1
|
Lütge M, Kurz L, Stanossek Y, Meili S, Cheng HW, De Martin A, Brandstadter J, Maillard I, Robinson MD, Stoeckli SJ, Pikor NB, Onder L, Ludewig B. Fibroblastic reticular cells form reactive myeloid cell niches in human lymph nodes. Sci Immunol 2025; 10:eads6820. [PMID: 40315298 DOI: 10.1126/sciimmunol.ads6820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
Lymph nodes play a key role in maintaining fluid balance in homeostatic and inflamed tissues and provide fibroblastic niche environments for optimal immune cell positioning and interaction. Here, we used single-cell and spatial transcriptomic analyses in combination with high-resolution imaging to molecularly define and functionally characterize niche-forming cells that control inflammation-driven remodeling in human lymph nodes. Fibroblastic reticular cells responded to inflammatory perturbation with activation and expansion of poised niche environments. Inflammation-induced adaptation of lymph node infrastructure and topography included the expansion of peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) networks that enwrap the perivenular conduit system. Interactome analyses indicated that macrophage-derived oncostatin M directs PI16+ RC activation in inflamed lymph nodes and thereby promotes immune cell aggregation in the perivenular space. In conclusion, these data demonstrate that the inflammatory remodeling of human lymph nodes results in the formation of reactive myeloid cell niches by PI16+ RCs.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Samuel Meili
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joshua Brandstadter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Sang-Aram C, Browaeys R, Seurinck R, Saeys Y. Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data. Nat Protoc 2025:10.1038/s41596-024-01121-9. [PMID: 40038548 DOI: 10.1038/s41596-024-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/28/2024] [Indexed: 03/06/2025]
Abstract
Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a 'sender-agnostic' approach that considers ligands from the entire microenvironment and a 'sender-focused' approach that considers ligands only from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. We include further developments made in NicheNet v2, in which we have updated the data sources and implemented a downstream procedure for prioritizing cell type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes <10 min to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell-differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.
Collapse
Affiliation(s)
- Chananchida Sang-Aram
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology (VIB.AI), Ghent, Belgium
| | - Robin Browaeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- BioIT Expertise Unit, VIB Center for Inflammation Research, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology (VIB.AI), Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
- VIB Center for AI & Computational Biology (VIB.AI), Ghent, Belgium.
| |
Collapse
|
3
|
Kong D, WillsonShirkey M, Piao W, Wu L, Luo S, Kensiski A, Zhao J, Lee Y, Abdi R, Zheng H, Bromberg JS. Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance. Eur J Immunol 2025; 55:e202451321. [PMID: 39555653 DOI: 10.1002/eji.202451321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.
Collapse
Affiliation(s)
- Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shunqun Luo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allision Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Young Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
5
|
Mukherjee P, Ansell SM, Mondello P. Unraveling the role of cancer-associated fibroblasts in B cell lymphoma. Front Immunol 2024; 15:1451791. [PMID: 39555055 PMCID: PMC11563820 DOI: 10.3389/fimmu.2024.1451791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Recent breakthroughs in research have sparked a paradigm shift in our understanding of cancer biology, uncovering the critical role of the crosstalk between tumor cells and the immune cells of the tumor microenvironment (TME) in malignant transformation. Fibroblasts have long been viewed as ancillary participants in cancer progression, often eclipsed by the prominence given to malignant cells. Novel investigations, however, have increasingly acknowledged the essential part played by the fibroblasts and their phenotypic doppelganger cancer-associated fibroblasts (CAFs) in fostering immunosuppression and promoting tumor progression. Here we review the cell-of-origin from which CAFs derive and their altered programs compared to their normal counterpart. We will also discuss the complex interplay between CAFs and the surrounding immune cells of the TME in the context of solid tumors and B cell lymphomas, with a focus on the "reprogrammable" role of CAFs in immunosuppression, immuno-activation and immuno-avoidance, and their implications on drug resistance. Finally, we will examine the existing and plausible therapeutic approaches targeting CAFs as a strategy to enhance treatment response.
