1
|
Depp C, Doman JL, Hingerl M, Xia J, Stevens B. Microglia transcriptional states and their functional significance: Context drives diversity. Immunity 2025; 58:1052-1067. [PMID: 40328255 DOI: 10.1016/j.immuni.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
In the brain, microglia are continuously exposed to a dynamic microenvironment throughout life, requiring them to adapt accordingly to specific developmental or disease-related demands. The advent of single-cell sequencing technologies has revealed the diversity of microglial transcriptional states. In this review, we explore the various contexts that drive transcriptional diversity in microglia and assess the extent to which non-homeostatic conditions induce context-specific signatures. We discuss our current understanding and knowledge gaps regarding the relationship between transcriptional states and microglial function, review the influence of complex microenvironments and prior experiences on microglial state induction, and highlight strategies to bridge the gap between mouse and human studies to advance microglia-targeting therapeutics.
Collapse
Affiliation(s)
- Constanze Depp
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jordan L Doman
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Maximilian Hingerl
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy Xia
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Liu Y, Wang TT, Lu Y, Riaz M, Qyang Y. Cardiac macrophage: Insights from murine models to translational potential for human studies. J Mol Cell Cardiol 2025; 204:17-31. [PMID: 40354877 DOI: 10.1016/j.yjmcc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Macrophages are a cell type that are known to play dynamic roles in acute and progressive pathology. They are highly attuned to their microenvironments throughout maturation, tailoring their functional responses according to the specific tissues in which they reside and their developmental origin. Cardiac macrophages (cMacs) have emerged as focal points of interest for their interactions with the unique electrical and mechanical stimuli of the heart, as well as for their role in maintaining cardiac homeostasis. Through an in-depth analysis of their origin, lineage, and functional significance, this review aims to shed light on cMacs' distinct contributions to both normal physiological maintenance as well as disease progression. Central to our discussion is the comparison of cMac characteristics between mouse and human models, highlighting current challenges and proposing novel experimental tools for deciphering cMac function within the intricate human cardiac microenvironments based on current murine studies. Our review offers valuable insights for identifying novel therapeutic targets and interventions tailored to the distinct roles of these immune cells in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Yufeng Liu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Tricia T Wang
- Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yinsheng Lu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Ma L, Fink J, Yao K, McDonald-Hyman C, Dougherty P, Koehn B, Blazar BR. Immunoregulatory iPSC-derived non-lymphoid progeny in autoimmunity and GVHD alloimmunity. Stem Cells 2025; 43:sxaf011. [PMID: 40103180 DOI: 10.1093/stmcls/sxaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Non-lymphoid immunoregulatory cells, including mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs), regulatory macrophages (Mregs), and tolerogenic dendritic cells (Tol-DCs), play critical roles in maintaining immune homeostasis. However, their therapeutic application in autoimmune diseases and graft-versus-host disease (GVHD) has received comparatively less attention. Induced pluripotent stem cells (iPSCs) offer a promising platform for cell engineering, enabling superior quality control, scalable production, and large-scale in vitro expansion of iPSC-derived non-lymphoid immunoregulatory cells. These advances pave the way for their broader application in autoimmune disease and GVHD therapy. Recent innovations in iPSC differentiation protocols have facilitated the generation of these cell types with functional characteristics akin to their primary counterparts. This review explores the unique features and generation processes of iPSC-derived non-lymphoid immunoregulatory cells, their therapeutic potential in GVHD and autoimmune disease, and their progress toward clinical translation. It emphasizes the phenotypic and functional diversity within each cell type and their distinct effects on disease modulation. Despite these advancements, challenges persist in optimizing differentiation efficiency, ensuring functional stability, and bridging the gap to clinical application. By synthesizing current methodologies, preclinical findings, and translational efforts, this review underscores the transformative potential of iPSC-derived non-lymphoid immunoregulatory cells in advancing cell-based therapies for alloimmune and autoimmune diseases.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Jordan Fink
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Ke Yao
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Cameron McDonald-Hyman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Phillip Dougherty
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
4
|
Kang JS, Lee Y, Lee Y, Gil D, Kim MJ, Wood C, Delorme V, Lee JM, Ko KC, Kim JH, Lee MO. Generation of induced alveolar assembloids with functional alveolar-like macrophages. Nat Commun 2025; 16:3346. [PMID: 40199883 PMCID: PMC11978882 DOI: 10.1038/s41467-025-58450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
Within the human lung, interactions between alveolar epithelial cells and resident macrophages shape lung development and function in both health and disease. To study these processes, we develop a co-culture system combining human pluripotent stem cell-derived alveolar epithelial organoids and induced macrophages to create a functional environment, termed induced alveolar assembloids. Using single-cell RNA sequencing and functional analyses, we identify alveolar type 2-like cells producing GM-CSF, which supports macrophage tissue adaptation, and macrophage-like cells that secrete interleukin-1β and interleukin-6, express surfactant metabolism genes, and demonstrate core immune functions. In response to alveolar epithelial injury, macrophage-like cells efficiently eliminate damaged cells and absorb oxidized lipids. Exposure to bacterial components or infection with Mycobacterium tuberculosis reveals that these assembloids replicate key aspects of human respiratory defense. These findings highlight the potential of induced alveolar assembloids as a platform to investigate human lung development, immunity, and disease.
Collapse
Affiliation(s)
- Ji Su Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Youngsun Lee
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, South Korea
| | - Youngsun Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dayeon Gil
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, South Korea
| | - Min Jung Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, South Korea
| | - Connor Wood
- Tuberculosis Research Laboratory, Discovery Biology, Institute Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Discovery Biology, Institute Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Jeong Mi Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kyong-Cheol Ko
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, South Korea.
- College of Pharmacy, Ajou University, Suwon, 16499, Korea.
