1
|
Yu J, Zhou L, Li G, Chen Z, Mudabbar MS, Li L, Tang X, Jiang M, Zhang G, Liu X. Targeting gut-immune-heart modulate cardiac remodeling after acute myocardial infarction. Life Sci 2025; 371:123606. [PMID: 40189194 DOI: 10.1016/j.lfs.2025.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiota interacts with the host to regulate disease and health status. An increasing number of studies have recognized the bidirectional regulation between gut microbiota and immune cells, which plays a significant role in the etiology and prognosis of diseases. Gut microbiota is also a crucial regulatory factor in cardiovascular diseases. After acute myocardial infarction, myocardial and endothelial damage rapidly triggers an inflammatory response, activating the immune system and disrupting the gut microbiota ecology, thereby affecting cardiac remodeling after acute myocardial infarction and potentially leading to heart failure. We have elucidated the regulatory mechanisms of complex intercellular networks in the immune system during cardiac remodeling after acute myocardial infarction. Furthermore, this research examines the roles and mechanisms of gut microbiota, immune cells, and gut metabolites in relation to cardiac remodeling and heart failure after myocardial infarction. Finally, we discuss the potential of targeting gut immune cells as an effective approach to prevent and treat heart failure after acute myocardial infarction in the future, through methods such as dietary regulation, probiotic supplementation, and microbiota transplantation.
Collapse
Affiliation(s)
- Jinmei Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guo Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zaiyi Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Muhammad Saqib Mudabbar
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Le Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyi Tang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mimi Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Liang C, Zhuang C, Cheng C, Bai J, Wu Y, Li X, Yang J, Li B, Fu W, Zhu Q, Lv J, Tan Y, Kumar Manthari R, Zhao Y, Wang J, Zhang J. Fluoride induces hepatointestinal damage and vitamin B 2 mitigation by regulating IL-17A and Bifidobacterium in ileum. J Adv Res 2025; 72:671-684. [PMID: 39097090 DOI: 10.1016/j.jare.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Fluorosis is a global public health disease affecting more than 50 countries and 500 million people. Excessive fluoride damages the liver and intestines, yet the mechanisms and therapeutic approaches remain unclear. OBJECTIVES To explore the mechanisms by which fluoride-induced intestinal-hepatic damage and vitamin B2 alleviation. METHODS Fluoride and/or vitamin B2-treated IL-17A knockout and wild-type mouse models were established, the morphological and functional changes of liver and gut, total bile acid biosynthesis, metabolism, transport, and regulation of FXR-FGF15 signaling pathways were evaluated, the ileal microbiome was further analyzed by 16S rDNA sequence. Finally, Bifidobacterium supplementation mouse model was designed and re-examined the above indicators. RESULTS The results demonstrated that fluoride induced hepatointestinal injury and enterohepatic circulation disorder by altering the synthesis, transporters, and FXR-FGF15 pathway regulation of total bile acid. Importantly, the ileum was found to be the most sensitive and fluoride changed ileal microbiome particularly by reducing abundance of Bifidobacterium. While vitamin B2 supplementation attenuated fluoride-induced enterohepatic circulation dysfunction through IL-17A and ileal microbiome, Bifidobacterium supplementation also reversed fluoride-induced hepatointestinal injury. CONCLUSION Fluoride induces morphological and functional impairment of liver and gut tissues, as well as enterohepatic circulation disorder by altering total bile acid (TBA) synthesis, transporters, and FXR-FGF15 signaling regulation. Vitamin B2 attenuated fluoride-induced enterohepatic circulation disorder through IL-17A knockout and ileal microbiome regulation. The ileum was found to be the most sensitive to fluoride, leading to changes in ileal microbiome, particularly the reduction of Bifidobacterium. Furthermore, Bifidobacterium supplementation reversed fluoride-induced hepatointestinal injury. This study not only elucidates a novel mechanism by which fluoride causes hepatointestinal toxicity, but also provides a new physiological function of vitamin B2, which will be useful in the therapy of fluorosis and other hepatoenterological diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chenkai Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jian Bai
- College of Life Science, Lv Liang University, Lishi, Shanxi 033001, PR China
| | - Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Bohui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Weixiang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiawei Lv
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam 530045, Andhra Pradesh, India
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
3
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. Proc Natl Acad Sci U S A 2025; 122:e2422169122. [PMID: 40354538 DOI: 10.1073/pnas.2422169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Collapse
Affiliation(s)
- Brenda Yang
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Natalie Rutkowski
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Anna Ruta
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Elise Gray-Gaillard
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - David R Maestas
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Sean H Kelly
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Kavita Krishnan
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Allen Chen
- Department of Biomedical Engineering, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Joscelyn C Mejías
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Joshua S T Hooks
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Isabel Vanderzee
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patricia Mensah
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Nazmiye Celik
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Marie Eric
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Peter Abraham
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Ada Tam
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Franck Housseau
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Drew M Pardoll
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
4
|
Targher G, Tilg H, Valenti L. Risk of Serious Bacterial and Non-Bacterial Infections in People With MASLD. Liver Int 2025; 45:e70059. [PMID: 40072231 PMCID: PMC11899495 DOI: 10.1111/liv.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease globally. MASLD is a multisystem disease where metabolic dysfunction plays a key role in the development of MASLD and its most relevant liver-related morbidities and extrahepatic complications, such as cardiovascular disease, chronic kidney disease and certain types of extrahepatic cancers. Among the least examined MASLD-related extrahepatic complications, an ever-increasing number of observational studies have reported a positive association between MASLD and the risk of serious bacterial infections (SBI) requiring hospital admission. This risk remained significant in those studies where statistical analysis was adjusted for age, sex, ethnicity, obesity, type 2 diabetes and other common comorbidities. Notably, the incidence rates of SBI were further increased with more advanced MASLD, especially in patients with MASLD-related cirrhosis, and were also observed for some acute viral infections, including SARS-CoV-2 infection, leading to severe COVID-19. In this narrative review article, we provide an overview of the literature on (a) the recent epidemiological data linking MASLD to the risk of serious bacterial and non-bacterial infections requiring hospital admission, (b) the putative underlying mechanisms through which MASLD may increase the susceptibility to serious infections, both directly and through the immune dysfunction associated with cirrhosis and portal hypertension, and (c) the practical and clinical implications of the increased risk of serious bacterial and non-bacterial infections in the growing global population with MASLD.
