1
|
Kim CW, Kim HJ, Kang I, Ku KB, Kim Y, Park JH, Lim J, Kang BH, Park WH, La J, Chang S, Hwang I, Kim M, Ahn S, Lee HK. Gut dysbiosis from high-salt diet promotes glioma via propionate-mediated TGF-β activation. J Exp Med 2025; 222:e20241135. [PMID: 40402148 PMCID: PMC12097148 DOI: 10.1084/jem.20241135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/08/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
The purpose of this study is to investigate the impact of a high-salt diet (HSD), which is commonly found in Western countries, on the progression of glioma. Our research shows that the alterations in gut microbiota caused by an HSD facilitated the development of glioma. Mice fed an HSD have elevated levels of intestinal propionate, which accelerated the growth of glioma cells. We also find that propionate supplementation enhanced the response of glioma cells to low oxygen levels. Moreover, we identify a link between TGF-β signaling, response to low oxygen levels, and invasion-related pathways. Propionate treatment increases the expression of HIF-1α, leading to an increase in TGF-β1 production. Additionally, propionate treatment promotes glioma cell invasion through TGF-β signaling. Our findings suggest that an HSD-induced increase in propionate plays a crucial role in glioma progression by facilitating invasion through the hypoxic response and TGF-β signaling pathways, thereby establishing a significant connection between gut microbiota and the progression of glioma.
Collapse
Affiliation(s)
- Chae Won Kim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Life Science Institute, KAIST, Daejeon, Republic of Korea
| | - Hyun-Jin Kim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Life Science Institute, KAIST, Daejeon, Republic of Korea
| | - In Kang
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Keun Bon Ku
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yumin Kim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jang Hyun Park
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Life Science Institute, KAIST, Daejeon, Republic of Korea
| | - Juhee Lim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Byeong Hoon Kang
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Won Hyung Park
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeongwoo La
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Sungwoo Chang
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Inju Hwang
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Minji Kim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Gao H, Yao Y, Li W, Xu Z, Hu W, Luo K, Chen P, Shang W, Luan S, Shi G, Cao M, Chen P. Caspase-6/Gasdermin C-Mediated Tumor Cell Pyroptosis Promotes Colorectal Cancer Progression Through CXCL2-Dependent Recruitment of Myeloid-Derived Suppressor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411375. [PMID: 40213993 PMCID: PMC12120772 DOI: 10.1002/advs.202411375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/24/2025] [Indexed: 06/01/2025]
Abstract
Gasdermin (GSDM) family proteins mediate inflammatory cell pyroptosis and exert critical contributions to the pathogenesis of gastrointestinal cancers, infections, and gut mucosal inflammation. Gasdermin C (GSDMC) is overexpressed in human colorectal cancer (CRC); however, the molecular mechanisms underlying GSDMC regulation of CRC tumorigenesis are largely elusive. Here, it is found that both GSDMC expression and activation are significantly elevated in human and mouse CRC tissues. Gsdmc2/3/4 deficiency attenuates tumor progression in both chemically induced CRC mouse model and spontaneous intestinal tumor model. Mechanistically, under hypoxia and low-glucose condition, GSDMC2/3/4 are directly activated by Caspase-6, but not by Caspase-8, as previously reported in other cancers. GSDMC2/3/4-mediated pyroptosis in tumor cells leads to the release of high mobility group protein B1 (HMGB1), which enhances the expression of chemokine attractant C-X-C motif chemokine 2 (CXCL2) in surrounding tumor cells. Subsequently, the elevated CXCL2 secretion from tumor cells promotes the recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) through C-X-C chemokine receptor type 2 (CXCR2), thereby facilitating CRC progression. These findings reveal a mechanism by which Caspase-6/GSDMC-mediated tumor cell pyroptosis, in response to hypoxic and low-glucose conditions, remodels the immunosuppressive microenvironment through CXCL2-dependent recruitment of MDSCs. These results identify GSDMC as a potential drug target for CRC therapy.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of NephrologyShenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdong518110China
| | - Yikun Yao
- Shanghai Institute of Nutrition & HealthChinese Academy of ScienceShanghai200031China
| | - Weilong Li
- Department of NephrologyShenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdong518110China
| | - Zigan Xu
- Department of NephrologyShenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdong518110China
| | - Wenjun Hu
- Department of AnesthesiologyThe 305 Hospital of Liberation Army of China (PLA)Beijing100036China
| | - Kewang Luo
- Department of Medical LaboratoryPeople's Hospital of LonghuaShenzhenGuangdong518110China
| | - Peishan Chen
- Department of NephrologyShenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdong518110China
| | - Wanjing Shang
- Lymphocyte Biology SectionLaboratory of Immune System BiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Shaodong Luan
- Department of NephrologyShenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdong518110China
| | - Guojun Shi
- Department of Endocrinology and MetabolismMedical Center for Comprehensive Weight ControlThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Oncology in South ChinaGuangzhou510630China
| | - Mengtao Cao
- Department of Respiratory MedicineShenzhen Longhua District Central HospitalShenzhenGuangdong518110China
| | - Pengfei Chen
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdong518110China
| |
Collapse
|
3
|
Gao H, Wu H, Ning L, Zhou L, Cao M, Huang W, Xie X, Wu H, Chen X, Chen F, Song J, Deng K, Chen P. Transplantation of the MSLN-deficient Thymus Generates MSLN Epitope Reactive T Cells to Attenuate Tumor Progression. Cancer Sci 2025; 116:871-883. [PMID: 39853704 PMCID: PMC11967271 DOI: 10.1111/cas.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The development of mesothelin (MSLN) epitope reactive T cells is observed in mice that are immunized with the MSLN vaccine. Engineered T cells expressing MSLN-reactive high-affinity TCR exhibit extraordinary therapeutic effects for invasive pancreatic ductal adenocarcinoma in a mouse model. However, the generation of MSLN-reactive T cells through the introduction of MSLN-deficient thymus and the transplantation of the latter as a cure for cancer treatment have not been tested to date. In the present study, the expression of MSLN was mainly identified in medullary thymic epithelial cells (mTECs) but not in hematopoietic cells, cortical thymic epithelial cells (cTECs), endothelial cells, or fibroblast cells in the thymus. The increasement of activated T cells was observed in MSLN-expressing tumors from MSLN-deficient mice, indicating that MSLN-reactive T cells had developed. Finally, in an AOM-DSS-induced mouse model of colorectal cancer (CRC), transplantation of MSLN-deficient thymus repressed the progression of CRC, accompanied by an increased number of IFNγ-expressing T lymphocytes in the tumors. The data from this study demonstrated that ectopic transplantation of MSLN-deficient thymus induced MSLN-specific antitumor responses to MSLN-expressing tumors, and thus attenuated tumor progression.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdongChina
| | - Haiyan Wu
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Lvwen Ning
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Liying Zhou
- Department of GynaecologyShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Mengtao Cao
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Wenting Huang
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Xihong Xie
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Haidong Wu
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Xiehui Chen
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Feiqiang Chen
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Jinqi Song
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Kai Deng
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Pengfei Chen
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| |
Collapse
|
4
|
Lin L, Zhang D. Unveiling the microbial influence: bacteria's dual role in tumor metastasis. Front Oncol 2025; 15:1524887. [PMID: 40161368 PMCID: PMC11949808 DOI: 10.3389/fonc.2025.1524887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
As cancer research advances, the intricate relationship between the microbiome and cancer is gaining heightened recognition, especially concerning tumor metastasis, where bacterial involvement becomes increasingly complex. This review seeks to systematically examine the dual roles of bacteria in the tumor metastasis process, encompassing both mechanisms that facilitate metastasis and the inhibitory effects exerted by specific microorganisms. We explore the mechanisms through which bacteria influence tumor cell migration by inducing chronic inflammation, evading host immune responses, and remodeling the ECM. Moreover, the immunomodulatory potential of probiotics and genetically engineered bacteria offers promising prospects for the prevention and treatment of tumor metastasis. This article elucidates the complexity and emerging frontiers of bacterial involvement in tumor metastasis by examining the clinical significance of bacteria as potential biomarkers and evaluating the effects of antibiotic usage on the metastatic process. We posit that comprehending the biological characteristics and clinical significance of bacteria, as a critical component of the tumor microenvironment, will offer innovative strategies and theoretical foundations for cancer treatment. Furthermore, this article explores future research directions, including the application of microbiome technologies and bacteria-based therapeutic strategies, thereby offering a valuable perspective for the development of novel anti-cancer approaches.