Collapse
|
6
|
Ohe R. Mechanisms of lymphoma-stromal interactions focusing on tumor-associated macrophages, fibroblastic reticular cells, and follicular dendritic cells. J Clin Exp Hematop 2024; 64:166-176. [PMID: 39085126 PMCID: PMC11528246 DOI: 10.3960/jslrt.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
The interaction between cancer cells and stromal cells contributes to the pathogenesis of various types of tumors in the tumor microenvironment (TME). Macrophages (Mφs), a type of stromal cell, are transformed into tumor-associated Mφs (TAMs) after integrating within solid tumors. TAMs are known to interact with cancer cells and induce tumor progression. Thus, the cancer cells construct an organ-specific TME, which is advantageous for the survival of cancer cells in the TME. The density of stromal cells is known to be involved in the prognosis of patients with lymphomas. A higher density of stromal cells increases the interaction between lymphoma cells and stromal cells, promoting lymphoma progression. This review focuses on stromal cells in lymphoid tissues, such as TAMs, fibroblastic reticular cells (FRCs), and follicular dendritic cells (FDCs). This review also focuses on the signal transduction caused by stromal cells and tumor cells via factors such as cytokines. IL-10 and other cytokines secreted by TAMs activate the JAK/STAT pathway in lymphoma cells of follicular lymphoma, classic Hodgkin lymphoma, and diffuse large B-cell lymphoma. FRCs play roles in tumor promotion in follicular lymphoma and diffuse large B-cell lymphoma. Cytokines/chemokines secreted by FDCs play essential roles in lymphoma cell survival, proliferation, invasion, and migration in follicular lymphoma. In conclusion, TAMs, FRCs, and FDCs play crucial roles in the TME of lymphomas. Furthermore, histological spatial analysis revealing the positional relationship of each cell could highlight lymphoma-stromal interactions.
Collapse
Affiliation(s)
- Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Laurent C, Dietrich S, Tarte K. Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm. Blood 2024; 143:1080-1090. [PMID: 38096368 DOI: 10.1182/blood.2023021000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalo-Universitaire Toulouse, Centre de Recherches en Cancérologie de Toulouse, Laboratoire d'Excellence TOUCAN, INSERM Unité Mixte de Recherche 1037, Toulouse, France
| | - Sascha Dietrich
- Department of Haematology and Oncology, University Hospital Düsseldorf and Center for Integrated Oncology Aachen Bonn Cologne, Düsseldorf, Germany
| | - Karin Tarte
- Unité Mixte de Recherche S1236, INSERM, Université de Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- Department of Biology, Centre Hospitalo-Universitaire de Rennes, Rennes, France
| |
Collapse
|
8
|
Radtke AJ, Roschewski M. The follicular lymphoma tumor microenvironment at single-cell and spatial resolution. Blood 2024; 143:1069-1079. [PMID: 38194685 PMCID: PMC11103101 DOI: 10.1182/blood.2023020999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is a generally incurable malignancy that originates from developmentally blocked germinal center B cells residing, primarily, within lymph nodes (LNs). During the long natural history of FL, malignant B cells often disseminate to multiple LNs and can affect virtually any organ. Nonmalignant LNs are highly organized structures distributed throughout the body, in which they perform functions critical for host defense. In FL, the malignant B cells "re-educate" the lymphoid environment by altering the phenotype, distribution, and abundance of other cells such as T cells, macrophages, and subsets of stromal cells. Consequently, dramatic anatomical changes occur and include alterations in the number, shape, and size of neoplastic follicles with an accompanying attenuation of the T-cell zone. Ongoing and dynamic interactions between FL B cells and the tumor microenvironment (TME) result in significant clinical heterogeneity observed both within and across patients. Over time, FL evolves into pathological variants associated with distinct outcomes, ranging from an indolent disease to more aggressive clinical courses with early death. Given the importance of both cell-intrinsic and -extrinsic factors in shaping disease progression and patient survival, comprehensive examination of FL tumors is critical. Here, we describe the cellular composition and architecture of normal and malignant human LNs and provide a broad overview of emerging technologies for deconstructing the FL TME at single-cell and spatial resolution. We additionally discuss the importance of capturing samples at landmark time points as well as longitudinally for clinical decision-making.
Collapse
Affiliation(s)
- Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Radtke AJ, Postovalova E, Varlamova A, Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin I, Svekolkin V, Isaev S, Wiebe D, Sharun A, Sarachakov A, Perelman G, Lozinsky Y, Yaniv Z, Lowekamp BC, Speranza E, Yao L, Pittaluga S, Shaffer AL, Jonigk D, Phelan JD, Davies-Hill T, Huang DW, Ovcharov P, Nomie K, Nuzhdina E, Kotlov N, Ataullakhanov R, Fowler N, Kelly M, Muppidi J, Davis JL, Hernandez JM, Wilson WH, Jaffe ES, Staudt LM, Roschewski M, Germain RN. Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients. Cancer Cell 2024; 42:444-463.e10. [PMID: 38428410 PMCID: PMC10966827 DOI: 10.1016/j.ccell.2024.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.