Collapse
Affiliation(s)
- Giovanni Targher
- Department of MedicineUniversity of VeronaVeronaItaly
- Metabolic Diseases Research UnitIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and MetabolismMedical University InnsbruckInnsbruckAustria
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Precision Medicine, Biological Resource Center UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
5
|
Park S, Jung S, Lee G, Lee E, Black R, Hong J, Jeong S. Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation. Adv Healthc Mater 2025; 14:e2405219. [PMID: 40103525 PMCID: PMC12031648 DOI: 10.1002/adhm.202405219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Erin Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rodger Black
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Shi Y, Zhang H, Miao C. Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives. Cell Death Discov 2025; 11:123. [PMID: 40155378 PMCID: PMC11953409 DOI: 10.1038/s41420-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Li H, Yu L, Li Z, Li S, Liu Y, Qu G, Chen K, Huang L, Li Z, Ren J, Wu X, Huang J. A Narrative Review of Bioactive Hydrogel Microspheres: Ingredients, Modifications, Fabrications, Biological Functions, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500426. [PMID: 40103506 DOI: 10.1002/smll.202500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Hydrogel microspheres are important in regenerative medicine and tissue engineering, acting as cargos of cells, drugs, growth factors, bio-inks for 3D printing, and medical devices. The antimicrobial and anti-inflammatory characteristics of hydrogel microspheres are good for treating injured tissues. However, the biological properties of hydrogel microspheres should be modified for optimal treatment of various body parts with different physiological and biochemical environments. In addition, specific preparation methods are required to produce customized hydrogel microspheres with different shapes and sizes for various clinical applications. Herein, the advances in hydrogel microspheres for biomedical applications are reviewed. Synthesis methods for hydrogel precursor solutions, manufacturing methods, and strategies for enhancing the biological functions of these hydrogel microspheres are described. The involvement of bioactive hydrogel microspheres in tissue repair is also discussed. This review anticipates fostering more insights into the design, production, and application of hydrogel microspheres in biomedicine.
Collapse
Affiliation(s)
- Haohui Li
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Sicheng Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luqiao Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
8
|
Zhang P, Wang J, Miao J, Zhu P. The dual role of tissue regulatory T cells in tissue repair: return to homeostasis or fibrosis. Front Immunol 2025; 16:1560578. [PMID: 40114929 PMCID: PMC11922884 DOI: 10.3389/fimmu.2025.1560578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Tissue resident regulatory T cells (tissue Tregs) are vital for maintaining immune homeostasis and controlling inflammation. They aid in repairing damaged tissues and influencing the progression of fibrosis. However, despite extensive research on how tissue Tregs interact with immune and non-immune cells during tissue repair, their pro- and anti-fibrotic effects in chronic tissue injury remain unclear. Understanding how tissue Tregs interact with various cell types, as well as their roles in chronic injury and fibrosis, is crucial for uncovering the mechanisms behind these conditions. In this review, we describe the roles of tissue Tregs in repair and fibrosis across different tissues and explore potential strategies for regulating tissue homeostasis. These insights hold promise for providing new perspectives and approaches for the treatment of irreversible fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Qin Y, Li Y, Wang Y, Wei Q, Dai L, Huang M, Chen Y, Gu Y, Yang T, Zhang M. Plasticity deficits of Tregs remodeling toward Th1-like and Th17-like Tregs in individuals with type 1 diabetes. J Endocrinol Invest 2025:10.1007/s40618-025-02557-w. [PMID: 40029535 DOI: 10.1007/s40618-025-02557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE To identify distinct Th-like regulatory T cell (Treg) subsets in the peripheral blood of individuals with type 1 diabetes (T1D) and investigate potential factors that affect Treg polarization within the context of autoimmunity. METHODS A total of 49 T1D patients and 20 healthy controls (HCs) were enrolled in this study. Th-like Treg subsets, including Th1-like, Th2-like and Th17-like Tregs, as well as Th cell subsets in peripheral blood were assessed by flow cytometry. Single nucleotide polymorphisms in Treg-related genes were analyzed. The levels of inflammatory cytokines were measured by ELISA. RESULTS We observed a decreased frequency of Th1-like Tregs in peripheral blood of T1D patients, while the proportion of total Foxp3+ Tregs remained unchanged. Moreover, an imbalance of Th17-like Treg/Th17 cells was noted, characterized by a decreased frequency of Th17-like Tregs and an increased proportion of Th17 cells. Further analysis revealed a correlation between the frequency of Th2-like Tregs and the risk variants of IL-2RA rs3118470. Notably, T1D patients with a normal weight exhibited a higher frequency of Th1-like Tregs compared to their lean and overweight counterparts. However, Treg plasticity was not associated with disease characteristics. Additionally, the serum levels of IL-1β, TNF-α and IL-6 in T1D patients were significantly higher than those in HCs, and the proportions of Th1-like and Th2-like Tregs were negatively associated with IL-6 and TNF-α concentrations in T1D patients, respectively. Nevertheless, the proportions of Th-like Treg subsets in the peripheral blood of HCs exhibited no significant correlation with age, BMI, or the levels of inflammatory cytokines. CONCLUSION Our study has provided novel evidence on the altered plasticity and the possible mechanisms underlying the transformation of conventional Tregs towards Th1-like and Th17-like Tregs in the peripheral blood of T1D patients. The findings serve to further augment our understanding of the Treg-mediated immune imbalance that plays a crucial role in the immunopathogenesis of T1D.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuxiao Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Yixing Branch of Wuxi Medical Center of Nanjing Medical University, Yixing People' s Hospital, Yixing, 214200, China