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Mi-Ok Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Schmied V, Korkut-Demirbaş M, Venturino A, Maya-Arteaga JP, Siegert S. Microglia determine an immune-challenged environment and facilitate ibuprofen action in human retinal organoids. J Neuroinflammation 2025; 22:98. [PMID: 40181459 PMCID: PMC11966913 DOI: 10.1186/s12974-025-03366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/01/2025] [Indexed: 04/05/2025] Open
Abstract
Prenatal immune challenges pose significant risks to human embryonic brain and eye development. However, our knowledge about the safe usage of anti-inflammatory drugs during pregnancy is still limited. While human induced pluripotent stem cells (hIPSC)-derived brain organoid models have started to explore functional consequences upon viral stimulation, these models commonly lack microglia, which are susceptible to and promote inflammation. Furthermore, microglia are actively involved in neuronal development. Here, we generate hIPSC-derived microglia precursor cells and assemble them into retinal organoids. Once the outer plexiform layer forms, these hIPSC-derived microglia (iMG) fully integrate into the retinal organoids. Since the ganglion cell survival declines by this time in 3D-retinal organoids, we adapted the model into 2D and identify that the improved ganglion cell number significantly decreases only with iMG presence. In parallel, we applied the immunostimulant POLY(I:C) to mimic a fetal viral infection. While POLY(I:C) exposure alters the iMG phenotype, it does not hinder their interaction with ganglion cells. Furthermore, iMG significantly enhance the supernatant's inflammatory secretome and increase retinal cell proliferation. Simultaneous exposure with the non-steroidal anti-inflammatory drug (NSAID) ibuprofen dampens POLY(I:C)-mediated changes of the iMG phenotype and ameliorates cell proliferation. Remarkably, while POLY(I:C) disrupts neuronal calcium dynamics independent of iMG, ibuprofen rescues this effect only if iMG are present. Mechanistically, ibuprofen targets the enzymes cyclooxygenase 1 and 2 (COX1/PTGS1 and COX2/PTGS2) simultaneously, from which iMG mainly express COX1. Selective COX1 blockage fails to restore the calcium peak amplitude upon POLY(I:C) stimulation, suggesting ibuprofen's beneficial effect depends on the presence and interplay of COX1 and COX2. These findings underscore the importance of microglia in the context of prenatal immune challenges and provide insight into the mechanisms by which ibuprofen exerts its protective effects during embryonic development.
Collapse
Affiliation(s)
- Verena Schmied
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Medina Korkut-Demirbaş
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Alessandro Venturino
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Juan Pablo Maya-Arteaga
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
6
|
Ma DJ, Li TH, Yang SY, Yu JJ, Li ST, Yu Y, Liu Y, Zang J, Kong L, Li XT. Self-assembling Bletilla polysaccharide nanogels facilitate healing of acute and infected wounds via inflammation control and antibacterial activity. Int J Biol Macromol 2025; 299:140125. [PMID: 39842574 DOI: 10.1016/j.ijbiomac.2025.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Wound healing is one of the fundamental problems faced by the medical profession. Thus, there is a need for the development of biomaterials that are safe, economically viable, possess anti-inflammatory and antibacterial characteristics, and enhance wound healing. In this study, we designed a nanomicelle of Bletilla striata polysaccharide (BSP) self-loaded with Azithromycin (AZI). The properties are improved by physically blending Carbomer 940 (CBM) with Gelatin (GEL) to serve as the hydrogel matrix. The preparation was made by combining the nanomicelle, used as the precursor solution, with the gel matrix. It was designed to treat wound infections and promote healing. Relevant experiments indicate its excellent biocompatibility. The hydrogel not only promotes cell migration, proliferation, angiogenesis, and collagen deposition associated with skin healing, but also regulates the polarization of macrophages from the M1 to M2 phenotype, as well as the expression of related factors. Additionally, in vitro experiments demonstrate its good antibacterial activity. In addition, we demonstrated the gel's anti-inflammatory, antibacterial, and pro-healing effects in acute wounds and methicillin-resistant Staphylococcus aureus (MRSA) wounds. Therefore, the nanomicellar gel enhances antibacterial activity and related immune regulation, offering a new direction in the treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- De-Jin Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Tian-Hua Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Su-Yu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Jun-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| |
Collapse
|
7
|
Rao C, Semrau S, Fossati V. Decoding microglial functions in Alzheimer's disease: insights from human models. Trends Immunol 2025; 46:310-323. [PMID: 40113535 PMCID: PMC11993344 DOI: 10.1016/j.it.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Microglia, key orchestrators of the brain's immune responses, play a pivotal role in the progression of Alzheimer's disease (AD). Emerging human models, including stem cell-derived microglia and cerebral organoids, are transforming our understanding of microglial contributions to AD pathology. In this review, we highlight how these models have uncovered human-specific microglial responses to amyloid plaques and their regulation of neuroinflammation, which are not recapitulated in animal models. We also illustrate how advanced human models that better mimic brain physiology and AD pathology are providing unprecedented insights into the multifaceted roles of microglia. These innovative approaches, combined with sophisticated technologies for cell editing and analysis, are shaping AD research and opening new avenues for therapeutic interventions targeting microglia.
Collapse
Affiliation(s)
- Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
8
|
Karam M, Ortega-Gascó A, Tornero D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. Int J Mol Sci 2025; 26:3275. [PMID: 40244116 PMCID: PMC11989304 DOI: 10.3390/ijms26073275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal loss, synaptic dysfunction, and glial dysregulation in chronic phases. Inflammatory responses are mainly orchestrated by microglia and infiltrated monocytes, which, when dysregulated, not only harm existing neurons, but also impair the survival and differentiation of neural stem and progenitor cells in the affected brain regions. Modulating neuroinflammation is crucial for harnessing its protective functions while minimizing its detrimental effects. Current therapeutic strategies focus on fine-tuning inflammatory responses through pharmacological agents, bioactive molecules, and stem cell-based therapies. These approaches aim to restore immune homeostasis, support neuroprotection, and promote regeneration in various neurological disorders. However, animal models sometimes fail to reproduce human-specific inflammatory responses in the brain. In this context, stem-cell-derived models provide a powerful tool to study neuroinflammatory mechanisms in a patient-specific and physiologically relevant context. These models facilitate high-throughput screening, personalized medicine, and the development of targeted therapies while addressing the limitations of traditional animal models, paving the way for more targeted and effective treatments.