Collapse
Affiliation(s)
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Department of Stomatology, Liaocheng People’s Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, China
| |
Collapse
|
5
|
Li W, Yang F, Yang D, Song Z, Xu Z, Wu J, Li Y, Chen Z, Chen P, Yu Y, Xie T, Yang C, Zhou L, Luan S, Gao H. Claudin-2 enhances human antibody-mediated complement-dependent cytotoxicity of porcine endothelial cells by modulating antibody binding and complement activation. Front Immunol 2025; 16:1547512. [PMID: 40040710 PMCID: PMC11876394 DOI: 10.3389/fimmu.2025.1547512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Background Immune rejection represents a significant barrier to transplantation, especially in the context of xenotransplantation. Endothelial cells (ECs) derived from pigs serve as the initial barrier against the human immune system in xenotransplantation. Tight junction proteins are essential components of endothelial cell tight junctions; however, their role in xenotransplantation has been less thoroughly investigated. Claudin-2, a key tight junction protein, was investigated here for its role in human antibody-mediated complement-dependent cytotoxicity (CDC). Methods Using an in vitro model of human antibody-mediated CDC, we assessed the effect of Claudin-2 on porcine aortic endothelial cells (PAECs) and porcine iliac endothelial cells (PIECs). Claudin-2 expression was either knocked down or overexpressed in these cells. A flow cytometry assay was used to evaluate C3c, C9, and the C5b-9 deposition, as well as the extent of human IgM and IgG binding to PIECs. The mRNA levels of complement regulators (CD46, CD55, CD59, Factor H, Factor I) were quantified by real-time PCR. Results The loss of Claudin-2 protected PAECs and PIECs from human antibody-mediated CDC, while the overexpression of Claudin-2 enhanced the cytotoxicity in PAECs and PIECs within the same model. Unexpectedly, the loss or overexpression of Claudin-2 did not influence the mRNA expression levels of complement regulators (CD46, CD55, CD59, Factor H, and Factor I). Importantly, the loss of Claudin-2 significantly decreased the deposition of the C5b-9 complex, commonly referred to as the membrane attack complex (MAC), whereas the overexpression of Claudin-2 enhanced the deposition of the C5b-9 complex, indicating that Claudin-2 facilitates complement activation. Furthermore, the loss of Claudin-2 resulted in a decrease in the deposition of C3c and C9 on PIECs. Moreover, Claudin-2 enhanced human antibody binding to porcine ECs, as evidenced by increased IgG and IgM binding. Conclusion Our findings indicate that Claudin-2 enhances the cytotoxicity of porcine ECs through modulating antibody binding and complement activation. The deficient of Claudin-2 in genetically modified pigs is likely to protect porcine ECs and enhance xenograft survival in pig-to-human organ or tissue xenotransplantation.
Collapse
Affiliation(s)
- Weilong Li
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Fang Yang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Dexin Yang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Jinmei Wu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Yanmei Li
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Zixi Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Peishan Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Yeye Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ting Xie
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Cuishan Yang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Liying Zhou
- Department of obstetrics, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for diagnosis and treatment of chronic kidney disease, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
7
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Meng X, Asadi-Asadabad S, Cao S, Song R, Lin Z, Safhi M, Qin Y, Tcheumi Tactoum E, Taudte V, Ekici A, Mielenz D, Wirtz S, Schett G, Bozec A. Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation. Cell Mol Immunol 2025; 22:54-67. [PMID: 39543372 PMCID: PMC11686098 DOI: 10.1038/s41423-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Germinal centers where B cells undergo clonal expansion and antibody affinity maturation are hypoxic microenvironments. However, the function of hypoxia-inducible factor (HIF)-1α in immunoglobulin production remains incompletely characterized. Here, we demonstrated that B cells lacking HIF-1α exhibited significantly lower glycolytic metabolism and impaired IgA production. Loss of HIF-1α in B cells affects IgA-producing B-cell differentiation and exacerbates dextran sodium sulfate (DSS)-induced colitis. Conversely, promoting HIF-1α stabilization via a PHD inhibitor roxadustat enhances IgA class switching and alleviates intestinal inflammation. Mechanistically, HIF-1α facilitates IgA class switching through acetyl-coenzyme A (acetyl-CoA) accumulation, which is essential for histone H3K27 acetylation at the Sα region. Consequently, supplementation with acetyl-CoA improved defective IgA production in Hif1a-deficient B cells and limited experimental colitis. Collectively, these findings highlight the critical importance of HIF-1α in IgA class switching and the potential for targeting the HIF-1α-dependent metabolic‒epigenetic axis to treat inflammatory bowel diseases and other inflammatory disorders.
Collapse
Affiliation(s)
- Xianyi Meng
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Sahar Asadi-Asadabad
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Shan Cao
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rui Song
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Zhen Lin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mohammed Safhi
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Yi Qin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Estelle Tcheumi Tactoum
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Insitute of Laboratory Medicine, Philipps University of Marburg, Marburg, 35043, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 90154, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
| |
Collapse
|
9
|
Wen Y, Chen Q, Wang H, Xie S, Chen H, Yao W, Zhang L, Sun W, Wen J, Yang X, Chung KF, Zhang Q, Tao A, Yan J. Contribution of IL-17C-mediated macrophage polarization to Type 17 inflammation in neutrophilic asthma. Cell Commun Signal 2024; 22:557. [PMID: 39568050 PMCID: PMC11580697 DOI: 10.1186/s12964-024-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND IL-17C has been described in a variety of inflammatory diseases driven by neutrophils. However, the role of IL-17C in neutrophilic asthma has not been completely characterized. METHODS The level of IL-17C in asthmatic patients and mice was assessed. Il-17c-deficient mice or mice treated with exogenous rmIL-17C were performed for OVA/CFA-induced asthmatic mice model. Pulmonary inflammation was evaluated by histological analysis, flow cytometry and cytokine analysis. Il-17re-overexpressed Raw264.7 were used in vitro to investigate the role of IL-17C in macrophage polarization. RESULTS Here, we show IL-17C were increased in serum or plasma from asthmatic patients and OVA/CFA-induced asthma mice. In the OVA/CFA-induced model, exogenous rmIL-17C aggravated neutrophil- and Type 17-dominated inflammation and promoted M1 macrophage differentiation, whereas deficiency of Il-17c reversed the pro-inflammatory phenotypes and inhibited the expansion of M1 macrophages. In vitro, IL-17C in synergy with IFN-γ induced STAT1 activation in Il-17re overexpressed Raw264.7 to upregulate M1-related genes expression, and promoted pro-inflammatory M1 polymerization, whereas IL-17C in contrast to the effect of IL-4 inhibited STAT6 activation, to reduce Raw264.7 differentiation to M2 macrophage and functional M2-related genes expression. CONCLUSIONS IL-17C promotes allergic inflammation via M1 polarization of pulmonary macrophages in neutrophilic asthma. Modulation of the IL-17C/IL-17RE axis represents a novel therapeutic target in neutrophilic asthma.