| | - Yueshu Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qianying Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liuyan Dai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Dikiy S, Ghelani AP, Levine AG, Martis S, Giovanelli P, Wang ZM, Beroshvili G, Pritykin Y, Krishna C, Huang X, Glasner A, Greenbaum BD, Leslie CS, Rudensky AY. Terminal differentiation and persistence of effector regulatory T cells essential for preventing intestinal inflammation. Nat Immunol 2025; 26:444-458. [PMID: 39905200 PMCID: PMC11876075 DOI: 10.1038/s41590-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell lineage with essential anti-inflammatory functions. Analysis of Treg cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector Treg cell transcriptional programs. Attenuated T cell receptor (TCR) signaling and acquisition of substantial TCR-independent functionality seems to facilitate the terminal differentiation of a population of colonic effector Treg cells that are distinguished by stable expression of the immunomodulatory cytokine IL-10. Functional studies show that this subset of effector Treg cells, but not their expression of IL-10, is indispensable for colonic health. These findings identify core features of the terminal differentiation of effector Treg cells in non-lymphoid tissues and their function.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Aazam P Ghelani
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew G Levine
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Martis
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Giovanelli
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giorgi Beroshvili
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao Huang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariella Glasner
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
11
|
Wang CY, Wang JY, Chou YY, Lin CC, Lin YT, Wu CS, Lin JS, Chu CL. The fungal protein Lingzhi-8 ameliorates psoriasis-like dermatitis in mice through gut CD103 + tolerogenic dendritic cells, retinaldehyde dehydrogenase 2, and Dectin-1. Biomed Pharmacother 2025; 184:117910. [PMID: 39954596 DOI: 10.1016/j.biopha.2025.117910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
The gut CD103+ tolerogenic dendritic cells play a key role in maintaining immune balance by inducing oral tolerance, which has been implied in reducing autoimmunity. We recently reported that the oral administration of a fungal protein Lingzhi-8 (LZ-8) prevented autoimmune colitis in mice via maintaining barrier integrity. Here, we examined the functional effect of LZ-8 on gut CD103+ DCs and on autoimmune psoriasis in a mouse model. After orally administered LZ-8 to mice, the numbers of CD103+ DCs and their retinaldehyde dehydrogenase 2 (RALDH2) activities were increased in the mesenteric lymph nodes (mLNs), which were associated with increased regulatory T cell (Treg) in the spleen and LNs. This suggests that LZ-8 induces oral tolerance by enhancing the RALDH2 activity of CD103+ DCs. In addition, the imiquimod (IMQ)-induced psoriasis-like dermatitis was attenuated in mice after LZ-8 pretreatment. In the mechanistic study, we generated gut CD103+ DC-like cells from bone marrow (BM) of wild-type mouse and cultured them in the presence of retinoic acid (RA) in vitro. We found that LZ-8 directly enhanced the RALDH2 activity of these RA-primed CD103+ DCs, which was dependent on Dectin-1 and Syk signaling pathways but not TLR4. Together, our study demonstrated that LZ-8 facilitated gut tolerogenic CD103+ DC-mediated immunosuppression by enhancing RALDH2 activity, increasing Treg cell population, and signaling through Dectin-1 and Syk. Our findings provide a novel strategy for treating psoriasis and potentially other autoimmune diseases.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jen-Yu Wang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Yi Chou
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Tsun Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
13
|
Wen Y, Xia Y, Yang X, Li H, Gao Q. CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells. Trends Immunol 2025; 46:153-165. [PMID: 39890548 DOI: 10.1016/j.it.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Tumor-infiltrating regulatory T (TI-Treg) cells constitute key components within the tumor microenvironment (TME) to suppress antitumor immunity and facilitate tumor progression. Although multiple therapies have been developed to eliminate TI-Treg cells, most of them exhibit only modest efficacy and harbor risks of inducing immune-related adverse events (irAEs). Recent studies demonstrate that CC chemokine receptor (CCR)8 is highly and specifically expressed on effector TI-Treg cells in mice and humans, highlighting CCR8 as a promising target for selective TI-Treg cell depletion in the treatment of various cancers. Here, we concentrate on the latest understanding of CCR8 regarding its expression, functions, and regulation, and summarize the current landscape of CCR8-targeted therapies. With favorable efficacy and safety, the latter represent an important class of next-generation putative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuanjia Wen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
15
|
Griffith JW, Luster AD. No bones about it: regulatory T cells promote fracture healing. J Clin Invest 2025; 135:e188368. [PMID: 39817452 PMCID: PMC11735088 DOI: 10.1172/jci188368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair. The CCL1/CCR8 chemokine system promoted the accumulation of Tregs at the site of bone injury, where Tregs supported skeletal stem cell (SSC) accumulation and osteogenic differentiation. CCL1 increased the transcription factor basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which induced the secretion of progranulin that promoted SSC osteogenic function and new bone formation. This study highlights the ever-expanding role of Tregs in tissue repair by demonstrating their ability to expand stem cells at a site of injury.