Collapse
Affiliation(s)
- Marie Karam
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Ortega-Gascó
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
9
|
Yin J, Hayes KM, Ong MS, Mizgerd JP, Cunningham-Rundles C, Dominguez I, Barmettler S, Farmer JR, Maglione PJ. Common Variable Immunodeficiency Clinical Manifestations Are Shaped by Presence and Type of Heterozygous NFKB1 Variants. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:639-646. [PMID: 39672378 PMCID: PMC11885011 DOI: 10.1016/j.jaip.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND NFKB1 encodes p105, which is processed to p50 to mediate canonical nuclear factor-κB (NF-κB) signaling. Although NF-κB is a central driver of inflammation and heterozygous NFKB1 variants are considered the most common monogenic etiologies of common variable immunodeficiency (CVID), few studies have explored how NFKB1 variants shape clinical course or inflammation in CVID. OBJECTIVE We leveraged a regional cohort of patients with CVID with and without heterozygous NFKB1 variants to assess how clinical and inflammatory features of CVID are shaped by the presence of these variants. METHODS We compared clinical complications, immunologic features, and plasma cytokine levels of 15 patients with CVID with heterozygous NFKB1 variants and 77 genetically undefined patients with CVID from the same referral base. We also assessed differences between patients with CVID with frameshift or nonsense NFKB1 variants compared with those with missense NFKB1 variants. RESULTS We found patients with CVID with heterozygous NFKB1 variants to have increased autoimmune disease, bronchiectasis, gastrointestinal infections, inflammatory bowel disease, and plasma cytokines. These findings were more pronounced and included elevation of monocytes in patients with CVID with frameshift or nonsense NFKB1 variants relative to those with missense NFKB1 variants. CONCLUSIONS In a regional cohort, heterozygous NFKB1 variants were associated with worsened CVID clinical course and increased evidence of inflammation in the blood. Patients with CVID with frameshift or nonsense NFKB1 variants had more significant increases in noninfectious complications and peripheral monocytes than those with missense NFKB1 variants. Presence of pathogenic NFKB1 variants in patients with CVID may worsen the disease course and warrant closer monitoring.
Collapse
Affiliation(s)
- Jie Yin
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Mass
| | - Kevin M Hayes
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Joseph P Mizgerd
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Mass
| | | | - Isabel Dominguez
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Mass
| | - Sara Barmettler
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Program in Clinical Immunodeficiency of Beth Israel Lahey Health, Division of Allergy and Immunology, Lahey Hospital and Medical Center, Burlington, Mass
| | - Paul J Maglione
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Mass.
| |
Collapse
|
10
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Tang C, Zhou QQ, Huang XF, Ju YY, Rao BL, Liu ZC, Jia YA, Bai ZP, Lin QY, Liu L, Qu J, Zhang J, Gao ML. Integration and functionality of human iPSC-derived microglia in a chimeric mouse retinal model. J Neuroinflammation 2025; 22:53. [PMID: 40016767 PMCID: PMC11869422 DOI: 10.1186/s12974-025-03393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Microglia, the resident immune cells of the central nervous system, play a pivotal role in maintaining homeostasis, responding to injury, and modulating neuroinflammation. However, the limitations of rodent models in accurately representing human microglia have posed significant challenges in the study of retinal diseases. METHODS PLX5622 was used to eliminate endogenous microglia in mice through oral and intraperitoneal administration, followed by transplantation of human induced pluripotent stem cell-derived microglia (hiPSC-microglia, iMG) into retinal explants to create a novel ex vivo chimeric model containing xenotransplanted microglia (xMG). The number and proportion of xMG in the retina were quantified using retinal flat-mounting and immunostaining. To evaluate the proliferative capacity and synaptic pruning ability of xMG, the expression of Ki-67 and the phagocytosis of synaptic proteins SV2 and PSD95 was assessed. The chimeric model was stimulated with LPS, and single-cell RNA sequencing (scRNA-seq) was used to analyze transcriptomic changes in iMG and xMG. Mouse IL-34 antibody neutralization experiments were performed, and the behavior of xMG in retinal degenerative Pde6b-/- mice was examined. RESULTS We demonstrated that xenotransplanted microglia (xMG) successfully migrated to and localized within the mouse retina, adopting homeostatic morphologies. Our approach achieved over 86% integration of human microglia, which maintained key functions including proliferation, immune responsiveness, and synaptic pruning over a 14-day culture period. scRNA-seq of xMG revealed a shift in microglial signatures compared to monoculture iMG, indicating a transition to a more in vivo-like phenotype. In retinal degenerative Pde6b-/- mice, xMG exhibited activation and migrated toward degenerated photoreceptors. CONCLUSION This model provides a powerful platform for studying human microglia in the retinal context, offering significant insights for advancing research into retinal degenerative diseases and developing potential therapeutic strategies. Future applications of this model include using patient-derived iPSCs to investigate disease-specific microglial behaviors, thereby enhancing our understanding of microglia-related pathogenesis.