Collapse
Affiliation(s)
- Yuhuan Wen
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qile Chen
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Hao Wang
- Department of Hematology, Guangzhou First People's HospitalInstitute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Xie
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglv Chen
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenruo Yao
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Le Zhang
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weimin Sun
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Junjie Wen
- Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaojing Yang
- Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ailin Tao
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jie Yan
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
10
|
DeLira-Bustillos N, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Velazquez-Roman J, Tapia-Pastrana G, Canizales-Quinteros S, Velázquez-Cruz R, Cortez-Hernández JA, Canizalez-Roman A. Cyclomodulins-harboring Escherichia coli isolated from obese and normal-weight subjects induces intestinal dysplasia in a mouse model. World J Microbiol Biotechnol 2024; 40:371. [PMID: 39487241 DOI: 10.1007/s11274-024-04176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Recently, cyclomodulins have been identified in Escherichia coli (E. coli), which can induce dysplastic damage. This work aimed to determine the dysplastic activity of cyclomodulin-harboring E. coli isolated from CRC patients, obese and normal-weight subjects in a mouse model. Forty-two mice were pretreated with streptomycin, azoxymethane, and dextran sodium sulfate. Mice were infected with E. coli pks + isolated from a CRC patient, with E. coli pks + cif + isolated from obese or normal-weight subjects, or with E. coli HB101. The presence of cyclomodulin-harboring E. coli in the feces, weight loss, changes in fecal consistency, and the presence of blood in the feces were monitored and used to assess the disease activity index (DAI). After 62 days, the mice were sacrificed to evaluate the presence of intestinal polyps and dysplastic damage by histologic sections. Cyclomodulin-harboring E. coli colonized the mice; these mice exhibited weight loss and watery diarrhea, and isolated normal-weight E. coli had a higher DAI. Polyps were observed in mice infected with cyclomodulin-harboring E. coli in the ileum but to a greater extent in obese isolates. E. coli isolated from CRC showed more significant endothelial damage associated with dysplasia in the ileum in equal proportions from obese and normal-weight isolates. In conclusion, E. coli harboring cyclomodulins isolated from CRC, obesity, or normal weight can cause dysplastic damage in the ileum of mice and may be a risk factor for CRC development.
Collapse
Affiliation(s)
- Nora DeLira-Bustillos
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa, 80030, Mexico
| | | | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
- Pediatric Hospital of Sinaloa, Culiacan Sinaloa, 80200, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
- The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan Sinaloa, 80058, Mexico
| | - Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS- BIENESTAR) Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, 71256, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, 14610, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
| | | | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan, Sinaloa, 80019, Mexico.
- The Women's Hospital, Secretariat of Health, Culiacan Sinaloa, 80020, Mexico.
| |
Collapse
|
11
|
Gao H, Li W, Xu S, Xu Z, Hu W, Pan L, Luo K, Xie T, Yu Y, Sun H, Huang L, Chen P, Wu J, Yang D, Li L, Luan S, Cao M, Chen P. Gasdermin D promotes development of intestinal tumors through regulating IL-1β release and gut microbiota composition. Cell Commun Signal 2024; 22:511. [PMID: 39434144 PMCID: PMC11492562 DOI: 10.1186/s12964-024-01890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
The interplay between gut microbiota and host is crucial for maintaining host health. When this balance is broken, various diseases can arise, including colorectal cancer (CRC). However, the mechanism by which gut microbiota and host interactions mediate CRC development remains unclear. Here, we found that Gasdermin D (GSDMD), an inflammasome effector responsible for forming membrane pores to mediate cell pyroptosis, was upregulated in both human and mouse intestinal tumor samples. GSDMD deficiency significantly suppressed intestinal tumor development in Apcmin/+ mice, a spontaneous CRC mouse model. Apcmin/+Gsdmd-/- mice exhibited reduced IL-1β release in the intestine, and the administration of recombinant mouse IL-1β partially restored intestinal tumor development in Apcmin/+Gsdmd-/- mice. Moreover, 16s rRNA sequencing showed a substantial increase in Lactobacillus abundance in the feces of Apcmin/+Gsdmd-/- mice compared to Apcmin/+ mice. Concurrently, Kynurenine (Kyn), a metabolite derived from host tryptophan (Trp) metabolism, was significantly decreased in the feces of Apcmin/+Gsdmd-/- mice, as shown by metabolite analysis. Additionally, Kyn levels were inversely correlated with Lactobacillus abundance. Furthermore, the administration of exogenous Kyn also promoted intestinal tumor development in Apcmin/+Gsdmd-/- mice. Thus, GSDMD promotes spontaneous CRC development through increasing IL-1β release and Kyn production. Our data suggest an association between GSDMD, gut microbiota, the host Trp/Kyn pathway, and CRC development.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Weilong Li
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Wenjun Hu
- Department of Anesthesiology, The 305 Hospital of Liberation Army of China (PLA), Beijing, 100036, China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518037, China
| | - Kewang Luo
- Department of Medical Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, 518110, China
| | - Ting Xie
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yeye Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huimin Sun
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Liwen Huang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Peishan Chen
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Jinmei Wu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Dexing Yang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Lian Li
- Wuzhou Medical College, Wuzhou, Guangxi, 543199, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| |
Collapse
|
12
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Navid F, Gill T, Fones L, Allbritton-King JD, Zhou K, Shen I, Van Doorn J, LiCausi F, Cougnoux A, Randazzo D, Brooks SR, Colbert RA. CHOP-mediated IL-23 overexpression does not drive colitis in experimental spondyloarthritis. Sci Rep 2024; 14:12293. [PMID: 38811719 PMCID: PMC11137091 DOI: 10.1038/s41598-024-62940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human β2m (hβ2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Lilah Fones
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | | | - Kelly Zhou
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Isabel Shen
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Jinny Van Doorn
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Francesca LiCausi
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892, USA
| | | | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
16
|
Xie W, Zhong YS, Li XJ, Kang YK, Peng QY, Ying HZ. Postbiotics in colorectal cancer: intervention mechanisms and perspectives. Front Microbiol 2024; 15:1360225. [PMID: 38450163 PMCID: PMC10914944 DOI: 10.3389/fmicb.2024.1360225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Wu Z, Wu Y, Zhu C, Wu X, Zhai S, Wang X, Su Z, Duan H. Efficient Computational Framework for Target-Specific Active Peptide Discovery: A Case Study on IL-17C Targeting Cyclic Peptides. J Chem Inf Model 2023; 63:7655-7668. [PMID: 38049371 DOI: 10.1021/acs.jcim.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The development of potentially active peptides for specific targets is critical for the modern pharmaceutical industry's growth. In this study, we present an efficient computational framework for the discovery of active peptides targeting a specific pharmacological target, which combines a conditional variational autoencoder (CVAE) and a classifier named TCPP based on the Transformer and convolutional neural network. In our example scenario, we constructed an active cyclic peptide library targeting interleukin-17C (IL-17C) through a library-based in vitro selection strategy. The CVAE model is trained on the preprocessed peptide data sets to generate potentially active peptides and the TCPP further screens the generated peptides. Ultimately, six candidate peptides predicted by the model were synthesized and assayed for their activity, and four of them exhibited promising binding affinity to IL-17C. Our study provides a one-stop-shop for target-specific active peptide discovery, which is expected to boost up the process of peptide drug development.