Collapse
Affiliation(s)
- Jason W. Griffith
- Center for Immunology and Inflammatory Diseases
- Division of Pulmonary & Critical Care Medicine, and
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
17
|
Boccardo S, Rodriguez C, Gimenez CMS, Araujo Furlan CL, Abrate CP, Almada L, Saldivia Concepción MA, Skewes-Cox P, Rao SPS, Mukdsi JH, Montes CL, Gruppi A, Acosta Rodríguez EV. Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection. PLoS Pathog 2025; 21:e1012906. [PMID: 39883714 PMCID: PMC11813105 DOI: 10.1371/journal.ppat.1012906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/11/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity. Unlike sterile injury models, trTregs significantly declined in secondary lymphoid organs and non-lymphoid target tissues during infection, correlating with systemic and local tissue damage, and downregulation of function-associated genes in skeletal muscle. This decline was linked to decreased systemic IL-33 levels, a key trTreg growth factor, and promoted by the Th1 cytokine IFN-γ. Early recombinant IL-33 treatment increased trTregs, type 2 innate lymphoid cells, and parasite-specific CD8+ cells at specific time points after infection, leading to reduced tissue damage, lower parasite burden, and improved disease outcome. Our findings not only provide novel insights into trTregs during infection but also highlight the potential of optimizing immune balance by modulating trTreg responses to promote tissue repair while maintaining effective pathogen control during infection-induced injury.
Collapse
Affiliation(s)
- Santiago Boccardo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Constanza Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Camila M. S. Gimenez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Carolina P. Abrate
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Laura Almada
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | | | - Peter Skewes-Cox
- BioMedical Research, Novartis, Emeryville, California, United States of America
| | - Srinivasa P. S. Rao
- BioMedical Research, Novartis, Emeryville, California, United States of America
| | - Jorge H. Mukdsi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Córdoba, Argentina
- Centro de Microscopia Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Carolina L. Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina
| |
Collapse
|
18
|
Jiang Z, Tabuchi C, Gayer SG, Bapat SP. Immune Dysregulation in Obesity. ANNUAL REVIEW OF PATHOLOGY 2025; 20:483-509. [PMID: 39854190 DOI: 10.1146/annurev-pathmechdis-051222-015350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.
Collapse
Affiliation(s)
- Zewen Jiang
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Chihiro Tabuchi
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sarah G Gayer
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
19
|
Shouse AN, Villarino AV, Malek TR. Interleukin-2 receptor signaling acts as a checkpoint that influences the distribution of regulatory T cell subsets. iScience 2024; 27:111248. [PMID: 39759017 PMCID: PMC11700635 DOI: 10.1016/j.isci.2024.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 01/07/2025] Open
Abstract
Regulatory T cells (Tregs) require IL-2 for survival in the periphery, yet how IL-2 shapes Treg heterogeneity remains poorly defined. Here we show that inhibition of IL-2R signaling in post-thymic Tregs leads to a preferential early loss of circulating Tregs (cTregs). Gene expression of cTregs was more dependent on IL-2R signaling than effector Tregs (eTregs). Unexpectedly, ablation of IL-2R signaling in cTregs resulted in increased proliferation, expression of eTreg genes, and enhanced capacity to develop into eTregs. Thus, IL-2R signaling normally acts as a checkpoint to maintain cTreg homeostasis while restraining their development into eTregs. Loss of IL-2R signaling also alters the distribution of eTreg subsets, with increased IFNγR1+ eTregs and CXCR5+ PD-1+ T follicular regulatory (TFR) cells but decreased intestinal RORγt+ TR17 cells. These changes lower eTreg suppressive function supporting expansion of IFNγ-secreting T effector cells. Thus, IL-2R signaling also safeguards Treg function and licenses differentiation of specialized eTregs.