Collapse
Affiliation(s)
- Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qi-Qi Zhou
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya-Yi Ju
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi-Lin Rao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-An Jia
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing-Yang Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lin Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Lead Contact, Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
12
|
Abagnale G, Schwentner R, Ben Soussia-Weiss P, van Midden W, Sturtzel C, Pötschger U, Rados M, Taschner-Mandl S, Simonitsch-Klupp I, Hafemeister C, Halbritter F, Distel M, Eder SK, Hutter C. BRAFV600E induces key features of LCH in iPSCs with cell type-specific phenotypes and drug responses. Blood 2025; 145:850-865. [PMID: 39630039 PMCID: PMC11867135 DOI: 10.1182/blood.2024026066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/21/2025] Open
Abstract
ABSTRACT Langerhans cell histiocytosis (LCH) is a clonal hematopoietic disorder defined by tumorous lesions containing CD1a+/CD207+ cells. Two severe complications of LCH are systemic hyperinflammation and progressive neurodegeneration. The scarcity of primary samples and lack of appropriate models limit our mechanistic understanding of LCH pathogenesis and affect patient care. We generated a human in vitro model for LCH using induced pluripotent stem cells (iPSCs) harboring the BRAFV600E mutation, the most common genetic driver of LCH. We show that BRAFV600E/WT iPSCs display myelomonocytic skewing during hematopoiesis and spontaneously differentiate into CD1a+/CD207+ cells that are similar to lesional LCH cells and are derived from a CD14+ progenitor. We show that BRAFV600E modulates the expression of key transcription factors regulating monocytic differentiation and leads to an upregulation of proinflammatory molecules and LCH marker genes early during myeloid differentiation. In vitro drug testing revealed that BRAFV600E-induced transcriptomic changes are reverted upon treatment with mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKis). Importantly, MAPKis do not affect myeloid progenitors but reduce only the mature CD14+ cell population. Furthermore, iPSC-derived neurons (iNeurons) cocultured with BRAFV600E/WT iPSC-derived microglia-like cells, differentiated from iPSC-derived CD34+ progenitors, exhibit signs of neurodegeneration with neuronal damage and release of neurofilament light chain. In summary, the iPSC-based model described here provides a platform to investigate the effects of BRAFV600E in different hematopoietic cell types and provides a tool to compare and identify novel approaches for the treatment of BRAFV600E-driven diseases.
Collapse
Affiliation(s)
- Giulio Abagnale
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | | | | | | | - Magdalena Rados
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | | | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sebastian K. Eder
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Caroline Hutter
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Peng D, Li M, Yu Z, Yan T, Yao M, Li S, Liu Z, Li L, Qiu H. Synergy between pluripotent stem cell-derived macrophages and self-renewing macrophages: Envisioning a promising avenue for the modelling and cell therapy of infectious diseases. Cell Prolif 2025; 58:e13770. [PMID: 39537185 PMCID: PMC11839195 DOI: 10.1111/cpr.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
As crucial phagocytes of the innate immune system, macrophages (Mϕs) protect mammalian hosts, maintain tissue homeostasis and influence disease pathogenesis. Nonetheless, Mϕs are susceptible to various pathogens, including bacteria, viruses and parasites, which cause various infectious diseases, necessitating a deeper understanding of pathogen-Mϕ interactions and therapeutic insights. Pluripotent stem cells (PSCs) have been efficiently differentiated into PSC-derived Mϕs (PSCdMϕs) resembling primary Mϕs, advancing the modelling and cell therapy of infectious diseases. However, the mass production of PSCdMϕs, which lack proliferative capacity, relies on large-scale expansions of PSCs, thereby increasing both costs and culture cycles. Notably, Mϕs deficient in the MafB/c-Maf genes have been reported to re-enter the cell cycle with the stimulation of specific growth factor cocktails, turning into self-renewing Mϕs (SRMϕs). This review summarizes the applications of PSCdMϕs in the modelling and cell therapy of infectious diseases and strategies for establishing SRMϕs. Most importantly, we innovatively propose that PSCs can serve as a gene editing platform to creating PSC-derived SRMϕs (termed PSRMϕs), addressing the resistance of Mϕs against genetic manipulation. We discuss the challenges and possible solutions in creating PSRMϕs. In conclusion, this review provides novel insights into the development of physiologically relevant and expandable Mϕ models, highlighting the enormous potential of PSRMϕs as a promising avenue for the modelling and cell therapy of infectious diseases.
Collapse
Affiliation(s)
- Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Lian‐Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Hua‐Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
15
|
Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol 2025; 16:1539988. [PMID: 39925814 PMCID: PMC11802581 DOI: 10.3389/fimmu.2025.1539988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Brain macrophages encompass two major populations: microglia in the parenchyma and border-associated macrophages (BAMs) in the extra-parenchymal compartments. These cells play crucial roles in maintaining brain homeostasis and immune surveillance. Microglia and BAMs are phenotypically and epigenetically distinct and exhibit highly specialized functions tailored to their environmental niches. Intriguingly, recent studies have shown that both microglia and BAMs originate from the same myeloid progenitor during yolk sac hematopoiesis, but their developmental fates diverge within the brain. Several works have partially unveiled the mechanisms orchestrating the development of microglia and BAMs in both mice and humans; however, many questions remain unanswered. Defining the molecular underpinnings controlling the transcriptional and epigenetic programs of microglia and BAMs is one of the upcoming challenges for the field. In this review, we outline current knowledge on ontogeny, phenotypic diversity, and the factors shaping the ecosystem of brain macrophages. We discuss insights garnered from human studies, highlighting similarities and differences compared to mice. Lastly, we address current research gaps and potential future directions in the field. Understanding how brain macrophages communicate with their local environment and how the tissue instructs their developmental trajectories and functional features is essential to fully comprehend brain physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Claudia Z. Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
16
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
17
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 PMCID: PMC11686093 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
18
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
19
|
Brüggenthies JB, Dittmer J, Martin E, Zingman I, Tabet I, Bronner H, Groetzner S, Sauer J, Dehghan Harati M, Scharnowski R, Bakker J, Riegger K, Heinzelmann C, Ast B, Ries R, Fillon SA, Bachmayr-Heyda A, Kitt K, Grundl MA, Heilker R, Humbeck L, Schuler M, Weigle B. Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools. Int J Mol Sci 2024; 25:12330. [PMID: 39596395 PMCID: PMC11595184 DOI: 10.3390/ijms252212330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Macrophage polarization critically contributes to a multitude of human pathologies. Hence, modulating macrophage polarization is a promising approach with enormous therapeutic potential. Macrophages are characterized by a remarkable functional and phenotypic plasticity, with pro-inflammatory (M1) and anti-inflammatory (M2) states at the extremes of a multidimensional polarization spectrum. Cell morphology is a major indicator for macrophage activation, describing M1(-like) (rounded) and M2(-like) (elongated) states by different cell shapes. Here, we introduced cell painting of macrophages to better reflect their multifaceted plasticity and associated phenotypes beyond the rigid dichotomous M1/M2 classification. Using high-content imaging, we established deep learning- and feature-based cell painting image analysis tools to elucidate cellular fingerprints that inform about subtle phenotypes of human blood monocyte-derived and iPSC-derived macrophages that are characterized as screening surrogate. Moreover, we show that cell painting feature profiling is suitable for identifying inter-donor variance to describe the relevance of the morphology feature 'cell roundness' and dissect distinct macrophage polarization signatures after stimulation with known biological or small-molecule modulators of macrophage (re-)polarization. Our novel established AI-fueled cell painting analysis tools provide a resource for high-content-based drug screening and candidate profiling, which set the stage for identifying novel modulators for macrophage (re-)polarization in health and disease.