Collapse
Affiliation(s)
- Zhipeng Wu
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yejian Wu
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhu
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyi Wu
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Silong Zhai
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinqiao Wang
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhihao Su
- Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
19
|
Kong Y, Wang X, Xu H, Liu S, Qie R. A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer. PLoS One 2023; 18:e0296017. [PMID: 38096329 PMCID: PMC10721084 DOI: 10.1371/journal.pone.0296017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Circulating cytokines have been associated with colorectal cancer (CRC). However, their causal correlation remains undetermined. This investigation uses genetic data to evaluate the mechanism that links circulating cytokines and CRC via Mendelian Randomization (MR). METHODS A two-sample MR evaluation was carried out to investigate the mechanism associating circulating cytokines and CRC in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental SNPs that were significantly related to the circulating cytokines were selected. Multiple MR analysis approaches were carried out, including Simple Mode, inverse variance weighted (IVW), MR-Egger, Weighted Mode, Weighted Median, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS The evidence supporting the association of genetically predicted circulating levels with the increased risk of CRC was revealed; these included vascular endothelial growth factor (OR = 1.352, 95% CI: 1.019-1.315, P = 0.024), interleukin-12p70 (OR = 1.273, 95% CI: 1.133-1.430, P = 4.68×10-5), interleukin-13 (OR = 1.149, 95% CI: 1.012-1.299, P = 0.028), interleukin-10 (OR = 1.230, 95% CI: 1.013-1.493, P = 0.037), and interleukin-7 (OR = 1.191, 95% CI: 1.023-1.386 P = 0.024). Additionally, MR analysis negative causal association between macrophage colony stimulating factor and CRC (OR = 0.854, 95% CI: 0.764-0.955, P = 0.005). The data from Simple Mode, Weighted Median, MR-Egger, and Weighted Mode analyses were consistent with the IVW estimates. Furthermore, the sensitivity analysis indicated that the presence of no horizontal pleiotropy to bias the causal estimates. CONCLUSION This investigation identified a causal association between circulating cytokines levels risk of CRC and may provide a deeper understanding of the pathogenesis of CRC, as well as offer promising leads for the development of novel therapeutic targets for CRC.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyun Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Gao WT, Liu JX, Wang DH, Sun HJ, Zhang XY. Melatonin reduced colon inflammation but had no effect on energy metabolism in ageing Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109731. [PMID: 37611884 DOI: 10.1016/j.cbpc.2023.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.
Collapse
Affiliation(s)
- Wen-Ting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
22
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
23
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
24
|
Zhai S, Tan Y, Zhang C, Hipolito CJ, Song L, Zhu C, Zhang Y, Duan H, Yin Y. PepScaf: Harnessing Machine Learning with In Vitro Selection toward De Novo Macrocyclic Peptides against IL-17C/IL-17RE Interaction. J Med Chem 2023; 66:11187-11200. [PMID: 37480587 DOI: 10.1021/acs.jmedchem.3c00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The combination of library-based screening and artificial intelligence (AI) has been accelerating the discovery and optimization of hit ligands. However, the potential of AI to assist in de novo macrocyclic peptide ligand discovery has yet to be fully explored. In this study, an integrated AI framework called PepScaf was developed to extract the critical scaffold relative to bioactivity based on a vast dataset from an initial in vitro selection campaign against a model protein target, interleukin-17C (IL-17C). Taking the generated scaffold, a focused macrocyclic peptide library was rationally constructed to target IL-17C, yielding over 20 potent peptides that effectively inhibited IL-17C/IL-17RE interaction. Notably, the top two peptides displayed exceptional potency with IC50 values of 1.4 nM. This approach presents a viable methodology for more efficient macrocyclic peptide discovery, offering potential time and cost savings. Additionally, this is also the first report regarding the discovery of macrocyclic peptides against IL-17C/IL-17RE interaction.
Collapse
Affiliation(s)
- Silong Zhai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chengyun Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Christopher John Hipolito
- Screening & Compound Profiling, Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cheng Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongliang Duan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Shandong Research Institute of Industrial Technology, Jinan 250101, China
| |
Collapse
|
25
|
Liu L, Wang Y, Yu S, Liu H, Li Y, Hua S, Chen Y. Transforming Growth Factor Beta Promotes Inflammation and Tumorigenesis in Smad4-Deficient Intestinal Epithelium in a YAP-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300708. [PMID: 37261975 PMCID: PMC10427365 DOI: 10.1002/advs.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, plays critical roles in immune responses. However, the precise role of TGF-β in colitis and colitis-associated cancer remains poorly defined. Here, it is demonstrated that TGF-β promotes the colonic inflammation and related tumorigenesis in the absence of Smad family member 4 (Smad4). Smad4 loss in intestinal epithelium aggravates colitis and colitis-associated neoplasia induced by dextran sulfate sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS), leading to over-activated immune responses and increased TGF-β1 levels. In Smad4-deficient organoids, TGF-β1 stimulates spheroid formation and impairs intestinal stem cell proliferation and lineage specification. YAP, whose expression is directly upregulated by TGF-β1 after Smad4 deletion, mediates the effect of TGF-β1 by interacting with Smad2/3. Attenuation of YAP/TAZ prevents TGF-β1-induced spheroid formation in Smad4-/- organoids and alleviates colitis and colitis-associated cancer in Smad4-deficient mice. Collectively, these results highlight an integral role of the TGF-β/Smad4 axis in restraining intestinal inflammation and tumorigenesis and suggest TGF-β or YAP signaling as therapeutic targets for these gastrointestinal diseases intervention.