Collapse
Affiliation(s)
- Acacia N. Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R. Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
20
|
He Y, Mohapatra G, Asokan S, Nobs SP, Elinav E. Microbiome modulation of antigen presentation in tolerance and inflammation. Curr Opin Immunol 2024; 91:102471. [PMID: 39277909 DOI: 10.1016/j.coi.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The microbiome regulates mammalian immune responses from early life to adulthood. Antigen presentation, orchestrating these responses, integrates commensal and pathogenic signals. However, the temporal and spatial specificity of microbiome impacts on antigen presentation and downstream tolerance versus inflammation remain incompletely understood. Herein, we review the influences of antigen presentation of microbiome-related epitopes on immunity; impacts of microbiome-based modulation of antigen presentation on innate and adaptive immune responses; and their ramifications on homeostasis and immune-related disease, ranging from auto-inflammation to tumorigenesis. We highlight mechanisms driving these influences, such as 'molecular mimicry', in which microbiome auto-antigen presentation aberrantly triggers an immune response driving autoimmunity or influences conferred by microbiome-derived metabolites on antigen-presenting cells in inflammatory bowel disease. We discuss unknowns, controversies, and challenges associated with the study of microbiome regulation of antigen presentation while demonstrating how increasing knowledge may contribute to the development of microbiome-based therapeutics modulating immune responses in a variety of clinical contexts.
Collapse
Affiliation(s)
- Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gayatree Mohapatra
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sahana Asokan
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samuel Philip Nobs
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Chen N, Chen L, Yang B, Lv L, Li H, Du S, Tan X. Toxic effects of avermectin on liver function, gut microbiota, and colon barrier in the rat model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116964. [PMID: 39260218 DOI: 10.1016/j.ecoenv.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Avermectin (AVM), a compound derived from the fermentation of Avermectin Streptomyces, has insecticidal, acaricidal, and nematicidal properties. Widely employed in agriculture, it serves as an effective and broad-spectrum insecticide for pest control. Although the toxicity of AVM at low doses may not be readily apparent, prolonged and extensive exposure can result in poisoning. To investigate the toxic effects of AVM on the body, this study established rat models of AVM poisoning with both low and high concentrations of the compound. Fifteen male rats were randomly assigned to one of three groups (n=5 per group): a control group, a low-concentration group, and a high-concentration group. The low-concentration group was administered an oral dose of 2 mg/kg AVM once daily for a duration of seven days, while the high-concentration group received an oral dose of 10 mg/kg AVM once daily for the same period. This study examined the impact of AVM on liver function and gut microbiota in rats using weight monitoring, liver function indicator detection, liver metabolomics sequencing, colon barrier function testing, and gut microbiota sequencing. The findings of this study demonstrated that exposure to 2 or 10 mg/kg AVM for seven days can lead to a notable decrease in rat weight, as well as induce liver dysfunction and metabolic disturbances. Additionally, AVM exposure can disrupt the composition of the intestinal microbiota and impair the integrity of the colon mucosal barrier, causing downregulation of Occludin expression and upregulation of inflammation-related protein expression levels such as IL-1β, Myd88, and TLR4. Furthermore, bioinformatics analysis revealed a significant association between liver dysfunction and dysbiosis of the gut microbiota. These findings have implications for the agricultural use of AVM and its potential contribution to environmental pollution. Consequently, individuals involved in AVM usage should prioritize safety precautions and monitor liver function.
Collapse
Affiliation(s)
- Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijun Lv
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Han Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Sihao Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohui Tan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
22
|
Loffredo LF, Kaiser KA, Kornberg A, Rao S, de Los Santos-Alexis K, Han A, Arpaia N. An amphiregulin reporter mouse enables transcriptional and clonal expansion analysis of reparative lung Treg cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615245. [PMID: 39386607 PMCID: PMC11463663 DOI: 10.1101/2024.09.26.615245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory T (Treg) cells are known to play critical roles in tissue repair via provision of growth factors such as amphiregulin (Areg). Areg-producing Treg cells have previously been difficult to study because of an inability to isolate live Areg-producing cells. In this report, we created a novel reporter mouse to detect Areg expression in live cells ( Areg Thy1.1 ). We employed influenza A and bleomycin models of lung damage to sort Areg-producing and -non-producing Treg cells for transcriptomic analyses. Single cell RNA-seq revealed distinct subpopulations of Treg cells and allowed transcriptomic comparisons of damage-induced populations. Single cell TCR sequencing showed that Treg cell clonal expansion is biased towards Areg-producing Treg cells, and largely occurs within damage-induced subgroups. Gene module analysis revealed functional divergence of Treg cells into immunosuppression-oriented and tissue repair-oriented groups, leading to identification of candidate receptors for induction of repair activity in Treg cells. We tested these using an ex vivo assay for Treg cell-mediated tissue repair, identifying 4-1BB agonism as a novel mechanism for reparative activity induction. Overall, we demonstrate that the Areg Thy1.1 mouse is a promising tool for investigating tissue repair activity in leukocytes.