Collapse
Affiliation(s)
- Andrea J Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ziv Yaniv
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bradley C Lowekamp
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Emily Speranza
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Florida Research and Innovation Center, Cleveland Clinic Lerner Research Institute, Port Saint Lucie, FL 34987, USA
| | - Li Yao
- Li Yao Visuals, Rockville, MD 20855, USA
| | | | - Arthur L Shaffer
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA; Tumor Targeted Delivery, Heme Malignancy Target Discovery Group, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Danny Jonigk
- Institute of Pathology, Aachen Medical University, RWTH Aachen, 52074 Aachen, Germany; German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany
| | - James D Phelan
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Da Wei Huang
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | - Michael Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jeremy L Davis
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Elaine S Jaffe
- Laboratory of Pathology, NCI, NIH, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Hernández-Barranco A, Santos V, Mazariegos MS, Caleiras E, Nogués L, Mourcin F, Léonard S, Oblet C, Genebrier S, Rossille D, Benguría A, Sanz A, Vázquez E, Dopazo A, Efeyan A, Ortega-Molina A, Cogne M, Tarte K, Peinado H. NGFR regulates stromal cell activation in germinal centers. Cell Rep 2024; 43:113705. [PMID: 38307025 DOI: 10.1016/j.celrep.2024.113705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.
Collapse
Affiliation(s)
- Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; Liver Injury and Inflammation Laboratory, Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Biotechnology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Frédéric Mourcin
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Simon Léonard
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Christelle Oblet
- Immunology Department, Faculty of Medicine, Limoges University, CNRS Umr 7276, Inserm U1262, 87000 Limoges, France
| | - Steve Genebrier
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Delphine Rossille
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France; SITI Lab, Pôle Biologie, CHU Rennes, 35000 Rennes, France
| | - Alberto Benguría
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Enrique Vázquez
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Metabolism in Cancer and Ageing Laboratory, Immune System and Function Department, Centro de Biología Molecular "Severo Ochoa" (CMBSO-CSIC), Madrid 28049, Spain
| | - Michel Cogne
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Karin Tarte
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France; SITI Lab, Pôle Biologie, CHU Rennes, 35000 Rennes, France
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Bobée V, Viennot M, Rainville V, Veresezan L, Drieux F, Viailly P, Michel V, Sater V, Lanic M, Bohers E, Camus V, Tilly H, Jardin F, Ruminy P. Analysis of immunoglobulin/T-cell receptor repertoires by high-throughput RNA sequencing reveals a continuous dynamic of positive clonal selection in follicular lymphoma. Hemasphere 2024; 8:e50. [PMID: 38435425 PMCID: PMC10896008 DOI: 10.1002/hem3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Follicular lymphoma (FL) course is highly variable, making its clinical management challenging. In this incurable and recurring pathology, the interval between relapses tends to decrease while aggressiveness increases, sometimes resulting in the transformation to higher-grade lymphoma. These evolutions are particularly difficult to anticipate, resulting from complex clonal evolutions where multiple subclones compete and thrive due to their capacity to proliferate and resist therapies. Here, to apprehend further these processes, we used a high-throughput RNA sequencing approach to address simultaneously the B-cell immunoglobulin repertoires and T-cell immunoglobulin repertoires repertoires of lymphoma cells and their lymphoid microenvironment in a large cohort of 131 FL1/2-3A patients. Our data confirm the existence of a high degree of intra-clonal heterogeneity in this pathology, resulting from ongoing somatic hyper-mutation and class switch recombination. Through the evaluation of the Simpson ecological-diversity index, we show that the contribution of the cancerous cells increases during the course of the disease to the detriment of the reactive compartment, a phenomenon accompanied by a concomitant decrease in the diversity of the tumoral population. Clonal evolution in FL thus contrasts with many tumors, where clonal heterogeneity steadily increases over time and participates in treatment evasion. In this pathology, the selection of lymphoma subclones with proliferative advantages progressively outweighs clonal diversification, ultimately leading in extreme cases to transformation to high-grade lymphoma resulting from the rapid emergence of homogeneous subpopulations.
