxicity are unknown. In this study, we assessed the role of IgE and certain MC products in MC-mediated BV detoxification. METHODS We applied in vitro and in vivo fluorescence microscopyimaging, and flow cytometry, fibroblast-based toxicity assays and mass spectrometry to investigate IgE-mediated detoxification of BV cytotoxicity by mouse and human MCs in vitro. Pharmacologic strategies to interfere with MC-derived heparin and proteases helped to define the importance of specific detoxification mechanisms. RESULTS Venom-specific IgE increased the degranulation and cytokine responses of MCs to BV in vitro. Passive serum sensitization enhanced MC degranulation in vivo. IgE-activated mouse or human MCs exhibited enhanced potential for detoxifying BV by both proteolytic degradation and heparin-related interference with toxicity. Mediators released by IgE-activated human MCs efficiently degraded multiple BV toxins. CONCLUSIONS Our results both reveal that IgE sensitization enhances the MC's ability to detoxify BV and also assign efficient toxin-neutralizing activity to MC-derived heparin and proteases. Our study thus highlights the potential importance of IgE, MCs, and particular MC products in defense against BV.
Collapse
Affiliation(s)
- Philipp Starkl
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, INSERM UMR1291, CNRS, UMR5051, University of Toulouse III, Toulouse, France
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, INSERM UMR1291, CNRS, UMR5051, University of Toulouse III, Toulouse, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Martin L. Watzenboeck
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Frédéric Fontaine
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C. Mueller
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
38
|
Gowthaman U, Sikder S, Lee D, Fisher C. T follicular helper cells in IgE-mediated pathologies. Curr Opin Immunol 2022; 74:133-139. [DOI: 10.1016/j.coi.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
|
39
|
Flayer CH, Sokol CL. Sensory neurons control the functions of dendritic cells to guide allergic immunity. Curr Opin Immunol 2022; 74:85-91. [PMID: 34808584 PMCID: PMC8901476 DOI: 10.1016/j.coi.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
Dendritic cells of the innate immune system and sensory neurons of the peripheral nervous system are embedded in barrier tissues and gather information about an organisms' environment. While the mechanisms by which dendritic cells recognize and initiate adaptive immune responses to pathogens is well defined, how they sense allergens is poorly understood. Indeed, allergens induce dendritic cell maturation and migration in vivo, but not in vitro. How are adaptive immune responses to allergens initiated if dendritic cells do not directly sense allergens? Sensory neurons release neuropeptides within minutes of allergen exposure. Recent evidence demonstrated that while neuropeptides modify dendritic cell function during pathogen responses, they are required for dendritic cell function during allergic responses. These emerging studies suggest that sensory neurons do not just pass information along to the central nervous system, but also to dendritic cells, particularly during the initiation of adaptive immunity to allergens.
Collapse
Affiliation(s)
| | - Caroline L Sokol
- Corresponding author: , 149 13th St Room 8103, Charlestown, MA 02129
| |
Collapse
|
40
|
Vitte J, Vibhushan S, Bratti M, Montero-Hernandez JE, Blank U. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med Princ Pract 2022; 31:501-515. [PMID: 36219943 PMCID: PMC9841766 DOI: 10.1159/000527481] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
IgE-mediated type I hypersensitivity reactions have many reported beneficial functions in immune defense against parasites, venoms, toxins, etc. However, they are best known for their role in allergies, currently affecting almost one third of the population worldwide. IgE-mediated allergic diseases result from a maladaptive type 2 immune response that promotes the synthesis of IgE antibodies directed at a special class of antigens called allergens. IgE antibodies bind to type I high-affinity IgE receptors (FcεRI) on mast cells and basophils, sensitizing them to get triggered in a subsequent encounter with the cognate allergen. This promotes the release of a large variety of inflammatory mediators including histamine responsible for the symptoms of immediate hypersensitivity. The development of type 2-driven allergies is dependent on a complex interplay of genetic and environmental factors at barrier surfaces including the host microbiome that builds up during early life. While IgE-mediated immediate hypersensitivity reactions are undoubtedly at the origin of the majority of allergies, it has become clear that similar responses and symptoms can be triggered by other types of adaptive immune responses mediated via IgG or complement involving other immune cells and mediators. Likewise, various nonadaptive innate triggers via receptors expressed on mast cells have been found to either directly launch a hypersensitivity reaction and/or to amplify existing IgE-mediated responses. This review summarizes recent findings on both IgE-dependent and IgE-independent mechanisms in the development of allergic hypersensitivities and provides an update on the diagnosis of allergy.
