1
|
Shen H, Zhao Y, Zhang S, Xu J, Tong J, Yao H, Zhang H. Synbiotic Supplementation Mitigates Antibiotic-Associated Diarrhea by Enhancing Gut Microbiota Composition and Intestinal Barrier Function in a Canine Model. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10584-5. [PMID: 40423877 DOI: 10.1007/s12602-025-10584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Antibiotic-associated diarrhea (AAD) remains a significant clinical challenge, with current treatments often inadequate for fully restoring gut health. This study aimed to evaluate the effectiveness of synbiotics, including chitosan oligosaccharides, Bifidobacterium, Clostridium butyricum, and Lactiplantibacillus plantarum, in mitigating AAD in a canine model. Sixteen Beagle dogs were randomly assigned to an AAD model group or a synbiotic treatment group. Synbiotic supplementation significantly reduced diarrhea severity, improved intestinal morphology, and enhanced gut microbiota diversity. Furthermore, synbiotics upregulated the expression of tight junction proteins (ZO-1, occludin, claudin-1), thereby reducing mucosal permeability. A significant decrease in proinflammatory cytokines (IL-1β, TNF-α) further underscored the anti-inflammatory effects of the treatment. These findings suggest that synbiotics may offer a promising approach to restoring gut barrier integrity and modulating immune responses in cases of AAD. Further research is warranted to investigate the long-term impacts and underlying mechanisms of synbiotics in gut health restoration.
Collapse
Affiliation(s)
- Haoyi Shen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Yiran Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Sizhe Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jiahui Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|
2
|
Wu H, Qian Y, Zhu K, Deng Z, Zeng H, Li J, Li H, Liao G, Chen L, Que Y, Huang W, Wang H, Fang H, Huang G, Hu S. Roles of innate immune system and receptor Dectin-1 in synovium and cartilage homeostasis of osteoarthritis. Int J Biol Macromol 2025; 309:142669. [PMID: 40164261 DOI: 10.1016/j.ijbiomac.2025.142669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Innate immunity is crucial in the progression of osteoarthritis (OA); however, its mechanisms require further exploration. This study aims to investigate the mechanisms of innate immunity in OA synovitis. METHODS RNA sequencing data were analyzed to detect the expression characteristics of innate immunity-related genes in OA synovium. The Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) database was used to identify hub genes, and an OA diagnostic model was constructed using 113 combinations of machine learning algorithms. Single-cell sequencing data were used to identify the expression patterns of hub genes and innate immunity-related pathways in cell clusters and to illustrate the interactions among cell populations. The functional mechanism of Dectin-1 in OA was validated experimentally. RESULTS Innate immunity-related genes and pathways were significantly expressed in the synovium of patients with OA. We constructed an OA diagnostic model, and HLA-DRA+ cells were identified as a critical cell population. The innate immune receptor Dectin-1 on macrophages regulated macrophage M1 polarization and cartilage homeostasis via the Dectin-1/Syk/NF-κB pathway, influencing the progression of OA. CONCLUSION This study reveals the expression patterns of innate immunity-related genes and pathways in the OA synovium and highlights the role of Dectin-1 in macrophages.
Collapse
Affiliation(s)
- Han Wu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yewen Qian
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaiyuan Zhu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zengfa Deng
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hua Zeng
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jintao Li
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haosheng Li
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoqing Liao
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingxiang Chen
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yonghua Que
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weisen Huang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hechong Wang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hang Fang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Guangxin Huang
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Shu Hu
- Department of Joint Surgery and Sports Medicine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Edwards DL, Huang M, Wang TT. Soluble Factors and Mechanisms Regulated by Sialylated IgG Signaling. Immunol Rev 2025; 330:e70021. [PMID: 40084926 PMCID: PMC12042769 DOI: 10.1111/imr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Inflammation is a complex biological response that can be both induced and actively suppressed by IgG-Fc gamma receptor (FcγR) interactions. This review explores the role of IgG sialylation in reducing or blocking inflammatory responses. We first revisit foundational studies that established the anti-inflammatory properties of sialylated IgG1 Fc. These early investigations revealed that the sialylated fraction is crucial for intravenous immunoglobulin's (IVIg's) ability to reduce inflammation in many autoinflammatory diseases and defined a paracrine signaling mechanism underlying this activity. Next, we discuss a recently identified mechanism whereby sialylated IgG directly induces RE1-Silencing Transcription Factor (REST) which functions as a transcriptional repressor of NF-κB1. This mechanism suggests a very broad role for sialylated IgG signaling in inflammation control since NF-κB is a central mediator of responses downstream of diverse activating receptors on both adaptive and innate immune cells. Finally, we review a set of soluble factors that are suppressed by sialylated IgG signaling in the murine airway and in purified human macrophages, providing additional insight into mechanisms by which sialylated IgG contributes to broad inflammatory control.