Collapse
Affiliation(s)
- Johanna B. Brüggenthies
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| | - Jakob Dittmer
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co. KG, 1121 Vienna, Austria; (J.D.); (A.B.-H.)
| | - Eva Martin
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Igor Zingman
- Global Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (I.Z.); (M.A.G.); (L.H.)
| | - Ibrahim Tabet
- ScreeningHub und ValueData GmbH, 70563 Stuttgart, Germany; (I.T.); (C.H.); (B.A.)
| | - Helga Bronner
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Sarah Groetzner
- Department Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (S.G.); (J.S.)
| | - Julia Sauer
- Department Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (S.G.); (J.S.)
| | - Mozhgan Dehghan Harati
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Rebekka Scharnowski
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| | - Julia Bakker
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| | - Katharina Riegger
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| | - Caroline Heinzelmann
- ScreeningHub und ValueData GmbH, 70563 Stuttgart, Germany; (I.T.); (C.H.); (B.A.)
| | - Birgit Ast
- ScreeningHub und ValueData GmbH, 70563 Stuttgart, Germany; (I.T.); (C.H.); (B.A.)
| | - Robert Ries
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Sophie A. Fillon
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA;
| | - Anna Bachmayr-Heyda
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co. KG, 1121 Vienna, Austria; (J.D.); (A.B.-H.)
| | - Kerstin Kitt
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| | - Marc A. Grundl
- Global Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (I.Z.); (M.A.G.); (L.H.)
| | - Ralf Heilker
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Lina Humbeck
- Global Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (I.Z.); (M.A.G.); (L.H.)
| | - Michael Schuler
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (E.M.); (H.B.); (M.D.H.); (R.R.); (R.H.); (M.S.)
| | - Bernd Weigle
- Department Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany; (J.B.B.); (R.S.); (J.B.); (K.R.); (K.K.)
| |
Collapse
|
20
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
21
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
22
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Punjabi PP, Angelini GD, Sattler S, Emanueli C. Small Extracellular Vesicles in the Pericardium Modulate Macrophage Immunophenotype in Coronary Artery Disease. JACC Basic Transl Sci 2024; 9:1057-1072. [PMID: 39444932 PMCID: PMC11494395 DOI: 10.1016/j.jacbts.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 10/25/2024]
Abstract
Coronary artery disease (CAD) is a major health issue. This study focused on pericardial macrophages and small extracellular vesicles (sEVs) in CAD. The macrophages in CAD patients showed reduced expression of protective markers and unchanged levels of proinflammatory receptors. Similar changes were observed in buffy-coat-derived macrophages when stimulated with CAD pericardial fluid-derived sEVs. The sEV contained miRNA-6516-5p, which inhibited CD36 and affected macrophage lipid uptake. These findings indicate that sEV-mediated miRNA actions contribute to the decrease in protective pericardial macrophages in CAD.
Collapse
Affiliation(s)
- Soumaya Ben-Aicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Fabiana Martino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Panagiotis G. Kyriazis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Natasha de Winter
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Prakash P. Punjabi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Gianni D. Angelini
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Liao Y, Zhu L. At the heart of inflammation: Unravelling cardiac resident macrophage biology. J Cell Mol Med 2024; 28:e70050. [PMID: 39223947 PMCID: PMC11369210 DOI: 10.1111/jcmm.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease remains one of the leading causes of death globally. Recent advancements in sequencing technologies have led to the identification of a unique population of macrophages within the heart, termed cardiac resident macrophages (CRMs), which exhibit self-renewal capabilities and play crucial roles in regulating cardiac homeostasis, inflammation, as well as injury and repair processes. This literature review aims to elucidate the origin and phenotypic characteristics of CRMs, comprehensively outline their contributions to cardiac homeostasis and further summarize their functional roles and molecular mechanisms implicated in the onset and progression of cardiovascular diseases. These insights are poised to pave the way for novel therapeutic strategies centred on targeted interventions based on the distinctive properties of resident macrophages.
Collapse
Affiliation(s)
- Yingnan Liao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuanChina
| | - Liyuan Zhu
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
25
|
Williamson AE, Liyanage S, Hassanshahi M, Dona MSI, Toledo-Flores D, Tran DXA, Dimasi C, Schwarz N, Fernando S, Salagaras T, Long A, Kazenwadel J, Harvey NL, Drummond GR, Vinh A, Chandrakanthan V, Misra A, Neufeld Z, Tan JTM, Martelotto L, Polo JM, Bonder CS, Pinto AR, Sharma S, Nicholls SJ, Bursill CA, Psaltis PJ. Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta. Nat Commun 2024; 15:7097. [PMID: 39154007 PMCID: PMC11330468 DOI: 10.1038/s41467-024-51637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.
