1
|
Schwarzlmueller P, Triebig A, Assié G, Jouinot A, Theurich S, Maier T, Beuschlein F, Kobold S, Kroiss M. Steroid hormones as modulators of anti-tumoural immunity. Nat Rev Endocrinol 2025; 21:331-343. [PMID: 40128599 DOI: 10.1038/s41574-025-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Immune evasion is a hallmark of cancer progression but the role of steroid hormones in this evasion has long been underrated. This oversight is particularly notable for glucocorticoids given that exogenous glucocorticoids remain a cornerstone therapy in various oncological treatment regimens, supportive care and treatment of immune-related adverse events caused by immune-checkpoint inhibitors. Cortisol, the main endogenous glucocorticoid in humans, is secreted by the adrenal cortex in response to stress. Additionally, cortisol and its inactive metabolite cortisone can be interconverted to further modulate tissue-dependent glucocorticoid action. In the past 5 years, intratumoural production of glucocorticoids, by both immune and tumour cells, has been shown to support tumour immune evasion. Here, we summarize current progress at the crossroads of endocrinology and immuno-oncology. We outline the known effects of steroid hormones on different immune cell types with a focus on glucocorticoids and androgens. We conclude with options for pharmaceutical intervention, including the engineering of cell-based therapies that resist the immunosuppressive action of steroid hormones. Overall, local steroid production and metabolism are emerging elements of tumour immune suppression that are potentially amenable to therapeutic intervention. Targeting steroid hormones to enhance anticancer therapies could increase their efficacy but will require expertise in endocrine care.
Collapse
Affiliation(s)
| | - Alexandra Triebig
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Assié
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
| | - Anne Jouinot
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
- Université Paris Cité, Institut Cochin, Paris, France
| | - Sebastian Theurich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital, Munich, Germany
- Cancer- and Immunometabolism Research Group, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
| | - Tanja Maier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), Zurich, Switzerland
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- Kroiss Endokrinologie & Diabetologie, Schweinfurt, Germany.
| |
Collapse
|
2
|
Xie J, Wang J, Cui X. Research progress on estrogen and estrogen receptors in the occurrence and progression of autoimmune thyroid diseases. Autoimmun Rev 2025; 24:103803. [PMID: 40089093 DOI: 10.1016/j.autrev.2025.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Autoimmune thyroid disease (AITD) is a category of disease related to sex differences, with a significantly higher incidence in women than in men. In addition to X chromosome inactivation abnormalities, Estrogen and estrogen receptors may lead to the sex differences in AITD. Estrogen, estrogen receptors and estrogen receptor-mediated signaling pathways can affect the number and function of immune cells and the function of the thyroid to promote the development of AITD. This article describes the role of estrogen in regulating the composition ratio and the function of immune cells and the role of estrogen in promoting thyroid cell proliferation and thyroxine-binding protein and thyroid antibody production; the role of estrogen in stimulating the hypothalamus-pituitary-thyroid gland axis; and the role of estrogen and the estrogen receptor in the progression of AITD. These roles offer a new perspective for understanding the pathological mechanism of AITD and provide new targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Jiewen Xie
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Jie Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Xuejiao Cui
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
3
|
Shaukat A, Aleem MT, Munir F, Gao F, Su RW. An overview of the role of steroid hormones in various parasitic infections. J Reprod Immunol 2025; 169:104533. [PMID: 40267633 DOI: 10.1016/j.jri.2025.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
There is a close relationship among hormones, neuropeptides, neurotransmitters, and cytokines that modify the host immune response through various effector mechanisms, including both humoral and cellular immunity. Interruption of this communication balance leads to infection or greater vulnerability to disease. The relationship between host and parasite is complex, and there is significant communication, interaction, and biochemical co-evolution. In parasitic infection, the role of various hormones has been proven and there are also reports on parasites the direct effect of hormones. Numerous parasites produce the secretion of molecules that affect the immunological and physiological responses in the host, including intermediaries and vectors. In contrast, the parasite secretes various factors that change the hormone host levels. In a few cases, the parasite's status hormones have negative and positive influences. On the other hand, the influences are indirectly intermediated through the host's immune system. In vertebrates, the occurrence of parasites also has a main effect on the host endocrine status and a normal suite of processes ruled through hormones. This procedure comprises host growth, establishment, transformation, and reproduction. Therefore, considering the mechanism involved in immuno-endocrine variation and its influences on parasites is critical for emerging new drugs, vaccine target finding, and inventing new therapies for numerous infections. Males are usually more vulnerable to parasitic diseases as compared to females. These sex differentiation can reflect the suppressive properties of testosterone and the excessive effects of estradiol on immune function. For defining the T-cell-driven immunity T. spiralis infection is a perfect model and also provides the crucial visions that can affect potential helminths therapies currently in development. Conflicting host variables regulate the efficiency of such treatment and have recognized the host-derived sex steroid hormones as the main factor in the growth of immunity. This study categorized the role of circulating steroid hormones as an immune regulator in various parasitic diseases.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Chen HN, Hu YN, Ran LL, Wang M, Zhang Z. Sexual dimorphism in aortic aneurysm: A review of the contributions of sex hormones and sex chromosomes. Vascul Pharmacol 2025; 158:107460. [PMID: 39716526 DOI: 10.1016/j.vph.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Aortic aneurysm is a common cardiovascular disease. Over time, the disease damages the structural and functional integrity of the aorta, causing it to abnormally expand and potentially rupture, which can be fatal. Sex differences are evident in the disease, with men experiencing an earlier onset and higher incidence. However, women may face a worse prognosis and a higher risk of rupture. While there are some studies on the cellular and molecular mechanisms of aneurysm formation, it remains unclear how sex factors contribute to sexual dimorphism. Therefore, this review aims to summarize the role of sex in the occurrence of aortic aneurysms, offering valuable insights for disease prevention and the development of appropriate treatment options.