Collapse
Affiliation(s)
- Liansheng Liu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Yalong Wang
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Huidong Liu
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Yehua Li
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Shan Hua
- Guangzhou LaboratoryGuangzhou510700China
- Center for Life SciencesSchool of Life SciencesYunnan UniversityKunming650500China
| | - Ye‐Guang Chen
- Guangzhou LaboratoryGuangzhou510700China
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| |
Collapse
|
26
|
Zhang F, Yin J, Liu L, Liu S, Zhang G, Kong Y, Wang Y, Wang N, Chen X, Wang F. IL-17C neutralization protects the kidney against acute injury and chronic injury. EBioMedicine 2023; 92:104607. [PMID: 37263138 PMCID: PMC10277925 DOI: 10.1016/j.ebiom.2023.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Interleukin-17C (IL-17C), a member of the IL-17 cytokine family, plays a pathogenic role in kidney diseases. Our previous studies have shown that pre-administration of IL-17C neutralizing antibody attenuated acute kidney injury (AKI, a common acute inflammation associated renal disease). In this study, we explored whether post-ischemia reperfusion (IR) of IL-17C blockade has therapeutic effects on AKI and whether IL-17C is involved in the pathogenesis of diabetic nephropathy (DN), a major type of chronic inflammation-associated kidney disease. METHODS 12-week-old male C57BL/6JGpt mice were treated with IL-17C neutralizing antibody or normal IgG control antibody at 3 h after reperfusion. Renal injury, inflammation, and oxidative stress were assessed. Additionally, we examined renal IL-17C expression in patients with DN and db/db mice and evaluated albuminuria, mesangial matrix accumulation and podocyte loss in db/db mice with IL-17C neutralization. Knockdown of NF-κB p65 using siRNA, and blocking Hypoxia-inducible factor-1α (HIF-1α) using YC-1 in mice and HIF-1α Decoy in HK2 cells were investigated to explore the possible signaling pathway involved in IL-17C regulation. FINDINGS We found that delayed IL-17C neutralization had similar reno-protective effects on renal ischemia-reperfusion injury (IRI). Additionally, renal IL-17C expression was increased in patients with DN and db/db mice, while IL-17C blockade significantly attenuated DN, accompanied with blunted albuminuria, mesangial matrix accumulation, and podocyte loss. Moreover, IL-17C neutralization significantly repressed the expression of downstream pro-inflammatory cytokines, inflammatory cell infiltration, and Th17/IL-17A activation both in mice with renal IRI and DN. Mechanistical studies demonstrated that hypoxia or high glucose-induced IL-17C up-regulation was predominantly mediated by NF-κB pathway. INTERPRETATION IL-17C participates in the pathogenesis of AKI and DN and inhibition of IL-17C shows potential as a therapeutic strategy for AKI and DN. FUNDING The National Natural Science Foundation of China (81770741, 81700601 and 81870504).
Collapse
Affiliation(s)
- Fangfei Zhang
- Department of Rheumatology, Immunology and Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Li Liu
- Department of Rheumatology, Immunology and Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuiying Liu
- Department of Rheumatology, Immunology and Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yiwei Kong
- Biomedical School, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yajun Wang
- Department of Rheumatology, Immunology and Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Feng Wang
- Department of Rheumatology, Immunology and Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Wang LW, Ruan H, Wang BM, Qin Y, Zhong WL. Microbiota regulation in constipation and colorectal cancer. World J Gastrointest Oncol 2023; 15:776-786. [PMID: 37275451 PMCID: PMC10237018 DOI: 10.4251/wjgo.v15.i5.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The relevance of constipation to the development and progression of colorectal cancer (CRC) is currently a controversial issue. Studies have shown that changes in the composition of the gut microbiota, a condition known as ecological imbalance, are correlated with an increasing number of common human diseases, including CRC and constipation. CRC is the second leading cause of cancer-related deaths worldwide, and constipation has been receiving widespread attention as a risk factor for CRC. Early colonoscopy screening of constipated patients, with regular follow-ups and timely intervention, can help detect early intestinal lesions and reduce the risks of developing colorectal polyps and CRC. As an important regulator of the intestinal microenvironment, the gut microbiota plays a critical role in the onset and progression of CRC. An increasing amount of evidence supports the thought that gut microbial composition and function are key determinants of CRC development and progression, with alterations inducing changes in the expression of host genes, metabolic regulation, and local and systemic immunological responses. Furthermore, constipation greatly affects the composition of the gut microbiota, which in turn influences the susceptibility to intestinal diseases such as CRC. However, the crosstalk between the gut microbiota, constipation, and CRC is still unclear.
Collapse
Affiliation(s)
- Li-Wei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ruan
- China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
28
|
Chen CC, Hao WR, Hong HJ, Lin KJ, Chiu CC, Yang TY, Fang YA, Jian W, Chen MY, Hsu MH, Lu SC, Lai YH, Yang TL, Liu JC. Protective Effects of Influenza Vaccine against Colorectal Cancer in Populations with Chronic Kidney Disease: A Nationwide Population-Based Cohort Study. Cancers (Basel) 2023; 15:cancers15082398. [PMID: 37190326 DOI: 10.3390/cancers15082398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with malignancy, including colorectal cancer, via the potential mechanism of chronic inflammation status. This study aimed to determine whether influenza vaccines can reduce the risk of colorectal cancer in patients with CKD. Our cohort study enrolled 12,985 patients older than 55 years with a diagnosis of CKD in Taiwan from the National Health Insurance Research Database at any time from 1 January 2001 to 31 December 2012. Patients enrolled in the study were divided into a vaccinated and an unvaccinated group. In this study, 7490 and 5495 patients were unvaccinated and vaccinated, respectively. A propensity score was utilized to reduce bias and adjust the results. Cox proportional hazards regression was used to estimate the correlation between the influenza vaccine and colorectal cancer in patients with CKD. The results showed that the influenza vaccine exerted a protective effect against colorectal cancer in populations with CKD. The incidence rate of colon cancer in the vaccinated group was significantly lower than in the unvaccinated group, with an adjusted hazard rate (HR) of 0.38 (95% CI: 0.30-0.48, p < 0.05). After the propensity score was adjusted for Charlson comorbidity index, age, sex, dyslipidemia, hypertension, diabetes, monthly income, and level of urbanization, the dose-dependent effect was found, and it revealed adjusted HRs of 0.74 (95% CI: 0.54-1.00, p < 0.05), 0.41 (95% CI: 0.30-0.57, p < 0.001), 0.16 (95% CI: 0.11-0.25, p < 0.001) for one, two to three, and four or more vaccinations, respectively. In summary, the influenza vaccine was found to be associated with a reduced risk of colorectal cancer in CKD patients. This study highlights the potential chemopreventive effect of influenza vaccination among patients with CKD. Future studies are required to determine whether the aforementioned relationship is a causal one.
Collapse
Affiliation(s)
- Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Kuan-Jie Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chun-Chih Chiu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Yeh Yang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ann Fang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - William Jian
- Department of Emergency, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110301, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Chun Lu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yu-Hsin Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Tsung-Lin Yang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Sun Y, Khan MAAK, Mangiola S, Barrow AD. IL17RB and IL17REL Expression Are Associated with Improved Prognosis in HPV-Infected Head and Neck Squamous Cell Carcinomas. Pathogens 2023; 12:pathogens12040572. [PMID: 37111458 PMCID: PMC10143491 DOI: 10.3390/pathogens12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Changes in the cellular secretome are implicated in virus infection, malignancy, and anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from 24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved prognosis, which was specifically associated with an increased tumor abundance of memory B and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones, chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC patients. The transcriptional parameters that we describe may be optimized to improve prognosis and risk stratification in the clinic and provide insights into gene and cellular targets that may potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected HNSCC patients.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
30
|
Niu J, Cui M, Yang X, Li J, Yao Y, Guo Q, Lu A, Qi X, Zhou D, Zhang C, Zhao L, Meng G. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat Commun 2023; 14:642. [PMID: 36746963 PMCID: PMC9901394 DOI: 10.1038/s41467-023-36323-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mengmeng Cui
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Juan Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
- Nanjing Advanced Academy of Life and Health, 211135, Nanjing, China
| | - Yuhui Yao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
- Pasteurien College, Soochow University, 215006, Suzhou, Jiangsu, China
| | - Qiuhong Guo
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ailing Lu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaopeng Qi
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Dongming Zhou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, 08901, USA.