Collapse
|
23
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
24
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
25
|
Gan Y, Zhang J, Qi F, Hu Z, Sweren E, Reddy SK, Chen L, Feng X, Grice EA, Garza LA, Wang G. Commensal microbe regulation of skin cells in disease. Cell Host Microbe 2024; 32:1264-1279. [PMID: 39146798 PMCID: PMC11457753 DOI: 10.1016/j.chom.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Human skin is the host to various commensal microbes that constitute a substantial microbial community. The reciprocal communication between these microbial inhabitants and host cells upholds both the morphological and functional attributes of the skin layers, contributing indispensably to microenvironmental and tissue homeostasis. Thus, disruption of the skin barrier or imbalances in the microbial communities can exert profound effects on the behavior of host cells. This influence, mediated by the microbes themselves or their metabolites, manifests in diverse outcomes. In this review, we examine existing knowledge to provide insight into the nuanced behavior exhibited by the microbiota on skin cells in health and disease states. These interactions provide insight into potential cellular targets for future microbiota-based therapies to prevent and treat skin disease.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Evan Sweren
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xinyi Feng
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis A Garza
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
26
|
Zhu Y, Meerschaert KA, Galvan-Pena S, Bin NR, Yang D, Kawamoto R, Shalaby A, Liberles SD, Mathis D, Benoist C, Chiu IM. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 2024; 385:eadk1679. [PMID: 39088603 PMCID: PMC11416019 DOI: 10.1126/science.adk1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/03/2024]
Abstract
Neuroimmune cross-talk participates in intestinal tissue homeostasis and host defense. However, the matrix of interactions between arrays of molecularly defined neuron subsets and of immunocyte lineages remains unclear. We used a chemogenetic approach to activate eight distinct neuronal subsets, assessing effects by deep immunophenotyping, microbiome profiling, and immunocyte transcriptomics in intestinal organs. Distinct immune perturbations followed neuronal activation: Nitrergic neurons regulated T helper 17 (TH17)-like cells, and cholinergic neurons regulated neutrophils. Nociceptor neurons, expressing Trpv1, elicited the broadest immunomodulation, inducing changes in innate lymphocytes, macrophages, and RORγ+ regulatory T (Treg) cells. Neuroanatomical, genetic, and pharmacological follow-up showed that Trpv1+ neurons in dorsal root ganglia decreased Treg cell numbers via the neuropeptide calcitonin gene-related peptide (CGRP). Given the role of these neurons in nociception, these data potentially link pain signaling with gut Treg cell function.
Collapse
Affiliation(s)
- Yangyang Zhu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly A. Meerschaert
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Galvan-Pena
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Na Ryum Bin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Kawamoto
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amre Shalaby
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D. Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane Mathis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Huang X, Rudensky AY. Regulatory T cells in the context: deciphering the dynamic interplay with the tissue environment. Curr Opin Immunol 2024; 89:102453. [PMID: 39173413 PMCID: PMC11428145 DOI: 10.1016/j.coi.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The delicate balance between protective immunity against pathogens and the prevention of autoimmunity requires finely tuned generation and function of regulatory CD4+ T (Treg) cells. Here, we review recent progress in the understanding of a complex set of cues, which converge on Treg cells in lymphoid and nonlymphoid organs and in tumors and how these cues modulate Treg functions. We highlight the versatility of Treg cells underlying their ability to dynamically adapt to local microenvironments and perform a wide range of functions that extend beyond the archetypal role of Treg cells in moderating adverse effects of immune response-associated inflammation and in suppressing autoimmunity.
Collapse
Affiliation(s)
- Xiao Huang
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Tani-Ichi S, Obwegs D, Yoshikawa A, Watanabe H, Kitano S, Ejima A, Hatano S, Miyachi H, Cui G, Shimba A, Abe S, Hori S, Kondoh G, Sagar, Yoshikai Y, Ikuta K. A RORE-dependent Intronic Enhancer in the IL-7 Receptor-α Locus Controls Glucose Metabolism via Vγ4+ γδT17 Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:283-295. [PMID: 39140825 DOI: 10.4049/jimmunol.2300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/22/2024] [Indexed: 08/15/2024]
Abstract
The IL-7R regulates the homeostasis, activation, and distribution of T cells in peripheral tissues. Although several transcriptional enhancers that regulate IL-7Rα expression in αβ T cells have been identified, enhancers active in γδ T cells remain unknown. In this article, we discovered an evolutionarily conserved noncoding sequence (CNS) in intron 2 of the IL-7Rα-chain (IL-7Rα) locus and named this region CNS9. CNS9 contained a conserved retinoic acid receptor-related orphan receptor (ROR)-responsive element (RORE) and exerted RORγt-dependent enhancer activity in vitro. Mice harboring point mutations in the RORE in CNS9 (CNS9-RORmut) showed reduced IL-7Rα expression in IL-17-producing Vγ4+ γδ T cells. In addition, the cell number and IL-17A production of Vγ4+ γδ T cells were reduced in the adipose tissue of CNS9-RORmut mice. Consistent with the reduction in IL-17A, CNS9-RORmut mice exhibited decreased IL-33 expression in the adipose tissue, resulting in fewer regulatory T cells and glucose intolerance. The CNS9-ROR motif was partially responsible for IL-7Rα expression in RORγt+ regulatory T cells, whereas IL-7Rα expression was unaffected in RORγt-expressing Vγ2+ γδ T cells, Th17 cells, type 3 innate lymphoid cells, and invariant NKT cells. Our results indicate that CNS9 is a RORΕ-dependent, Vγ4+ γδ T cell-specific IL-7Rα enhancer that plays a critical role in adipose tissue homeostasis via regulatory T cells, suggesting that the evolutionarily conserved RORΕ in IL-7Rα intron 2 may influence the incidence of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Mice
- Introns/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Enhancer Elements, Genetic/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Glucose/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Mice, Inbred C57BL
- Th17 Cells/immunology
- Interleukin-17/metabolism
- Interleukin-17/genetics
- Humans
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Obwegs
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Alice Yoshikawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:321-328. [PMID: 39364121 PMCID: PMC11444859 DOI: 10.12938/bmfh.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Jinying Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Xiaoran Wang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Zhengwang Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| |
Collapse
|
30
|
Sebina I, Ngo S, Rashid RB, Alorro M, Namubiru P, Howard D, Ahmed T, Phipps S. CXCR3 + effector regulatory T cells associate with disease tolerance during lower respiratory pneumovirus infection. Immunology 2024; 172:500-515. [PMID: 38584001 DOI: 10.1111/imm.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mariah Alorro
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
32
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
33
|
Wang G, Muñoz-Rojas AR, Spallanzani RG, Franklin RA, Benoist C, Mathis D. Adipose-tissue Treg cells restrain differentiation of stromal adipocyte precursors to promote insulin sensitivity and metabolic homeostasis. Immunity 2024; 57:1345-1359.e5. [PMID: 38692280 PMCID: PMC11188921 DOI: 10.1016/j.immuni.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.