Collapse
Affiliation(s)
- Desmond L. Edwards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Min Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Taia T. Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Ye W, Liao Y, Liu X, Wang Y, Li T, Zhao Y, He Z, Chen J, Yin M, Sheng Y, Du Y, Ji Y, He H. Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling. Free Radic Biol Med 2025; 229:13-29. [PMID: 39800085 DOI: 10.1016/j.freeradbiomed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies. Dectin-2, a member of the C-type lectin receptor (CLR) family, has recently been reported to play an important role in immune regulation, but its role in osteoclastogenesis has not been documented. This study identified a significant upregulation of Dectin-2 expression during osteoclast differentiation through single-cell sequencing and transcriptomic analysis. Knocking down Dectin-2 significantly inhibits the differentiation of RAW264.7 cells and bone marrow-derived macrophages (BMDMs) into osteoclasts, while overexpressing Dectin-2 enhances osteoclast differentiation and function. Mechanistically, transcriptomic analysis indicates that Dectin-2 deficiency disrupts redox homeostasis and affects the MAPK signaling pathway. Furthermore, the study demonstrates that Dectin-2 promotes osteoclastogenesis via the Syk/NOX2/ROS/MAPK signaling axis. In vivo, Dectin-2 knockout mice show reduced osteoclast numbers and decreased alveolar bone resorption in a periodontitis model. In conclusion, these findings suggest that Dectin-2 is a key regulatory factor in osteoclast-mediated bone resorption and may serve as a promising therapeutic target for bone diseases characterized by osteoclast overactivity, such as periodontitis.
Collapse
Affiliation(s)
- Wengwanyue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Fiore NT, Willcox KF, Dayani D, Zuberi YA, Heijnen CJ, Grace PM. Reducing IgG accumulation via neonatal Fc receptor (FcRn) blockade relieves neuropathic pain. Brain Behav Immun 2025; 125:371-387. [PMID: 39870199 PMCID: PMC11903150 DOI: 10.1016/j.bbi.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG. To this end, we tested whether biologic inhibition or genetic deletion of the neonatal Fc receptor (FcRn) would attenuate mechanical hypersensitivity (allodynia) and IgG deposition induced by CCI. FcRn are prominently expressed on myeloid and endothelial cells and extend the half-life of IgG via pinocytosis and recycling into the extracellular milieu. We show here that administration of the FcRn blocker efgartigimod either 7- or 28-days post-CCI relieved allodynia among both male and female mice, compared to the Fc fragment control. Efgartigimod, administered systemically (intraperitoneal) or to the lumbar region (intrathecal), attenuated mechanical allodynia for at least one month. CCI-induced allodynia was similarly reduced in FcRn-deficient (FcRn-) mice compared to wild-type mice. Biologic inhibition or genetic deletion of FcRn also reduced CCI-induced accumulation of IgG on macrophages and neurons in lumbar DRG, as well as microglia in the lumbar dorsal spinal cord. Expression of the Fc receptor γ subunit (FcRγ) was reduced in efgartigimod-treated or FcRn- mice post-CCI compared to controls. The FcRγ subunit is a key component of Fc gamma receptors (FcγRs), which are activated by IgG immune complexes. In macrophage cultures stimulated by IgG immune complexes, FcRn blockade also dampened FcγR-dependent production of proinflammatory cytokines. Collectively, our study demonstrates that FcRn blockade or deletion alleviates mechanical allodynia and reduces IgG accumulation after CCI, attenuating pronociceptive IgG-FcγR signaling around the lumbar region. Strategies to block FcRn and reduce IgG recycling warrant further investigation as potential treatments for IgG-mediated neuropathic pain.