Collapse
Affiliation(s)
- Joana Vitte
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- IDESP, INSERM UMR UA 11, Montpellier, France
| | - Shamila Vibhushan
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Manuela Bratti
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Juan Eduardo Montero-Hernandez
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Ulrich Blank
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
- *Ulrich Blank,
| |
Collapse
|
41
|
Newman R, Tolar P. Chronic calcium signaling in IgE + B cells limits plasma cell differentiation and survival. Immunity 2021; 54:2756-2771.e10. [PMID: 34879220 DOI: 10.1016/j.immuni.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 01/28/2023]
Abstract
In contrast to other antibody isotypes, B cells switched to IgE respond transiently and do not give rise to long-lived plasma cells (PCs) or memory B cells. To better understand IgE-BCR-mediated control of IgE responses, we developed whole-genome CRISPR screening that enabled comparison of IgE+ and IgG1+ B cell requirements for proliferation, survival, and differentiation into PCs. IgE+ PCs exhibited dependency on the PI3K-mTOR axis that increased protein amounts of the transcription factor IRF4. In contrast, loss of components of the calcium-calcineurin-NFAT pathway promoted IgE+ PC differentiation. Mice bearing a B cell-specific deletion of calcineurin B1 exhibited increased production of IgE+ PCs. Mechanistically, sustained elevation of intracellular calcium in IgE+ PCs downstream of the IgE-BCR promoted BCL2L11-dependent apoptosis. Thus, chronic calcium signaling downstream of the IgE-BCR controls the self-limiting character of IgE responses and may be relevant to the accumulation of IgE-producing cells in allergic disease.
Collapse
Affiliation(s)
- Rebecca Newman
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
42
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
43
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
44
|
Kida M, Nakamura T, Fujiwara Y, Nakamura M, Murata T. PGD 2 /CRTH2 signaling promotes acquired immunity against bee venom by enhancing IgE production. FASEB J 2021; 35:e21616. [PMID: 33978990 DOI: 10.1096/fj.202002748rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022]
Abstract
IgE-dependent/independent activation of mast cell (MC) has been assumed to play a host defensive role against venom injection in skin. However, its detailed mechanisms remain unknown. We aimed to investigate the contribution of MC-derived prostaglandin D2 (PGD2 )-mediated signaling in host defense against bee venom (BV). To achieve this, we utilized gene-deficient mice of a PGD2 receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). We first confirmed that subcutaneous injection of BV produced PGD2 equally in wild-type (WT) and CRTH2-deficient (Crth2-/- ) mice skins. The BV injection dropped body temperature and impaired kidney equally in both lines of mice. In WT mice, pre-injection of BV (3 weeks) significantly inhibited the hypothermia and kidney impairment caused by second BV injection. In contrast, this pre-injection was not effective for the second BV injection in Crth2-/- mice. We also found that BV injections increased serum BV-specific IgE levels in WT mice, and its serum transfused mice improved the BV-induced hypothermia in naïve WT mice. In contrast, serum BV-specific IgE level was significantly lower in Crth2-/- mice. FACS analysis showed the BV injection stimulate migration of dendritic cells (DCs) into regional lymph nodes in WT mice. In Crth2-/- mice, its number was significantly smaller than that of WT mice. In conclusion, PGD2 /CRTH2 signaling plays defensive role against second BV injection. This signaling promotes BV-specific IgE production at least partially by promoting DCs migration into regional lymph node.