Collapse
Affiliation(s)
- Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
36
|
Li J, Tian C, Feng S, Cheng W, Tao S, Li C, Xiao Y, Wei H. Modulation of Gut Microbial Community and Metabolism by Bacillus licheniformis HD173 Promotes the Growth of Nursery Piglets Model. Nutrients 2024; 16:1497. [PMID: 38794735 PMCID: PMC11124511 DOI: 10.3390/nu16101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Maintaining the balance and stability of the gut microbiota is crucial for the gut health and growth development of humans and animals. Bacillus licheniformis (B. licheniformis) has been reported to be beneficial to the gut health of humans and animals, whereas the probiotic effects of a new strain, B. licheniformis HD173, remain uncertain. In this study, nursery piglets were utilized as animal models to investigate the extensive impact of B. licheniformis HD173 on gut microbiota, metabolites, and host health. The major findings were that this probiotic enhanced the growth performance and improved the health status of the nursery piglets. Specifically, it reduced the level of pro-inflammatory cytokines IL-1β and TNF-α in the serum while increasing the level of IL-10 and SOD. In the gut, B. licheniformis HD173 reduced the abundance of pathogenic bacteria such as Mycoplasma, Vibrio, and Vibrio metschnikovii, while it increased the abundance of butyrate-producing bacteria, including Oscillospira, Coprococcus, and Roseburia faecis, leading to an enhanced production of butyric acid. Furthermore, B. licheniformis HD173 effectively improved the gut metabolic status, enabling the gut microbiota to provide the host with stronger metabolic abilities for nutrients. In summary, these findings provide scientific evidence for the utilization of B. licheniformis HD173 in the development and production of probiotic products for maintaining gut health in humans and animals.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shuaifei Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| |
Collapse
|
37
|
Luan J, Truong C, Vuchkovska A, Guo W, Good J, Liu B, Gang A, Infarinato N, Stewart K, Polak L, Pasolli HA, Andretta E, Rudensky AY, Fuchs E, Miao Y. CD80 on skin stem cells promotes local expansion of regulatory T cells upon injury to orchestrate repair within an inflammatory environment. Immunity 2024; 57:1071-1086.e7. [PMID: 38677291 PMCID: PMC11265648 DOI: 10.1016/j.immuni.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.
Collapse
Affiliation(s)
- Jingyun Luan
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Cynthia Truong
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Aleksandra Vuchkovska
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Weijie Guo
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Jennifer Good
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Bijun Liu
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Audrey Gang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA
| | - Nicole Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Katherine Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Emma Andretta
- Howard Hughes Medical Institute, Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60615, USA.
| |
Collapse
|
38
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Darghiasi SF, Farazin A, Ghazali HS. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review. J Mech Behav Biomed Mater 2024; 151:106391. [PMID: 38211501 DOI: 10.1016/j.jmbbm.2024.106391] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Tissue engineering is a fascinating field that combines biology, engineering, and medicine to create artificial tissues and organs. It involves using living cells, biomaterials, and bioengineering techniques to develop functional tissues that can be used to replace or repair damaged or diseased organs in the human body. The process typically starts by obtaining cells from the patient or a donor. These cells are then cultured and grown in a laboratory under controlled conditions. Scaffold materials, such as biodegradable polymers or natural extracellular matrices, are used to provide support and structure for the growing cells. 3D bone scaffolds are a fascinating application within the field of tissue engineering. These scaffolds are designed to mimic the structure and properties of natural bone tissue and serve as a temporary framework for new bone growth. The main purpose of a 3D bone scaffold is to provide mechanical support to the surrounding cells and guide their growth in a specific direction. It acts as a template, encouraging the formation of new bone tissue by providing a framework for cells to attach, proliferate, and differentiate. These scaffolds are typically fabricated using biocompatible materials like ceramics, polymers, or a combination of both. The choice of material depends on factors such as strength, biodegradability, and the ability to facilitate cell adhesion and growth. Advanced techniques like 3D printing have revolutionized the fabrication process of these scaffolds. Using precise layer-by-layer deposition, it allows for the creation of complex, patient-specific geometries, mimicking the intricacies of natural bone structure. This article offers a brief overview of the latest developments in the research and development of 3D printing techniques for creating scaffolds used in bone tissue engineering.