Collapse
Affiliation(s)
- Anna E Williamson
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sanuri Liyanage
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Malathi S I Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Deborah Toledo-Flores
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Dang X A Tran
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Catherine Dimasi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nisha Schwarz
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sanuja Fernando
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thalia Salagaras
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Aaron Long
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Vashe Chandrakanthan
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Ashish Misra
- Faculty of Medicine and Health, University of Sydney and Heart Research Institute, Newtown, NSW, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Alexander R Pinto
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shiwani Sharma
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC, Australia
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
| |
Collapse
|
26
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
27
|
Shen J, Lyu S, Xu Y, Zhang S, Li L, Li J, Mou J, Xie L, Tang K, Wen W, Peng X, Yang Y, Shi Y, Li X, Wang M, Li X, Wang J, Cheng T. Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity. Cell Stem Cell 2024; 31:1003-1019.e9. [PMID: 38723634 DOI: 10.1016/j.stem.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 07/08/2024]
Abstract
Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Jinze Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Leling Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xuemei Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xinjie Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
28
|
Yang M, Liu S, Sui Y, Zhang C. Macrophage metabolism impacts metabolic dysfunction-associated steatotic liver disease and its progression. IMMUNOMETABOLISM 2024; 6:e00047. [DOI: 10.1097/in9.0000000000000047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a progressive form of metabolic dysfunction-associated steatohepatitis (MASH), is the leading chronic liver disease worldwide, which can progress to advanced liver disease and hepatocellular carcinoma. MASLD is tightly associated with metabolic disorders such as obesity, insulin resistance, and type 2 diabetes. Macrophages, as an innate immune component and a linker of adaptive immune response, play important roles in the pathogenesis and treatment of MASLD or MASH. Metabolic reprogramming can regulate macrophage activation and polarization to inhibit MASLD or MASH progression to advanced liver disease. Here, we summarize the underlying mechanisms of how different metabolites such as amino acids, glucose, and fatty acids can regulate macrophage function and phenotype, the factors that regulate macrophage metabolism, and potential treatment options to regulate macrophage function in MASLD or MASH, as well as other associated metabolic disorders.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Lock RI, Graney PL, Tavakol DN, Nash TR, Kim Y, Sanchez E, Morsink M, Ning D, Chen C, Fleischer S, Baldassarri I, Vunjak-Novakovic G. Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue. Cell Rep 2024; 43:114302. [PMID: 38824644 PMCID: PMC11254687 DOI: 10.1016/j.celrep.2024.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance, there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study, we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function. Macrophage retention within the hECTs was confirmed via immunofluorescence after 28 days of cultivation. The inclusion of iM0s significantly impacted hECT function, increasing contractile force production. A potential mechanism underlying these changes was revealed by the interrogation of calcium signaling, which demonstrated the modulation of β-adrenergic signaling in +iM0 hECTs. Collectively, these findings demonstrate that macrophages significantly enhance cardiac function in iPSC-derived hECT models, emphasizing the need to further explore their contributions not only in healthy hECT models but also in the contexts of disease and injury.
Collapse
Affiliation(s)
- Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Eloy Sanchez
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Derek Ning
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Connie Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Li N, Geng S, Dong ZZ, Jin Y, Ying H, Li HW, Shi L. A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol Cancer 2024; 23:117. [PMID: 38824567 PMCID: PMC11143597 DOI: 10.1186/s12943-024-02032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.
Collapse
Affiliation(s)
- Na Li
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shinan Geng
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Zhen-Zhen Dong
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Jin
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hangjie Ying
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hung-Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liyun Shi
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
31
|
Teo F, Kok CYL, Tan MJ, Je HS. Human pluripotent stem cell (hPSC)-derived microglia for the study of brain disorders. A comprehensive review of existing protocols. IBRO Neurosci Rep 2024; 16:497-508. [PMID: 38655500 PMCID: PMC11035045 DOI: 10.1016/j.ibneur.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.
Collapse
Affiliation(s)
- Fionicca Teo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Catherine Yen Li Kok
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mao-Jia Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Advanced Bioimaging Centre, SingHealth, Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
32
|
Jo S, Park SB, Kim H, Im I, Noh H, Kim EM, Kim KY, Oelgeschläger M, Kim JH, Park HJ. hiPSC-derived macrophages improve drug sensitivity and selectivity in a macrophage-incorporating organoid culture model. Biofabrication 2024; 16:035021. [PMID: 38749417 DOI: 10.1088/1758-5090/ad4c0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.
Collapse
Affiliation(s)
- Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ilkyun Im
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Haneul Noh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Michael Oelgeschläger
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jong-Hoon Kim
- Laboratory Stem Cells and Tissue regeneration, Department Biotechnology, Collage of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
33
|
Abdin SM, Mansel F, Hashtchin AR, Ackermann M, Hansen G, Becker B, Kick B, Pham N, Dietz H, Schaniel C, Martin U, Spreitzer I, Lachmann N. Sensor macrophages derived from human induced pluripotent stem cells to assess pyrogenic contaminations in parenteral drugs. Biofabrication 2024; 16:035017. [PMID: 38701770 DOI: 10.1088/1758-5090/ad4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.
Collapse
Affiliation(s)
- Shifaa M Abdin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Anna Rafiei Hashtchin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mania Ackermann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Björn Becker
- Microbiological Safety, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Nhi Pham
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christoph Schaniel
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ulrich Martin
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH), Centre for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ingo Spreitzer
- Microbiological Safety, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH), Centre for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Haq I, Ngo JC, Roy N, Pan RL, Nawsheen N, Chiu R, Zhang Y, Fujita M, Soni RK, Wu X, Bennett DA, Menon V, Olah M, Sher F. An integrated toolkit for human microglia functional genomics. Stem Cell Res Ther 2024; 15:104. [PMID: 38600587 PMCID: PMC11005142 DOI: 10.1186/s13287-024-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.
Collapse
Affiliation(s)
- Imdadul Haq
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Richard L Pan
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Nadiya Nawsheen
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rajesh K Soni
- Proteomics Core, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Xie DK, Yao J, Li PH, Zhu YW, Chen JN, Cao XL, Cheng SL, Chen YM, Huang YF, Wang L, Wang ZH, Qiao R, Ge JM, Yue H, Wei L, Liu ZY, Han H, Qin HY, Zhao JL. Phenotypic comparison and the potential antitumor function of immortalized bone marrow-derived macrophages (iBMDMs). Front Immunol 2024; 15:1379853. [PMID: 38650937 PMCID: PMC11033405 DOI: 10.3389/fimmu.2024.1379853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.