Collapse
Affiliation(s)
- Misato Kida
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Nakamura
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Fujiwara
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Keshavarz B, Erickson LD, Platts-Mills TAE, Wilson JM. Lessons in Innate and Allergic Immunity From Dust Mite Feces and Tick Bites. FRONTIERS IN ALLERGY 2021; 2:692643. [PMID: 35387017 PMCID: PMC8974698 DOI: 10.3389/falgy.2021.692643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic diseases represent a major cause of morbidity in modern industrialized and developing countries. The origins and development of allergic immune responses have proven difficult to unravel and remain an important scientific objective. House dust mites (HDM) and ticks represent two important causes of allergic disease. Investigations into HDM fecal particles and tick bites have revealed insights which have and will continue to shape our understanding of allergic immunity. In the present review, focus is given to the role of innate immunity in shaping the respective responses to HDM and ticks. The HDM fecal particle represents a rich milieu of molecules that can be recognized by pathogen-recognition receptors of the innate immune system. Factors in tick saliva and/or tissue damage resultant from tick feeding are thought to activate innate immune signaling that promotes allergic pathways. Recent evidence indicates that innate sensing involves not only the direct recognition of allergenic agents/organisms, but also indirect sensing of epithelial barrier disruption. Although fecal particles from HDM and bites from ticks represent two distinct causes of sensitization, both involve a complex array of molecules that contribute to an innate response. Identification of specific molecules will inform our understanding of the mechanisms that contribute to allergic immunity, however the key may lie in the combination of molecules delivered to specific sites in the body.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Thomas A. E. Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
47
|
Flayer CH, Perner C, Sokol CL. A decision tree model for neuroimmune guidance of allergic immunity. Immunol Cell Biol 2021; 99:936-948. [PMID: 34115905 DOI: 10.1111/imcb.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
The immune system defends the body from infectious and non-infectious threats. Distinct recognition strategies have evolved to generate antigen-specific immunity against pathogens or toxins versus antigen-independent tissue repair. Structural recognition, or the sensing of conserved motifs, guides the immune response to viruses, bacteria, fungi, and unicellular parasites. Functional recognition, which is sensing that is based on the activities of an input, guides antigen-independent tissue healing and antigen-specific Type 2 immunity to toxins, allergens, and helminth parasites. Damage-associated molecular patterns (DAMPs), released from damaged and dying cells, permit functional recognition by immune cells. However, the DAMP paradigm alone does not explain how functional recognition can lead to such disparate immune responses, namely wound healing and Type 2 immunity. Recent work established that sensory neurons release neuropeptides in response to a variety of toxins and allergens. These neuropeptides act on local innate immune cells, stimulating or inhibiting their activities. By integrating our knowledge on DAMP function with new information on the role of neuropeptides in innate immune activation in Type 2 immunity, we describe a decision tree model of functional recognition. In this model, neuropeptides complement or antagonize DAMPs to guide the development of antigen-specific Type 2 immunity through the activation of innate immune cells. We discuss why this decision tree system evolved and its implications to allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Perner
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Charitos IA, Castellaneta F, Santacroce L, Bottalico L. Historical Anecdotes and Breakthroughs of Histamine: From Discovery to Date. Endocr Metab Immune Disord Drug Targets 2021; 21:801-814. [PMID: 32727338 DOI: 10.2174/1871530320666200729150124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
AIM Investigating about the history of allergies and discovery of the histamine's role in the immune response through historical references, starting with ancient anecdotes, analysing the first immunization attempts on animals to understand its importance as the anaphylaxis mediator. Moreover, we shortly resume the most recent discoveries on mast cell role in allergic diseases throughout the latest updates on its antibody-independent receptors. METHODS Publications, including reviews, treatment guidelines, historical and medical books, on the topic of interest were found on Medline, PubMed, Web of Knowledge, Web of Science, Google Scholar, Elsevier's (EMBASE.comvarious internet museum archives. Texts from the National Library of Greece (Stavros Niarchos Foundation), from the School of Health Sciences of the National and Kapodistrian University of Athens (Greece). We selected key articles which could provide ahistorical and scientific insight into histamine molecule and its mechanism of action's discovery starting with Egyptian, Greek and Chinese antiquity to end with the more recent pharmacological and molecular discoveries. RESULTS Allergic diseases were described by medicine since ancient times, without exactly understanding the physio-pathologic mechanisms of immuno-mediated reactions and of their most important biochemical mediator, histamine. Researches on histamine and allergic mechanisms started at the beginning of the 20th century with the first experimental observations on animals of anaphylactic reactions. Histamine was then identified as their major mediator of many allergic diseases and anaphylaxis, but also of several physiologic body's functions, and its four receptors were characterized. Modern researches focus their attention on the fundamental role of the antibody-independent receptors of mast cells in allergic mechanisms, such as MRGPRX2, ADGRE2 and IL-33 receptor. CONCLUSION New research should investigate how to modulate immunity cells activity in order to better investigate possible multi-target therapies for host's benefits in preclinical and clinical studies on allergic diseases in which mast cells play a major role.
Collapse
Affiliation(s)
- Ioannis A Charitos
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| | | | - Luigi Santacroce
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| | - Lucrezia Bottalico
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| |
Collapse
|
49
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
50
|
Robinson MJ, Harris NL. A Dangerous Liaison with a Conscience. Immunity 2021; 53:702-704. [PMID: 33053326 DOI: 10.1016/j.immuni.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The contribution of the immunoglobulin E (IgE)-mast cell response to allergy portrays the axis as a villain with malicious intent. A new study from Starkl et al. tells a different story, highlighting a more worthwhile purpose of protecting us against bacterial toxins.
Collapse
Affiliation(s)
- Marcus J Robinson
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne VIC 3004, Australia
| | - Nicola L Harris
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne VIC 3004, Australia.
| |
Collapse
|