Collapse
Affiliation(s)
- Nathan T Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kendal F Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Younus A Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Cobi J Heijnen
- Department of Psychological Sciences, Rice University, Houston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
6
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Aghaei M, Khademi R, Far MAJ, Bahreiny SS, Mahdizade AH, Amirrajab N. Genetic variants of dectin-1 and their antifungal immunity impact in hematologic malignancies: A comprehensive systematic review. Curr Res Transl Med 2024; 72:103460. [PMID: 39038414 DOI: 10.1016/j.retram.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Fungal infections pose a significant threat to individuals with hematologic malignancies due to compromised immune systems. Dectin-1, a pivotal pattern recognition receptor, plays a central role in antifungal immune responses. Understanding its genetic variants' impact is crucial for advancing personalized therapeutic approaches. METHODS Employing systematic review methods, studies were meticulously selected and assessed for relevance. Data extraction encompassed Dectin-1 genetic variants, antifungal immune responses, and disease outcomes. RESULTS Findings unveiled a complex relationship between Dectin-1 genetic variants and antifungal immunity in hematologic malignancies. Variable associations emerged, influencing susceptibility to fungal infections and disease prognosis. Moreover, implications for treatment outcomes were explored, suggesting potential avenues for tailored interventions. CONCLUSIONS This systematic review underscores the need for further investigation into the precise influence of Dectin-1 genetic variants on antifungal immunity and disease progression in hematologic malignancies. Insights gained could pave the way for personalized therapeutic strategies, optimizing infection prevention and malignancy management. By delving into the intricate connections between genetic nuances, immune responses, and clinical trajectories, this review contributes to the ongoing discourse surrounding hematologic malignancies, fungal infections, and their multifaceted interplay.
Collapse
Affiliation(s)
- Mojtaba Aghaei
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Jalali Far
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran and Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 PMCID: PMC11659946 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| | - Falk Nimmerjahn
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
9
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Jandus C, Jandus P. Effects of Intravenous Immunoglobulins on Human Innate Immune Cells: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 2024; 185:975-996. [PMID: 38852585 DOI: 10.1159/000539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) has been used for almost 40 years in the treatment of autoimmune and systemic inflammatory diseases. Numerous cells are involved in the innate immune response, including monocytes/macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, natural killer cells, and innate lymphoid cells. Many studies have investigated the mechanisms by which IVIg down-modulates inflammatory and autoimmune processes of innate immune cells. However, questions remain regarding the precise mechanism of action in autoimmune or inflammatory conditions. The aim of this work was to review the immunomodulatory effect of IVIg on only human innate immune cells. A narrative review approach was chosen to summarize key evidence on the immunomodulatory effects of commercially available and unmodified IVIg on human innate immune cells. SUMMARY Numerous different immunomodulatory effects of IVIg have been reported, with some very different effects depending on the immune cell type and disease. Several limitations of the different studies were identified. Of the 77 studies identified and reviewed, 29 (37.7%) dealt with autoimmune or inflammatory diseases. Otherwise, the immunomodulatory effects of IVIg were studied only in healthy donors using an in vitro experimental approach. Some of the documented effects showed disease-specific effects, such as in Kawasaki disease. Various methodological limitations have also been identified that may reduce the validity of some studies. KEY MESSAGE As further insights have been gained into the various inflammatory cascades activated in immunological diseases, interesting insights have also been gained into the mechanism of action of IVIg. We are still far from discovering all the immunomodulatory mechanisms of IVIg.
Collapse
Affiliation(s)
- Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Haematology (CRTOH), Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
11
|
Xie CL, Xiao HX, Song PF, Liu QM, Wei H, Wu L, Zhu GH, Liu GM, Zhang Y, Wang P, Yang XW. Lead Optimization of Butyrolactone I as an Orally Bioavailable Antiallergic Agent Targeting FcγRIIB. J Med Chem 2024; 67:7504-7515. [PMID: 38640354 DOI: 10.1021/acs.jmedchem.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.
Collapse
Affiliation(s)
- Chun-Lan Xie
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Pei-Fang Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Haoxiang Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liang Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| |
Collapse
|
12
|
Beckmann K, Reitinger C, Yan X, Carle A, Blümle E, Jurkschat N, Paulmann C, Prassl S, Kazandjian LV, Loré K, Nimmerjahn F, Fischer S. Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy. Antibodies (Basel) 2024; 13:31. [PMID: 38651411 PMCID: PMC11036229 DOI: 10.3390/antib13020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.