Collapse
Affiliation(s)
- Victor Bobée
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Biological HematologyRouen University HospitalRouenFrance
| | - Mathieu Viennot
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vinciane Rainville
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Liana Veresezan
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | | | - Victor Michel
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Sater
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Marie‐Delphine Lanic
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Camus
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Fabrice Jardin
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| |
Collapse
|
14
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
15
|
Veelken H. Energy overpowers sweet tooth in FL. Blood 2023; 142:2226-2229. [PMID: 38153769 DOI: 10.1182/blood.2023022268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
|
16
|
Sylvestre M, Barbier N, Sibut V, Nayar S, Monvoisin C, Leonard S, Saint-Vanne J, Martin A, Guirriec M, Latour M, Jouan F, Baulande S, Bohec M, Verdière L, Mechta-Grigoriou F, Mourcin F, Bertheuil N, Barone F, Tarte K, Roulois D. KDM6B drives epigenetic reprogramming associated with lymphoid stromal cell early commitment and immune properties. SCIENCE ADVANCES 2023; 9:eadh2708. [PMID: 38019914 PMCID: PMC10686565 DOI: 10.1126/sciadv.adh2708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.
Collapse
Affiliation(s)
- Marvin Sylvestre
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Barbier
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Vonick Sibut
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Saba Nayar
- Centre for Translational inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Céline Monvoisin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Simon Leonard
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, F-35043 Nantes, France
| | - Julien Saint-Vanne
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Ansie Martin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Marion Guirriec
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Maëlle Latour
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Florence Jouan
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Mylène Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Léa Verdière
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, INSERM, U830, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| | - Frédéric Mourcin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Bertheuil
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- Department of Plastic Surgery, CHU Rennes, F-35033 Rennes, France
| | | | - Karin Tarte
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - David Roulois
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| |
Collapse
|
17
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
18
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Brandstadter JD, De Martin A, Lϋtge M, Ferreira A, Gaudette BT, Stanossek Y, Wang S, Gonzalez MV, Camiolo E, Wertheim G, Austin B, Allman D, Bagg A, Lim MS, Fajgenbaum DC, Aster JC, Ludewig B, Maillard I. A novel cryopreservation and biobanking strategy to study lymphoid tissue stromal cells in human disease. Eur J Immunol 2023; 53:e2250362. [PMID: 37366295 PMCID: PMC10529925 DOI: 10.1002/eji.202250362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lϋtge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Antonio Ferreira
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yves Stanossek
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Shumei Wang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael V Gonzalez
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Camiolo
- Children’s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Gerald Wertheim
- Children’s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Bridget Austin
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ivan Maillard
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Alaoui L, Villar J, Leclere R, Le Gallou S, Relouzat F, Michaud HA, Tarte K, Teissier N, Favier B, Roussel M, Segura E. Functional specialization of short-lived and long-lived macrophage subsets in human tonsils. J Exp Med 2023; 220:e20230002. [PMID: 37036425 PMCID: PMC10098144 DOI: 10.1084/jem.20230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Macrophages play a central role in tissue homeostasis and host defense. However, the properties of human macrophages in non-diseased tissues remain poorly understood. Here, we characterized human tonsil macrophages and identified three subsets with distinct phenotype, transcriptome, life cycle, and function. CD36hi macrophages were related to monocytes, while CD36lo macrophages showed features of embryonic origin and CD36int macrophages had a mixed profile. scRNA-seq on non-human primate tonsils showed that monocyte recruitment did not pre-exist an immune challenge. Functionally, CD36hi macrophages were specialized for stimulating T follicular helper cells, by producing Activin A. Combining reconstruction of ligand-receptor interactions and functional assays, we identified stromal cell-derived TNF-α as an inducer of Activin A secretion. However, only CD36hi macrophages were primed for Activin A expression, via the activity of IRF1. Our results provide insight into the heterogeneity of human lymphoid organ macrophages and show that tonsil CD36hi macrophage specialization is the result of both intrinsic features and interaction with stromal cells.