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Nanjing Advanced Academy of Life and Health, 211135, Nanjing, China.
- Pasteurien College, Soochow University, 215006, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Li T, Han L, Ma S, Lin W, Ba X, Yan J, Huang Y, Tu S, Qin K. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front Mol Biosci 2023; 10:1140325. [PMID: 36950522 PMCID: PMC10025541 DOI: 10.3389/fmolb.2023.1140325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related death. In recent years, the relationship between gut microbiota and CRC has attracted increasing attention from researchers. Studies reported that changes in the composition of gut microbiota, such as increase in the number of Fusobacterium nucleatum and Helicobacter hepaticus, impair the immune surveillance by affecting the intestinal mucosal immunity and increase the risk of tumor initiation and progression. The tumor microenvironment is the soil for tumor survival. Close contacts between gut microbiota and the tumor microenvironment may directly affect the progression of tumors and efficacy of antitumor drugs, thus influencing the prognosis of patients with CRC. Recently, many studies have shown that traditional Chinese medicine can safely and effectively improve the efficacy of antitumor drugs, potentially through remodeling of the tumor microenvironment by regulated gut microbiota. This article describes the effect of gut microbiota on the tumor microenvironment and possible mechanisms concerning the initiation and progression of CRC, and summarizes the potential role of traditional Chinese medicine.
Collapse
Affiliation(s)
- Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Ma
- Department of Nosocomial Infection Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kai Qin,
| |
Collapse
|
32
|
You J, Bian J, Chen J, Xia T, Deng A, Zhang M, Liao Y, Wen H, Xu Z. TNFSF15 and MIA Variant Associated with Immunotherapy and Prognostic Evaluation in Esophageal Cancer. JOURNAL OF ONCOLOGY 2023; 2023:1248024. [PMID: 36936375 PMCID: PMC10023233 DOI: 10.1155/2023/1248024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 03/17/2023]
Abstract
Background Esophageal cancer (ESCA) is a common gastrointestinal tumor, and China is one of the regions with a high incidence. Tumor immune-related cells play important roles in the tumorigenesis and development of ESCA. However, the role of tumor immune-related genes in the development of ESCA has not been established. Methods In this study, weighted gene coexpression network analysis (WGCNA) was used to analyze ESCA gene expression using data from The Cancer Genome Atlas (TCGA) database. Gene expression was associated with clinical traits, and modules related to CD8+T cells, dendritic cells, and regulatory T cells (Tregs) were obtained. Results The GO analysis showed that inflammatory chemotaxis networks were activated by cell chemotaxis, chemokine activity, and chemokine binding receptor. Three hub genes (IL17C, TNFSF15, and MIA) related to tumor immunity and metastasis were identified by WGCNA, and the abnormal expression of each hub gene in ESCA has a poor prognosis, especially in patients with high expression (P < 0.05). The risk assessment analysis also showed that tumor stage was positively correlated with tumor risk in ESCA (P < 0.05). Therefore, more than 50 pairs of tumor tissues from the T1-T3 stages with different degrees of differentiation and paracancerous tissues were selected to confirm the expression of the three genes using RT-qPCR and immunofluorescence (IF). The infiltration of CD8+ T cells in tumor tissues was lower than that in normal tissues. According to the RT-qPCR, the expressions of IL17 C, TNFSF15, and MIA in moderately and poorly differentiated tissues were significantly higher than those in normal tissues (P < 0.05). In contrast, their expressions were decreased in high differentiated tissues (P < 0.05). Furthermore, IL17C, TNFSF15, and MIA were all positively correlated with immune checkpoint PD-1; TNFSF15 and MIA were also positively correlated with CTLA4, TIGIT, and CD96. Conclusion In summary, IL17C, TNFSF15, and MIA may act as biomarkers for prognosis in moderately and poorly differentiated ESCAs, and they may be used as predictive genes of immunotherapy associated with CD8+ T cell and Tregs invasion in ESCAs.
Collapse
Affiliation(s)
- Jun You
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- 2People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Jiaojiao Bian
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jian Chen
- 3Department of Thoracic Surgery, Rheumatic Hematology Department, Nuclear Medicine Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Tianqin Xia
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ailu Deng
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ming Zhang
- 4Nanchong Hospital of Traditional Chinese Medicine, Nanchong 637000, Sichuan, China
| | - YiChen Liao
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Huling Wen
- 5Cancer Hospital, Affiliated to Medical College of Shantou University, Shantou 515041, China
| | - Zhengmin Xu
- 1Institute of Medicine, School of Pharmacy, Rheumatic Hematology Department of Affiliated Hospital, Translational Medicine Research Center, Institute of Hepatobiliary Research, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
33
|
Holst LM, Iribarren C, Sapnara M, Savolainen O, Törnblom H, Wettergren Y, Strid H, Simrén M, Magnusson MK, Öhman L. Fecal Luminal Factors from Patients with Gastrointestinal Diseases Alter Gene Expression Profiles in Caco-2 Cells and Colonoids. Int J Mol Sci 2022; 23:ijms232415505. [PMID: 36555145 PMCID: PMC9779506 DOI: 10.3390/ijms232415505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography-mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria Sapnara
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborgs Hospital, 501 82 Borås, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
34
|
Karpiński TM, Ożarowski M, Stasiewicz M. Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol 2022; 86:420-430. [PMID: 35090978 DOI: 10.1016/j.semcancer.2022.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The main risk factors for CRC are family history of colon or rectal cancer, familial polyposis syndrome or hereditary nonpolyposis, and chronic inflammatory bowel diseases (ulcerative colitis and Crohn's disease). Recent studies show that the gastrointestinal microbiota play a significant role in colorectal carcinogenesis. In this review we present the microorganisms, whose influence on the development of CRC has been proven: Bacteroides fragilis, Clostridioides and Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Helicobacter pylori, Peptostreptococcus anaerobius, Streptococcus bovis group, and sulfate-reducing bacteria. Moreover, the carcinogenic mechanisms of action mediated by the above bacteria are laid out.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland.
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
35
|
He Y, Huang J, Li Q, Xia W, Zhang C, Liu Z, Xiao J, Yi Z, Deng H, Xiao Z, Hu J, Li H, Zu X, Quan C, Chen J. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022; 14:5317. [PMID: 36358736 PMCID: PMC9656981 DOI: 10.3390/cancers14215317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota is a large symbiotic community of anaerobic and facultative aerobic bacteria inhabiting the human intestinal tract, and its activities significantly affect human health. Increasing evidence has suggested that the gut microbiome plays an important role in tumor-related immune regulation. In the tumor microenvironment (TME), the gut microbiome and its metabolites affect the differentiation and function of immune cells regulating the immune evasion of tumors. The gut microbiome can indirectly influence individual responses to various classical tumor immunotherapies, including immune checkpoint inhibitor therapy and adoptive immunotherapy. Microbial regulation through antibiotics, prebiotics, and fecal microbiota transplantation (FMT) optimize the composition of the gut microbiome, improving the efficacy of immunotherapy and bringing a new perspective and hope for tumor treatment.