Collapse
Affiliation(s)
| | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Anna Carle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | - Eva Blümle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | | | - Sandra Prassl
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
- FAU Profile Centre Immunomedicine, 91054 Erlangen, Germany
| | | |
Collapse
|
13
|
Xu Z, Moreno-Giró À, Zhao D, Krämer A, Pandey RK, Xu B, Lundström SL, Holmdahl R. Fcgr2b and Fcgr3 are the major genetic factors for cartilage antibody-induced arthritis, overriding the effect of Hc encoding complement C5. Eur J Immunol 2024; 54:e2350659. [PMID: 38314895 DOI: 10.1002/eji.202350659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.
Collapse
Affiliation(s)
- Zhongwei Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Àlex Moreno-Giró
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Redoxis AB, Lund, Sweden
| | - Danxia Zhao
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Alexander Krämer
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rajan Kumar Pandey
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Udoye CC, Ehlers M, Manz RA. The B Cell Response and Formation of Allergenic and Anti-Allergenic Antibodies in Food Allergy. BIOLOGY 2023; 12:1501. [PMID: 38132327 PMCID: PMC10740584 DOI: 10.3390/biology12121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. This review provides an overview of the diversity of the B cell response and the diverse roles of antibodies in food allergy.
Collapse
Affiliation(s)
- Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
15
|
Beneduce C, Nguyen S, Washburn N, Schaeck J, Meccariello R, Holte K, Ortiz D, Manning AM, Bosques CJ, Kurtagic E. Inhibitory Fc-Gamma IIb Receptor Signaling Induced by Multivalent IgG-Fc Is Dependent on Sialylation. Cells 2023; 12:2130. [PMID: 37681862 PMCID: PMC10486564 DOI: 10.3390/cells12172130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Immunoglobulin (IgG) Fc glycosylation has been shown to be important for the biological activity of antibodies. Fc sialylation is important for the anti-inflammatory activity of IgGs. However, evaluating the structure-activity relationship (SAR) of antibody Fc glycosylation has been hindered using simplified in vitro models in which antibodies are often displayed in monomeric forms. Presenting antibodies in monomeric forms may not accurately replicate the natural environment of the antibodies when binding their antigen in vivo. To address these limitations, we used different Fc-containing molecules, displaying their Fc domains in monovalent and multivalent fashion. Given the inhibitory role of Fc gamma receptor IIb (FcγRIIb) in autoimmune and inflammatory diseases, we focused on evaluating the impact of Fc sialylation on the activation of FcγRIIb. We report for the first time that in human cellular systems, sialic acid mediates the induction of FcγRIIb phosphorylation by IgG-Fc when the IgG-Fc is displayed in a multivalent fashion. This effect was observed with different types of therapeutic agents such as sialylated anti-TNFα antibodies, sialylated IVIg and sialylated recombinant multivalent Fc products. These studies represent the first report of the specific effects of Fc sialylation on FcγRIIb signaling on human immune cells and may help in the characterization of the anti-inflammatory activity of Fc-containing therapeutic candidates.
Collapse
Affiliation(s)
- Christopher Beneduce
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | | | - Nathaniel Washburn
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | - John Schaeck
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Robin Meccariello
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | | | - Daniel Ortiz
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | | | - Elma Kurtagic
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Li CC, Munalisa R, Lee HY, Lien TS, Chan H, Hung SC, Sun DS, Cheng CF, Chang HH. Restraint Stress-Induced Immunosuppression Is Associated with Concurrent Macrophage Pyroptosis Cell Death in Mice. Int J Mol Sci 2023; 24:12877. [PMID: 37629059 PMCID: PMC10454201 DOI: 10.3390/ijms241612877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hsuan-Yun Lee
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hao Chan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Shih-Che Hung
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| |
Collapse
|
17
|
Spiegel F, Trollmann MFW, Kara S, Pöhnl M, Brandner AF, Nimmerjahn F, Lux A, Böckmann RA. Role of lipid nanodomains for inhibitory FcγRIIb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540011. [PMID: 37214871 PMCID: PMC10197649 DOI: 10.1101/2023.05.09.540011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.
Collapse
Affiliation(s)
- Franziska Spiegel
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| | - Sibel Kara
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Matthias Pöhnl
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Current address: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| |
Collapse
|