Collapse
Affiliation(s)
- Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Renaud Leclere
- Institut Curie, Plateforme de Pathologie Expérimentale, Paris, France
| | - Simon Le Gallou
- UMR 1236, Equipe Labellisée Ligue, INSERM, Etablissement Français du Sang Bretagne, Université Rennes, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Francis Relouzat
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases, Université Paris-Saclay, INSERM, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, Fontenay-aux-Roses, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, ICM, Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
| | - Karin Tarte
- UMR 1236, Equipe Labellisée Ligue, INSERM, Etablissement Français du Sang Bretagne, Université Rennes, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Natacha Teissier
- Department of Pediatric Otorhinolaryngology, Head & Neck Surgery, Hôpital Robert-Debré, Robert Debré University Hospital APHP, University of Paris Nord, Paris, France
| | - Benoît Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases, Université Paris-Saclay, INSERM, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, Fontenay-aux-Roses, France
| | - Mikaël Roussel
- UMR 1236, Equipe Labellisée Ligue, INSERM, Etablissement Français du Sang Bretagne, Université Rennes, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| |
Collapse
|
22
|
De Martin A, Stanossek Y, Lütge M, Cadosch N, Onder L, Cheng HW, Brandstadter JD, Maillard I, Stoeckli SJ, Pikor NB, Ludewig B. PI16 + reticular cells in human palatine tonsils govern T cell activity in distinct subepithelial niches. Nat Immunol 2023:10.1038/s41590-023-01502-4. [PMID: 37202490 DOI: 10.1038/s41590-023-01502-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/03/2023] [Indexed: 05/20/2023]
Abstract
Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
23
|
Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B, Kim W, Schmitz AJ, Lei T, Horvath SC, Sturtz AJ, McIntire KM, Evavold B, Han F, Scheaffer SM, Fox IF, Mirza SF, Parra-Rodriguez L, Nachbagauer R, Nestorova B, Chalkias S, Farnsworth CW, Klebert MK, Pusic I, Strnad BS, Middleton WD, Teefey SA, Whelan SPJ, Diamond MS, Paris R, O'Halloran JA, Presti RM, Turner JS, Ellebedy AH. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature 2023; 617:592-598. [PMID: 37011668 DOI: 10.1038/s41586-023-06025-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.
Collapse
Affiliation(s)
- Wafaa B Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Baoling Ying
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen C Horvath
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Birk Evavold
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Suzanne M Scheaffer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Isabella F Fox
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Senaa F Mirza
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Luis Parra-Rodriguez
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Christopher W Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael K Klebert
- Infectious Disease Clinical Research Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin S Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
24
|
Vom Stein AF, Rebollido-Rios R, Lukas A, Koch M, von Lom A, Reinartz S, Bachurski D, Rose F, Bozek K, Abdallah AT, Kohlhas V, Saggau J, Zölzer R, Zhao Y, Bruns C, Bröckelmann PJ, Lohneis P, Büttner R, Häupl B, Oellerich T, Nguyen PH, Hallek M. LYN kinase programs stromal fibroblasts to facilitate leukemic survival via regulation of c-JUN and THBS1. Nat Commun 2023; 14:1330. [PMID: 36899005 PMCID: PMC10006233 DOI: 10.1038/s41467-023-36824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anna Lukas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Maximilian Koch
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anton von Lom
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - France Rose
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ali T Abdallah
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Julia Saggau
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rebekka Zölzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Paul J Bröckelmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max-Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Philipp Lohneis
- Reference Centre for Lymph Node Pathology and Hematopathology, Hämatopathologie Lübeck, Lübeck, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Björn Häupl
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Brandstadter JD, De Martin A, Lütge M, Ferreira A, Gaudette BT, Stanossek Y, Wang S, Gonzalez MV, Camiolo E, Wertheim G, Austin B, Allman D, Lim MS, Fajgenbaum DC, Aster JC, Ludewig B, Maillard I. A novel cryopreservation and biobanking strategy to study lymphoid tissue stromal cells in human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.525604. [PMID: 36798373 PMCID: PMC9934566 DOI: 10.1101/2023.02.06.525604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Non-hematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils, lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable non-hematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LNSC cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and lymph nodes. The presence and spatial distribution of transcriptionally defined cell types was confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSC in human disease.
Collapse
|
26
|
Peng X, Zhu Y, Wu Y, Xiang X, Deng M, Liu L, Li T, Yang G. Genistein, a Soybean Isoflavone, Promotes Wound Healing by Enhancing Endothelial Progenitor Cell Mobilization in Rats with Hemorrhagic Shock. Adv Biol (Weinh) 2023; 7:e2200236. [PMID: 36634922 DOI: 10.1002/adbi.202200236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Severe trauma and hemorrhaging are often accompanied by delayed cutaneous wound healing. Soybean isoflavone is a natural phytoestrogen that has attracted great attention due to its protective effects against various injuries. Endothelial progenitor cells (EPCs) are precursor cells with directional differentiation characteristics. This study is to determine whether genistein (GEN), an isoflavone in soybean products, benefits wound healing in hemorrhagic shock (HS) rats by promoting EPC homing and to investigate the underlying mechanisms. In this study, it is found that GEN promotes skin wound healing in HS rats, which is due at least partly to the mobilization of endogenous EPCs to the injury site via angiotensin II (Ang-II), stromal cell-derived factor-1alpha (SDF-1α), and transforming growth factor beta(TGF-β) signaling.