Collapse
Affiliation(s)
- Dong-kun Xie
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Jin Yao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Peng-hui Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan-wen Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Jia-nuo Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Xiu-li Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Shi-lin Cheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Ya-miao Chen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi-fei Huang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Zan-han Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Rong Qiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Jia-mei Ge
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Huan Yue
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Li Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Zhong-yuan Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-yan Qin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| | - Jun-long Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
36
|
Zhang Y, Qiu H, Duan F, An H, Qiao H, Zhang X, Zhang JR, Ding Q, Na J. A Comparative Study of Human Pluripotent Stem Cell-Derived Macrophages in Modeling Viral Infections. Viruses 2024; 16:552. [PMID: 38675895 PMCID: PMC11053470 DOI: 10.3390/v16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui Qiu
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100084, China
| | - Huimin Qiao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingwu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
37
|
Li Y, Nie Y, Yang X, Liu Y, Deng X, Hayashi Y, Plummer R, Li Q, Luo N, Kasai T, Okumura T, Kamishibahara Y, Komoto T, Ohkuma T, Okamoto S, Isobe Y, Yamaguchi K, Furukawa Y, Taniguchi H. Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis. Cell Rep 2024; 43:113918. [PMID: 38451817 DOI: 10.1016/j.celrep.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.
Collapse
Affiliation(s)
- Yang Li
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yunzhong Nie
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| | - Xia Yang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoshan Deng
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Riana Plummer
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Qinglin Li
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Na Luo
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Toshiharu Kasai
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takashi Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yu Kamishibahara
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takemasa Komoto
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takuya Ohkuma
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Satoshi Okamoto
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yumiko Isobe
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Hideki Taniguchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
38
|
Yang Q, Barbachano-Guerrero A, Fairchild LM, Rowland TJ, Dowell RD, Allen MA, Warren CJ, Sawyer SL. Macrophages derived from human induced pluripotent stem cells (iPSCs) serve as a high-fidelity cellular model for investigating HIV-1, dengue, and influenza viruses. J Virol 2024; 98:e0156323. [PMID: 38323811 PMCID: PMC10949493 DOI: 10.1128/jvi.01563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.
Collapse
Affiliation(s)
- Qing Yang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Laurence M. Fairchild
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
| | - Cody J. Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
39
|
Kang B, Xing Q, Huang Y, Lin H, Peng J, Zhang Z, Wang M, Guo X, Hu X, Wang S, Wang J, Gao M, Zhu Y, Pan G. Large-scale generation of IL-12 secreting macrophages from human pluripotent stem cells for cancer therapy. Mol Ther Methods Clin Dev 2024; 32:101204. [PMID: 38390556 PMCID: PMC10881436 DOI: 10.1016/j.omtm.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Genetically engineered macrophages (GEMs) have emerged as an appealing strategy to treat cancers, but they are largely impeded by the cell availability and technical challenges in gene transfer. Here, we develop an efficient approach to generate large-scale macrophages from human induced pluripotent stem cells (hiPSCs). Starting with 1 T150 dish of 106 hiPSCs, more than 109 mature macrophages (iMacs) could be generated within 1 month. The generated iMacs exhibit typical macrophage properties such as phagocytosis and polarization. We then generate hiPSCs integrated with an IL-12 expression cassette in the AAVS1 locus to produce iMacs secreting IL-12, a strong proimmunity cytokine. hiPSC-derived iMacs_IL-12 prevent cytotoxic T cell exhaustion and activate T cells to kill different cancer cells. Furthermore, iMacs_IL-12 display strong antitumor effects in a T cell-dependent manner in subcutaneously or systemically xenografted mice of human lung cancer. Therefore, we provide an off-the-shelf strategy to produce large-scale GEMs for cancer therapy.
Collapse
Affiliation(s)
- Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiaojiao Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingquan Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinrui Guo
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Xing Hu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoting Wang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Junwei Wang
- Analysis and Testing Center of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minghui Gao
- Analysis and Testing Center of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong; Center for Cellular and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| |
Collapse
|
40
|
Mezher N, Mroweh O, Karam L, Ibrahim JN, Kobeissy PH. Experimental models in Familial Mediterranean Fever (FMF): Insights into pathophysiology and therapeutic strategies. Exp Mol Pathol 2024; 135:104883. [PMID: 38266955 DOI: 10.1016/j.yexmp.2024.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Familial Mediterranean Fever (FMF) is a recurrent polyserositis characterized by self-limiting episodes or attacks of fever along with serosal inflammation. It mainly impacts people of the Mediterranean and Middle Eastern basin. FMF is a recessive autoinflammatory condition caused by mutation in the MEFV gene located on chromosome 16p13. MEFV mutations lead to the activation of the pyrin inflammasome resulting in an uncontrolled release of IL-1β. Various in vitro, in vivo and ex vivo experimental models have been developed to further comprehend the etiology and pathogenesis of FMF. These models have been proven to be clinically relevant to human FMF and can provide significant information about biological systems with respect to this condition. Additionally, these models have provided pertinent contributions to the development of potent therapeutic strategies against FMF. In this review, we describe the different experimental models utilized in FMF and we focus primarily on the most widely used models that have produced prominent insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Nawal Mezher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Ola Mroweh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
41
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
42
|
Ramaswami G, Yuva-Aydemir Y, Akerberg B, Matthews B, Williams J, Golczer G, Huang J, Al Abdullatif A, Huh D, Burkly LC, Engle SJ, Grossman I, Sehgal A, Sigova AA, Fremeau RT, Liu Y, Bumcrot D. Transcriptional characterization of iPSC-derived microglia as a model for therapeutic development in neurodegeneration. Sci Rep 2024; 14:2153. [PMID: 38272949 PMCID: PMC10810793 DOI: 10.1038/s41598-024-52311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there has been no systematic assessment of similarity of these cells to primary human microglia along with their responsiveness to external cues expected of primary cells in the brain. In this study, we performed transcriptional characterization of commercially available human inducible pluripotent stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia and express many key microglial transcription factors and functional and disease-associated genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations, representing both homeostatic and activated states present in normal and diseased primary microglia. Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in responses between cell subpopulations in homeostatic and activated states and deconvolute bulk expression changes into their corresponding single cell states. In summary, our results demonstrate that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of in vivo microglia, and thus represent a promising model system for therapeutic development in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiaqi Huang
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | - Yuting Liu
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | |
Collapse
|
43
|
Song AT, Sindeaux RHM, Li Y, Affia H, Agnihotri T, Leclerc S, van Vliet PP, Colas M, Guimond JV, Patey N, Feulner L, Joyal JS, Haddad E, Barreiro L, Andelfinger G. Developmental role of macrophages modeled in human pluripotent stem cell-derived intestinal tissue. Cell Rep 2024; 43:113616. [PMID: 38150367 DOI: 10.1016/j.celrep.2023.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
Macrophages populate the embryo early in gestation, but their role in development is not well defined. In particular, specification and function of macrophages in intestinal development remain little explored. To study this event in the human developmental context, we derived and combined human intestinal organoid and macrophages from pluripotent stem cells. Macrophages migrate into the organoid, proliferate, and occupy the emerging microanatomical niches of epithelial crypts and ganglia. They also acquire a transcriptomic profile similar to that of fetal intestinal macrophages and display tissue macrophage behaviors, such as recruitment to tissue injury. Using this model, we show that macrophages reduce glycolysis in mesenchymal cells and limit tissue growth without affecting tissue architecture, in contrast to the pro-growth effect of enteric neurons. In short, we engineered an intestinal tissue model populated with macrophages, and we suggest that resident macrophages contribute to the regulation of metabolism and growth of the developing intestine.