Collapse
Affiliation(s)
- Seyedeh Farnaz Darghiasi
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran; Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Hanieh Sadat Ghazali
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
41
|
Wang H, Tsung A, Mishra L, Huang H. Regulatory T cell: a double-edged sword from metabolic-dysfunction-associated steatohepatitis to hepatocellular carcinoma. EBioMedicine 2024; 101:105031. [PMID: 38401419 PMCID: PMC10904199 DOI: 10.1016/j.ebiom.2024.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming a leading cause of end-stage liver disease globally. Metabolic-dysfunction-associated steatohepatitis (MASH) represents a progressive inflammatory manifestation of MASLD. MASH underlies a versatile and dynamic inflammatory microenvironment, accompanied by aberrant metabolism and ongoing liver regeneration, establishing itself as a significant risk factor for hepatocellular carcinoma (HCC). The mechanisms underlying the escape and survival of malignant cells within the extensive inflammatory microenvironment of MASH remain elusive. Regulatory T cells (Tregs) play a crucial role in maintaining homeostasis and preventing excessive immune responses in the liver. Paradoxically, Tregs have been implicated in inhibiting tumour-promoting inflammation and facilitating the evasion of cancer cells. Recent studies have unveiled distinct behaviours of Tregs at different stages of MASLD, suggesting a dual role in the pathogenesis. In this review, we explore the fate of Tregs from MASLD to HCC, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lopa Mishra
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
42
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
43
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Theret M, Chazaud B. Skeletal muscle niche, at the crossroad of cell/cell communications. Curr Top Dev Biol 2024; 158:203-220. [PMID: 38670706 DOI: 10.1016/bs.ctdb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics University of British Columbia, Vancouver, BC, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, Inserm U1315, CNRS UMR 5261, Lyon, France.
| |
Collapse
|
45
|
Baindara P. Targeting interleukin-17 in radiation-induced toxicity and cancer progression. Cytokine Growth Factor Rev 2024; 75:31-39. [PMID: 38242827 DOI: 10.1016/j.cytogfr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Recent strategies to combine chemoradiation with immunotherapy to treat locally advanced lung cancer have improved five-year survival outcomes. However, collateral toxicity to healthy lungs, esophagus, cardiac, and vascular tissue continues to limit the effectiveness of curative-intent thoracic radiation (tRT). It is necessary to gain a deeper comprehension of the fundamental mechanisms underlying inflammation-mediated radiation-induced damage to normal cells. Several cells have been linked in published studies to the release of cytokines and chemokines after radiation therapy. Several inflammatory mediators, such as IL-1, IL-6, TNF-α, and TGF-β, also cause the production of Interleukin-17 (IL-17), a cytokine that is essential for maintaining immunological homeostasis and plays a role in the toxicity caused by radiation therapy. However, currently, the role of IL-17 in RT-induced toxicity in conjunction with cancer progression remains poorly understood. This review provides an overview of the most recent data from the literature implicating IL-17 in radiation-mediated tissue injuries and the efficacy of tRT in lung cancer, as well as its potential as a therapeutic target for interventions to reduce the side effects of tRT with curative intent and to boost an anti-tumor immune response to improve treatment outcomes. IL-17 may also act as a biomarker for predicting the effectiveness of a given treatment as well as the toxicity caused by tRT.
Collapse
Affiliation(s)
- Piyush Baindara
- Radiation Oncology, School of Medicine, NextGen Precision Health, University of Missouri, Columbia 65211, United States.
| |
Collapse
|
46
|
Tearle JLE, Tang A, Vasanthakumar A, James KR. Role reversals: non-canonical roles for immune and non-immune cells in the gut. Mucosal Immunol 2024; 17:137-146. [PMID: 37967720 DOI: 10.1016/j.mucimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The intestine is home to an intertwined network of epithelial, immune, and neuronal cells as well as the microbiome, with implications for immunity, systemic metabolism, and behavior. While the complexity of this microenvironment has long since been acknowledged, recent technological advances have propelled our understanding to an unprecedented level. Notably, the microbiota and non-immune or structural cells have emerged as important conductors of intestinal immunity, and by contrast, cells of both the innate and adaptive immune systems have demonstrated non-canonical roles in tissue repair and metabolism. This review highlights recent works in the following two streams: non-immune cells of the intestine performing immunological functions; and traditional immune cells exhibiting non-immune functions in the gut.
Collapse
Affiliation(s)
- Jacqueline L E Tearle
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia
| | - Adelynn Tang
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia.
| |
Collapse
|
47
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
48
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Gelineau A, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. Proc Natl Acad Sci U S A 2023; 120:e2311566120. [PMID: 38064511 PMCID: PMC10723124 DOI: 10.1073/pnas.2311566120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
Affiliation(s)
| | | | - Serge M. Candéias
- Université Grenoble Alpes, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Interdisciplinary Research Institute of Grenoble, Laboratory of Chemistry and Biology of Metals, Grenoble38054, France
| | | | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
49
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
50
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|