Collapse
Affiliation(s)
- Xiaoyong Peng
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yu Zhu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yue Wu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Xinming Xiang
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Mengsheng Deng
- Department of Weapon Bioeffect Assessment, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Liangming Liu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Tao Li
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Guangming Yang
- Department of Weapon Bioeffect Assessment, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| |
Collapse
|
27
|
Cousin VN, Perez GF, Payne KJ, Voll RE, Rizzi M, Mueller CG, Warnatz K. Lymphoid stromal cells - potential implications for the pathogenesis of CVID. Front Immunol 2023; 14:1122905. [PMID: 36875120 PMCID: PMC9982092 DOI: 10.3389/fimmu.2023.1122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.
Collapse
Affiliation(s)
- Victoria N Cousin
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany.,Freiburg Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Faculty of Biology, Freiburg, Germany
| | - Guillermo F Perez
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Clinical and Experimental Immunology, Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher G Mueller
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B, Kim W, Schmitz AJ, Lei T, Horvath SC, Sturtz AJ, McIntire KM, Evavold B, Han F, Scheaffer SM, Fox IF, Parra-Rodriguez L, Nachbagauer R, Nestorova B, Chalkias S, Farnsworth CW, Klebert MK, Pusic I, Strnad BS, Middleton WD, Teefey SA, Whelan SP, Diamond MS, Paris R, O’Halloran JA, Presti RM, Turner JS, Ellebedy AH. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.22.509040. [PMID: 36172127 PMCID: PMC9516848 DOI: 10.1101/2022.09.22.509040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones 1-4 . SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs) 5-9 . It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naïve B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.
Collapse
Affiliation(s)
- Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Sameer K. Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Baoling Ying
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Alexandria J. Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Birk Evavold
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Isabella F. Fox
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Luis Parra-Rodriguez
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael K. Klebert
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | | | - Jane A. O’Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
29
|
Abstract
In this issue of Blood Cancer Discovery, Han and colleagues find that follicular lymphomas (FL) can be stratified into distinct classes with clinical and functional relevance based on their T-cell subset composition. Their findings further indicate that pairing of FL cell MHCII expression with specific T-cell markers may represent a useful diagnostic approach to select patients for particular immunotherapies or immune augmentation therapies independent of genetic profiling. See related article by Han et al., p. 428 (4).
Collapse
Affiliation(s)
- Ari M. Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
30
|
Li L, Shirkey MW, Zhang T, Piao W, Li X, Zhao J, Mei Z, Guo Y, Saxena V, Kensiski A, Gavzy SJ, Song Y, Ma B, Wu J, Xiong Y, Wu L, Fan X, Roussey H, Li M, Krupnick AS, Abdi R, Bromberg JS. Lymph node fibroblastic reticular cells preserve a tolerogenic niche in allograft transplantation through laminin α4. J Clin Invest 2022; 132:e156994. [PMID: 35775481 PMCID: PMC9246384 DOI: 10.1172/jci156994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymph node (LN) fibroblastic reticular cells (FRCs) define LN niches and regulate lymphocyte homeostasis through producing diverse extracellular matrix (ECM) components. We examined the role of ECM laminin α4 (Lama4) using FRC-Lama4 conditional KO Pdgfrb-Cre-/- × Lama4fl/fl mice. Single-cell RNA-sequencing (scRNA-Seq) data showed the promoter gene Pdgfrb was exclusively expressed in FRCs. Depleting FRC-Lama4 reduced Tregs and dendritic cells, decreased high endothelial venules, impaired the conduit system, and downregulated T cell survival factors in LNs. FRC-Lama4 depletion impaired the homing of lymphocytes to LNs in homeostasis and after allografting. Alloantigen-specific T cells proliferated, were activated to greater degrees in LNs lacking FRC-Lama4, and were more prone to differentiate into effector phenotypes relative to the Treg phenotype. In murine cardiac transplantation, tolerogenic immunosuppression was not effective in FRC-Lama4 recipients, which produced more alloantibodies than WT. After lung transplantation, FRC-Lama4-KO mice had more severe graft rejection with fewer Tregs in their LNs. Overall, FRC-Lama4 critically contributes to a tolerogenic LN niche by supporting T cell migration, constraining T cell activation and proliferation, and promoting Treg differentiation. Hence, it serves as a therapeutic target for immunoengineering.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Wenji Piao