Collapse
Affiliation(s)
- Andrew T Song
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| | - Renata H M Sindeaux
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Meakins Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Yuanyi Li
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Hicham Affia
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Tapan Agnihotri
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | | - Mathieu Colas
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Jean-Victor Guimond
- CLSC des Faubourgs, CIUSSS du Centre-Sud-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Natalie Patey
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Lara Feulner
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Jean-Sebastien Joyal
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Luis Barreiro
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Genetics Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Gregor Andelfinger
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
44
|
Şen B, Balcı‐Peynircioğlu B. Cellular models in autoinflammatory disease research. Clin Transl Immunology 2024; 13:e1481. [PMID: 38213819 PMCID: PMC10784111 DOI: 10.1002/cti2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous group of rare genetic disorders caused by dysregulation of the innate immune system. Understanding the complex mechanisms underlying these conditions is critical for developing effective treatments. Cellular models are essential for identifying new conditions and studying their pathogenesis. Traditionally, these studies have used primary cells and cell lines of disease-relevant cell types, although newer induced pluripotent stem cell (iPSC)-based models might have unique advantages. In this review, we discuss the three cellular models used in autoinflammatory disease research, their strengths and weaknesses, and their applications to inform future research in the field.
Collapse
Affiliation(s)
- Başak Şen
- Department of Medical BiologyHacettepe University Faculty of Medicine, SıhhiyeAnkaraTurkey
| | | |
Collapse
|
45
|
Klimak M, Guilak F. Genetically engineered macrophages derived from iPSCs for self-regulating delivery of anti-inflammatory biologic drugs. J Tissue Eng Regen Med 2024; 2024:6201728. [PMID: 38571695 PMCID: PMC10990417 DOI: 10.1155/2024/6201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (TNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an auto-regulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Jiang JH, Ren RT, Cheng YJ, Li XX, Zhang GR. Immune cells and RBCs derived from human induced pluripotent stem cells: method, progress, prospective challenges. Front Cell Dev Biol 2024; 11:1327466. [PMID: 38250324 PMCID: PMC10796611 DOI: 10.3389/fcell.2023.1327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.
Collapse
Affiliation(s)
- Jin-he Jiang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Ru-tong Ren
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Yan-jie Cheng
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xin-xin Li
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Gui-rong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
47
|
Lei A, Yu H, Lu S, Lu H, Ding X, Tan T, Zhang H, Zhu M, Tian L, Wang X, Su S, Xue D, Zhang S, Zhao W, Chen Y, Xie W, Zhang L, Zhu Y, Zhao J, Jiang W, Church G, Chan FKM, Gao Z, Zhang J. A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat Immunol 2024; 25:102-116. [PMID: 38012418 DOI: 10.1038/s41590-023-01687-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have successfully treated hematological malignancies. Macrophages have also gained attention as an immunotherapy owing to their immunomodulatory capacity and ability to infiltrate solid tumors and phagocytize tumor cells. The first-generation CD3ζ-based CAR-macrophages could phagocytose tumor cells in an antigen-dependent manner. Here we engineered induced pluripotent stem cell-derived macrophages (iMACs) with toll-like receptor 4 intracellular toll/IL-1R (TIR) domain-containing CARs resulting in a markedly enhanced antitumor effect over first-generation CAR-macrophages. Moreover, the design of a tandem CD3ζ-TIR dual signaling CAR endows iMACs with both target engulfment capacity and antigen-dependent M1 polarization and M2 resistance in a nuclear factor kappa B (NF-κB)-dependent manner, as well as the capacity to modulate the tumor microenvironment. We also outline a mechanism of tumor cell elimination by CAR-induced efferocytosis against tumor cell apoptotic bodies. Taken together, we provide a second-generation CAR-iMAC with an ability for orthogonal phagocytosis and polarization and superior antitumor functions in treating solid tumors relative to first-generation CAR-macrophages.
Collapse
Affiliation(s)
- Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- CellOrigin Inc, Hangzhou, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shan Lu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Hailing Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Mengmeng Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Tian
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xudong Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Siyu Su
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Yuge Chen
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanrun Xie
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Wenhong Jiang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - George Church
- Department of Genetics and Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | | | - Zhihua Gao
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
48
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
49
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Wu X, Ni Y, Li W, Yang B, Yang X, Zhu Z, Zhang J, Wu X, Shen Q, Liao Z, Yuan L, Chen Y, Du Q, Wang C, Liu P, Miao Y, Li N, Zhang S, Liao M, Hua J. Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. J Biol Chem 2024; 300:105556. [PMID: 38097188 PMCID: PMC10825052 DOI: 10.1016/j.jbc.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Liao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlong Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengbao Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|