Collapse
Affiliation(s)
- Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiaorong Li
- Department of Ultrasound, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiping Xia
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
36
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
37
|
Xu Z, Lv Z, Chen F, Zhang Y, Xu Z, Huo J, Liu W, Yu S, Tuersun A, Zhao J, Zong Y, Shen X, Feng W, Lu A. Dysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer. Front Immunol 2022; 13:1008975. [PMID: 36119074 PMCID: PMC9481283 DOI: 10.3389/fimmu.2022.1008975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer, and the incidence of sporadic young-onset colorectal cancer (yCRC) has been increasing. Microbiota residing in the tumor microenvironment are emerging tumor components. The colonic microbiome differs between patients with CRC and healthy controls; however, few studies have investigated the role of the tumor microbiota in disease diagnosis and tumorigenesis of yCRC. We performed 16S rRNA sequencing analysis to identify the microbiome in CRC and found that tumor microbial diversity decreased in yCRC. Proteobacteria and Firmicutes were the most abundant phyla in all CRC samples, and Actinomyces and Schaalia cardiffensis were the key microbiota in the yCRC group. Correlation analysis revealed that Actinomyces co-occurred with various pro-tumor microbial taxa, including Bacteroidia, Gammaproteobacteria, and Pseudomonas. An independent cohort was used to validate the results. The Actinomyces in CRC was co-localized with cancer-associated fibroblasts and activated the TLR2/NF-κB pathway and reduces CD8+ T lymphocyte infiltration in CRC microenvironment. This study suggests that tumoral microbiota plays an important role in promoting tumorigenesis and therefore has potential as a promising non-invasive tool and intervention target for anti-tumor therapy.
Collapse
Affiliation(s)
- Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wangyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suyue Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| |
Collapse
|
38
|
Colorectal Cancer in Ulcerative Colitis: Mechanisms, Surveillance and Chemoprevention. Curr Oncol 2022; 29:6091-6114. [PMID: 36135048 PMCID: PMC9498229 DOI: 10.3390/curroncol29090479] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ulcerative colitis (UC) are at a two- to three-fold increased risk of developing colorectal cancer (CRC) than the general population based on population-based data. UC-CRC has generated a series of clinical problems, which are reflected in its worse prognosis and higher mortality than sporadic CRC. Chronic inflammation is a significant contributor to the development of UC-CRC, so comprehending the relationship between the proinflammatory factors and epithelial cells together with downstream signaling pathways is the core to elucidate the mechanisms involved in developing of CRC. Clinical studies have shown the importance of early prevention, detection and management of CRC in patients with UC, and colonoscopic surveillance at regular intervals with multiple biopsies is considered the most effective way. The use of endoscopy with targeted biopsies of visible lesions has been supported in most populations. In contrast, random biopsies in patients with high-risk characteristics have been suggested during surveillance. Some of the agents used to treat UC are chemopreventive, the effects of which will be examined in cancers in UC in a population-based setting. In this review, we outline the current state of potential risk factors and chemopreventive recommendations in UC-CRC, with a specific focus on the proinflammatory mechanisms in promoting CRC and evidence for personalized surveillance.
Collapse
|
39
|
Yinhang W, Wei W, Jing Z, Qing Z, Yani Z, Yangyanqiu W, Shuwen H. Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiol 2022; 17:1071-1089. [PMID: 35916158 DOI: 10.2217/fmb-2021-0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most considerably common malignancies of the alimentary system, with high mortality and incidence rates. The present study suggested that the occurrence of CRC is closely related to bacteria, as the large intestine is a gathering place for human micro-organisms. However, the nosogenesis of bacteria leading to tumorigenesis is still obscure. Recently, many studies have reported that toll-like receptors and their related molecular pathways are involved in the process of gut micro-organisms generating CRC. Gut micro-organisms can promote or inhibit the development of CRC via binding to special toll-like receptors. In this paper, the authors review the relationship among toll-like receptors, gut micro-organisms and CRC in order to provide a reference for future tumor immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Qing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Yani
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
40
|
Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188758. [PMID: 35809762 DOI: 10.1016/j.bbcan.2022.188758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have gained much attention in managing cancer, only a minority of patients, especially those with tumors that have been classified as immunologically "cold" such as microsatellite stable (MSS) colorectal cancers (CRC), experience clinical benefit from ICIs. Surprisingly, interleukin-17 (IL-17) and its primary source Th17 are enriched in CRC and inversely associated with patient outcome. Our previous study revealed that IL-17A could upregulate programmed death-ligand 1 (PD-L1) expression and impede the efficacy of immunotherapy. IL-17, therefore, can be a possible target to sensitize tumor cells to ICIs. The detailed clinical results from our trial, which is the first to show the benefits of the combination of anti-PD-1 with anti-IL-17 therapy for MSS CRC, have also been presented. In this review, we highlight the role of IL-17 in ICIs resistance and summarize the current clinical evidence for the use of combination therapy. Directions for future strategies to warm up immunologically "cold" MSS CRCs have also been proposed.
Collapse
|
41
|
Li W, Chen P, Zhao Y, Cao M, Hu W, Pan L, Sun H, Huang D, Wu H, Song Z, Zhong H, Mou L, Luan S, Chen X, Gao H. Human IL-17 and TNF-α Additively or Synergistically Regulate the Expression of Proinflammatory Genes, Coagulation-Related Genes, and Tight Junction Genes in Porcine Aortic Endothelial Cells. Front Immunol 2022; 13:857311. [PMID: 35844613 PMCID: PMC9279740 DOI: 10.3389/fimmu.2022.857311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Immune rejection is the major limitation for porcine xenograft survival in primate recipients. Proinflammatory cytokines play important roles in immune rejection and have been found to mediate the pathological effects in various clinical and experimental transplantation trials. IL-17 and TNF-α play critical pathological roles in immune disorders, such as psoriasis and rheumatoid arthritis. However, the pathological roles of human IL-17 (hIL-17) and human TNF-α (hTNF-α) in xenotransplantation remain unclear. Here we found that hIL-17 and hTNF-α additively or synergistically regulate the expression of 697 genes in porcine aortic endothelial cells (PAECs). Overall, 415 genes were found to be synergistically regulated, while 282 genes were found to be additively regulated. Among these, 315 genes were upregulated and 382 genes were downregulated in PAECs. Furthermore, we found that hIL-17 and hTNF-α additively or synergistically induced the expression of various proinflammatory cytokines and chemokines (e.g., IL1α, IL6, and CXCL8) and decreased the expression of certain anti-inflammatory genes (e.g., IL10). Moreover, hIL-17 plus hTNF-α increased the expression of IL1R1 and IL6ST, receptors for IL1 and IL6, respectively, and decreased anti-inflammatory gene receptor expression (IL10R). hIL-17 and hTNF-α synergistically or additively induced CXCL8 and CCL2 expression and consequently promoted primary human neutrophil and human leukemia monocytic cell migration, respectively. In addition, hIL-17 and hTNF-α induced pro-coagulation gene (SERPINB2 and F3) expression and decreased anti-coagulation gene (TFPI, THBS1, and THBD) expression. Additionally, hIL-17 and hTNF-α synergistically decreased occludin expression and consequently promoted human antibody-mediated complement-dependent cytotoxicity. Interestingly, hTNF-α increased swine leukocyte antigen (SLA) class I expression; however, hIL-17 decreased TNF-α-mediated SLA-I upregulation. We concluded that hIL-17 and hTNF-α likely promote the inflammatory response, coagulation cascade, and xenoantibody-mediated cell injury. Thus, blockade of hIL-17 and hTNF-α together might be beneficial for xenograft survival in recipients.