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Vikas Saxena
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison Kensiski
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samuel J. Gavzy
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Bing Ma
- Institute for Genome Sciences
| | | | - Yanbao Xiong
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, Greenebaum Comprehensive Cancer Center. and
| | | | - Meng Li
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Denizot Y, Braza MS, Amin R. Editorial: B Cell Non-Hodgkin’s Lymphoma & Tumor Microenvironment Crosstalk: An Epigenetic Matter? Front Genet 2022; 13:912737. [PMID: 35664310 PMCID: PMC9161633 DOI: 10.3389/fgene.2022.912737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y Denizot
- UMR CNRS 7276, INSERM U1262, Equipe Labellise LIGUE 2018, Universite de Limoges, CBRS, Limoges, France
| | - MS Braza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - R Amin
- Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
- *Correspondence: R Amin,
| |
Collapse
|
32
|
CCR7 expression in CD19 chimeric antigen receptor-engineered natural killer cells improves migration toward CCL19-expressing lymphoma cells and increases tumor control in mice with human lymphoma. Cytotherapy 2022; 24:827-834. [DOI: 10.1016/j.jcyt.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
|
33
|
Timmins MA, Ringshausen I. Transforming Growth Factor-Beta Orchestrates Tumour and Bystander Cells in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2022; 14:1772. [PMID: 35406544 PMCID: PMC8996985 DOI: 10.3390/cancers14071772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-beta (TGFB) is a critical regulator of normal haematopoiesis. Dysregulation of the TGFB pathway is associated with numerous haematological malignancies including myelofibrosis, acute myeloid leukaemia, and lymphoid disorders. TGFB has classically been seen as a negative regulator of proliferation in haematopoiesis whilst stimulating differentiation and apoptosis, as required to maintain homeostasis. Tumours frequently develop intrinsic resistant mechanisms to homeostatic TGFB signalling to antagonise its tumour-suppressive functions. Furthermore, elevated levels of TGFB enhance pathogenesis through modulation of the immune system and tumour microenvironment. Here, we review recent advances in the understanding of TGFB signalling in B-cell malignancies with a focus on the tumour microenvironment. Malignant B-cells harbour subtype-specific alterations in TGFB signalling elements including downregulation of surface receptors, modulation of SMAD signalling proteins, as well as genetic and epigenetic aberrations. Microenvironmental TGFB generates a protumoural niche reprogramming stromal, natural killer (NK), and T-cells. Increasingly, evidence points to complex bi-directional cross-talk between cells of the microenvironment and malignant B-cells. A greater understanding of intercellular communication and the context-specific nature of TGFB signalling may provide further insight into disease pathogenesis and future therapeutic strategies.
Collapse
Affiliation(s)
- Matthew A. Timmins
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0AH, UK
| |
Collapse
|
34
|
Dumontet E, Mancini SJC, Tarte K. Bone Marrow Lymphoid Niche Adaptation to Mature B Cell Neoplasms. Front Immunol 2021; 12:784691. [PMID: 34956214 PMCID: PMC8694563 DOI: 10.3389/fimmu.2021.784691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) evolution and treatment are complicated by a high prevalence of relapses primarily due to the ability of malignant B cells to interact with tumor-supportive lymph node (LN) and bone marrow (BM) microenvironments. In particular, progressive alterations of BM stromal cells sustain the survival, proliferation, and drug resistance of tumor B cells during diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). The current review describes how the crosstalk between BM stromal cells and lymphoma tumor cells triggers the establishment of the tumor supportive niche. DLBCL, FL, and CLL display distinct patterns of BM involvement, but in each case tumor-infiltrating stromal cells, corresponding to cancer-associated fibroblasts, exhibit specific phenotypic and functional features promoting the recruitment, adhesion, and survival of tumor cells. Tumor cell-derived extracellular vesicles have been recently proposed as playing a central role in triggering initial induction of tumor-supportive niches, notably within the BM. Finally, the disruption of the BM stroma reprogramming emerges as a promising therapeutic option in B-cell lymphomas. Targeting the crosstalk between BM stromal cells and malignant B cells, either through the inhibition of stroma-derived B-cell growth factors or through the mobilization of clonal B cells outside their supportive BM niche, should in particular be further evaluated as a way to avoid relapses by abrogating resistance niches.