Collapse
Affiliation(s)
- Weilong Li
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Pengfei Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yanli Zhao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenjun Hu
- Department of Anesthesiology, The 305 Hospital of People's Liberation Army of China (PLA), Beijing, China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huimin Sun
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dongsheng Huang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hanxi Wu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huanli Zhong
- Department of Medical Administration, People’s Hospital of Shenzhen Longhua Branch, Shenzhen, China
| | - Lisha Mou
- Department of Acupuncture and Massage, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xiehui Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
42
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
43
|
Nagao-Kitamoto H, Kitamoto S, Kamada N. Inflammatory bowel disease and carcinogenesis. Cancer Metastasis Rev 2022; 41:301-316. [PMID: 35416564 DOI: 10.1007/s10555-022-10028-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer mortality worldwide. Colitis-associated colorectal cancer (CAC) is a subtype of CRC associated with inflammatory bowel disease (IBD). It is well known that individuals with IBD have a 2-3 times higher risk of developing CRC than those who do not, rendering CAC a major cause of death in this group. Although the etiology and pathogenesis of CAC are incompletely understood, animal models of chronic inflammation and human cohort data indicate that changes in the intestinal environment, including host response dysregulation and gut microbiota perturbations, may contribute to the development of CAC. Genomic alterations are a hallmark of CAC, with patterns that are distinct from those in sporadic CRC. The discovery of the biological changes that underlie the development of CAC is ongoing; however, current data suggest that chronic inflammation in IBD increases the risk of developing CAC. Therefore, a deeper understanding of the precise mechanisms by which inflammation triggers genetic alterations and disrupts intestinal homeostasis may provide insight into novel therapeutic strategies for the prevention of CAC.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
44
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
45
|
Soares-Schanoski A, Sauerwald N, Goforth CW, Periasamy S, Weir DL, Lizewski S, Lizewski R, Ge Y, Kuzmina NA, Nair VD, Vangeti S, Marjanovic N, Cappuccio A, Cheng WS, Mofsowitz S, Miller CM, Yu XB, George MC, Zaslavsky E, Bukreyev A, Troyanskaya OG, Sealfon SC, Letizia AG, Ramos I. Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 and Fibroblast Growth Factors Than Mild Symptomatic COVID-19. Front Immunol 2022; 13:821730. [PMID: 35479098 PMCID: PMC9037090 DOI: 10.3389/fimmu.2022.821730] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-β, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.
Collapse
Affiliation(s)
| | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, United States
| | - Carl W Goforth
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States
| | - Dawn L Weir
- Naval Medical Research Center, Silver Spring, MD, United States
| | | | | | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nada Marjanovic
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wan Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sagie Mofsowitz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Clare M Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xuechen B Yu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary-Catherine George
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States.,Department of Computer Science, Princeton University, Princeton, NJ, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
47
|
AL-Ishaq RK, Koklesova L, Kubatka P, Büsselberg D. Immunomodulation by Gut Microbiome on Gastrointestinal Cancers: Focusing on Colorectal Cancer. Cancers (Basel) 2022; 14:2140. [PMID: 35565269 PMCID: PMC9101278 DOI: 10.3390/cancers14092140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer (GI) is a global health disease with a huge burden on a patient's physical and psychological aspects of life and on health care providers. It is associated with multiple disease related challenges which can alter the patient's quality of life and well-being. GI cancer development is influenced by multiple factors such as diet, infection, environment, and genetics. Although activating immune pathways and components during cancer is critical for the host's survival, cancerous cells can target those pathways to escape and survive. As the gut microbiome influences the development and function of the immune system, research is conducted to investigate the gut microbiome-immune interactions, the underlying mechanisms, and how they reduce the risk of GI cancer. This review addresses and summarizes the current knowledge on the major immune cells and gut microbiome interactions. Additionally, it highlights the underlying mechanisms of immune dysregulation caused by gut microbiota on four major cancerous pathways, inflammation, cellular proliferation, apoptosis, and metastasis. Overall, gut-immune interactions might be a key to understanding GI cancer development, but further research is needed for more detailed clarification.
Collapse
Affiliation(s)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
48
|
Smith AD, Chen C, Cheung L, Ward R, Hintze KJ, Dawson HD. Resistant Potato Starch Alters the Cecal Microbiome and Gene Expression in Mice Fed a Western Diet Based on NHANES Data. Front Nutr 2022; 9:782667. [PMID: 35392294 PMCID: PMC8983116 DOI: 10.3389/fnut.2022.782667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies indicate that the four major types of resistant starch (RS1-4) are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs) and can alter the microbiome and host physiology. However, nearly all these studies were conducted in rodents fed with a diet that does not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD) based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet for 6 weeks and then supplemented with 0, 2, 5, or 10% of the RS2, resistant potato starch (RPS), for an additional 3 weeks. The cecal microbiome was analyzed by 16S sequencing. The alpha-diversity of the microbiome decreased with increasing consumption of RPS while a beta-diversity plot showed four discreet groupings based on the RPS level in the diet. The relative abundance of various genera was altered by feeding increasing levels of RPS. In particular, the genus Lachnospiraceae NK4A136 group was markedly increased. Cecal, proximal, and distal colon tissue mRNA abundance was analyzed by RNASeq. The cecal mRNA abundance principal component analysis showed clear segregation of the four dietary groups whose separation decreased in the proximal and distal colon. Differential expression of the genes was highest in the cecum, but substantially decreased in the proximal colon (PC) and distal colon (DC). Most differentially expressed genes were unique to each tissue with little overlap in between. The pattern of the observed gene expression suggests that RPS, likely through metabolic changes secondary to differences in microbial composition, appears to prime the host to respond to a range of pathogens, including viruses, bacteria, and parasites. In summary, consumption of dietary RPS led to significant changes to the microbiome and gene expression in the cecum and to a lesser extent in the proximal and distal colon.
Collapse
Affiliation(s)
- Allen D. Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Allen D. Smith
| | - Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Robert Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Korry J. Hintze
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Harry D. Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
49
|
Luo S, Zhu H, Zhang J, Wan D. The Pivotal Role of Microbiota in Modulating the Neuronal-Glial-Epithelial Unit. Infect Drug Resist 2021; 14:5613-5628. [PMID: 34992388 PMCID: PMC8711043 DOI: 10.2147/idr.s342782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The enteric nervous system (ENS) consists of enteric neurons and enteric glial cells (EGCs) and controls the function of the epithelial barrier. Thus, a novel concept of neuronal-glial-epithelial unit in the gut was put forward by analogy with neuronal-glial-endothelial unit in the brain. The environment in the gastrointestinal (GI) tract is complex as it harbours millions of bacteria, which extensively attach with intestinal epithelium. The cross-talk between the neuronal-glial-endothelial unit and microbiota plays a pivotal role in modulating the epithelial barrier's permeability, intestinal development and immune response. And evidence shows dysbiosis is the potent risk factor in the pathologic process of Parkinson's disease (PD) and inflammatory bowel disease (IBD). In this review, we summarize the compelling results in favor of microbiota serving as the key modulator in the neuronal-glial-epithelial unit development and function, with profound effects on intestinal homeostasis.
Collapse
Affiliation(s)
- Siyu Luo
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, People’s Republic of China
| | - Junhui Zhang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dong Wan
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
50
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|