Collapse
Affiliation(s)
- Erwan Dumontet
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| | - Stéphane J C Mancini
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France
| | - Karin Tarte
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| |
Collapse
|
35
|
Santamaria K, Desmots F, Leonard S, Caron G, Haas M, Delaloy C, Chatonnet F, Rossille D, Pignarre A, Monvoisin C, Seffals M, Lamaison C, Cogné M, Tarte K, Fest T. Committed Human CD23-Negative Light-Zone Germinal Center B Cells Delineate Transcriptional Program Supporting Plasma Cell Differentiation. Front Immunol 2021; 12:744573. [PMID: 34925321 PMCID: PMC8674954 DOI: 10.3389/fimmu.2021.744573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
B cell affinity maturation occurs in the germinal center (GC). Light-zone (LZ) GC B cells (BGC-cells) interact with follicular dendritic cells (FDCs) and compete for the limited, sequential help from T follicular helper cells needed to escape from apoptosis and complete their differentiation. The highest-affinity LZ BGC-cells enter the cell cycle and differentiate into PCs, following a dramatic epigenetic reorganization that induces transcriptome changes in general and the expression of the PRDM1 gene in particular. Human PC precursors are characterized by the loss of IL-4/STAT6 signaling and the absence of CD23 expression. Here, we studied the fate of human LZ BGC-cells as a function of their CD23 expression. We first showed that CD23 expression was restricted to the GC LZ, where it was primarily expressed by FDCs; less than 10% of tonsil LZ BGC-cells were positive. Sorted LZ BGC-cells left in culture and stimulated upregulated CD23 expression but were unable to differentiate into PCs – in contrast to cells that did not upregulate CD23 expression. An in-depth analysis (including single-cell gene expression) showed that stimulated CD23-negative LZ BGC-cells differentiated into plasmablasts and time course of gene expression changes delineates the transcriptional program that sustains PC differentiation. In particular, we identified a B cell proliferation signature supported by a transient MYC gene expression. Overall, the CD23 marker might be of value in answering questions about the differentiation of normal BGC-cells and allowed us to propose an instructive LZ BGC-cells maturation and fate model.
Collapse
Affiliation(s)
- Kathleen Santamaria
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabienne Desmots
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Simon Leonard
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gersende Caron
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Marion Haas
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Delaloy
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabrice Chatonnet
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Delphine Rossille
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Amandine Pignarre
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Monvoisin
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Marine Seffals
- University of Rennes 1, UMS Biosit, H2P2 Platform, Rennes, France
| | - Claire Lamaison
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Michel Cogné
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Karin Tarte
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| |
Collapse
|
36
|
Onder L, Cheng HW, Ludewig B. Visualization and functional characterization of lymphoid organ fibroblasts. Immunol Rev 2021; 306:108-122. [PMID: 34866192 PMCID: PMC9300201 DOI: 10.1111/imr.13051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche‐specific functions of FRC subpopulations have been defined using genetic targeting, high‐dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC‐immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
37
|
|
38
|
A novel 3D culture model recapitulates primary FL B cell features and promotes their survival. Blood Adv 2021; 5:5372-5386. [PMID: 34555842 PMCID: PMC9153016 DOI: 10.1182/bloodadvances.2020003949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
3D alginate spheroid model supports self-organization of lymphoma B cells and stromal cells mimicking lymphoma cell niche. This high-throughput 3D model is suitable for testing new therapeutic agents in B-NHL.
Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.
Collapse
|
39
|
Fibroblasts: The B's knees of follicular lymphoma. Immunity 2021; 54:1628-1630. [PMID: 34380060 DOI: 10.1016/j.immuni.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblasts are the immunological architects of lymph nodes. In this issue of Immunity, Mourcin et al. describe the human tonsil fibroblast landscape and predicted T and B cell interactions. Transcriptomic changes in follicular lymphoma could provide untapped clinical targets.
Collapse
|
40
|
Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: Follicular lymphoma as a paradigm. Immunol Rev 2021; 302:273-285. [PMID: 34060097 DOI: 10.1111/imr.12983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Stromal cells organize specific anatomic compartments within bone marrow (BM) and secondary lymphoid organs where they finely regulate the behavior of mature normal B cells. In particular, lymphoid stromal cells (LSCs) form a phenotypically heterogeneous compartment including various cell subsets variably supporting B-cell survival, activation, proliferation, and differentiation. In turn, activated B cells trigger in-depth remodeling of LSC networks within lymph nodes (LN) and BM. Follicular lymphoma (FL) is one of the best paradigms of a B-cell neoplasia depending on a specific tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) emerging from the reprogramming of LN LSCs or poorly characterized local BM precursors. FL-CAFs support directly malignant B-cell growth and orchestrate FL permissive cell niche by contributing, through a bidirectional crosstalk, to the recruitment and polarization of immune TME subsets. Recent studies have highlighted a previously unexpected level of heterogeneity of both FL B cells and FL TME, underlined by FL-CAF plasticity. A better understanding of the signaling pathways, molecular mechanisms, and kinetic of stromal cell remodeling in FL would be useful to delineate new predictive markers and new therapeutic approaches in this still fatal malignancy.
Collapse
Affiliation(s)
- Claire Lamaison
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France
| | - Karin Tarte
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU Pontchaillou, Rennes, France
| |
Collapse
|