Collapse
Affiliation(s)
- Hao-Nan Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yan-Ni Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Li-Ling Ran
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
5
|
Yalcinkaya A, Yalcinkaya R, Sardh F, Landegren N. Immune dynamics throughout life in relation to sex hormones and perspectives gained from gender-affirming hormone therapy. Front Immunol 2025; 15:1501364. [PMID: 39885993 PMCID: PMC11779622 DOI: 10.3389/fimmu.2024.1501364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Biological sex is closely associated with the properties and extent of the immune response, with males and females showing different susceptibilities to diseases and variations in immunity. Androgens, predominantly in males, generally suppress immune responses, while estrogens, more abundant in females, tend to enhance immunity. It is also established that sex hormones at least partially explain sex biases in different diseases, particularly autoimmune diseases in females. These differences are influenced by hormonal, genetic, and environmental factors, and vary throughout life stages. The advent of gender-affirming hormone therapy offers a novel opportunity to study the immunological effects of sex hormones. Despite the limited studies on this topic, available research has revealed that testosterone therapy in transgender men may suppress certain immune functions, such as type I interferon responses, while increasing inflammation markers like TNF-α. Transgender women on estrogen therapy also experience alterations in coagulation-related and inflammatory characteristics. Furthermore, other possible alterations in immune regulation can be inferred from the assessment of inflammatory and autoimmune markers in transgender individuals receiving hormone therapy. Understanding the complex interactions between sex hormones and the immune system, particularly through the unique perspective offered by gender-affirming hormone therapies, may facilitate the development of targeted therapies for infections and autoimmune diseases while also improving healthcare outcomes for transgender individuals. Here we review immune dynamics throughout life in both sexes and provide a summary of novel findings drawn from studies exploring gender-affirming hormone therapy.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Rumeysa Yalcinkaya
- Department of Pediatric Infectious Diseases, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Fabian Sardh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Matsumoto Y, Honda T, Yasui F, Endo A, Sanada T, Toyama S, Takagi A, Munakata T, Kono R, Yamaji K, Yamamoto N, Saeki Y, Kohara M. Generation of a SARS-CoV-2-susceptible mouse model using adenovirus vector expressing human angiotensin-converting enzyme 2 driven by an elongation factor 1α promoter with leftward orientation. Front Immunol 2024; 15:1440314. [PMID: 39717778 PMCID: PMC11663739 DOI: 10.3389/fimmu.2024.1440314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice. Methods We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation. Results In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication. An early circulating strain of SARS-CoV-2 caused the most severe weight loss when compared to SARS-CoV-2 variants such as Alpha, Beta and Gamma, although histopathological findings, viral replication, and cytokine expression characteristics were comparable. Discussion We found that a distinct proteome of an early circulating strain infected lung characterized by elevated complement activation and blood coagulation, which were mild in other variants, can contribute to disease severity. Unraveling the specificity of early circulating SARS-CoV-2 strains is important in elucidating the origin of the pandemic.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Chen L, Xu T, Lou J, Zhang T, Wu S, Xie R, Xu J. The beneficial roles and mechanisms of estrogens in immune health and infection disease. Steroids 2024; 207:109426. [PMID: 38685461 DOI: 10.1016/j.steroids.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Multiple epidemiologic studies have revealed that gender is considered one of the important factors in the frequency and severity of certain infectious diseases, in which estrogens may play a vital role. There is growing evidence that estrogens as female sex hormone can modulate multiple biological functions outside of the reproductive system, such as in brain and cardiovascular system. However, it is largely unknown about the roles and mechanisms of estrogens/estrogen receptors in immune health and infection disease. Thence, by reading a lot of literature, we summarized the regulatory mechanisms of estrogens/estrogen receptors in immune cells and their roles in certain infectious diseases with gender differences. Therefore, estrogens may have therapeutic potentials to prevent and treat these infectious diseases, which needs further clinical investigation.
Collapse
Affiliation(s)
- Lan Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng Wu
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui City 553000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Anger JT, Case LK, Baranowski AP, Berger A, Craft RM, Damitz LA, Gabriel R, Harrison T, Kaptein K, Lee S, Murphy AZ, Said E, Smith SA, Thomas DA, Valdés Hernández MDC, Trasvina V, Wesselmann U, Yaksh TL. Pain mechanisms in the transgender individual: a review. FRONTIERS IN PAIN RESEARCH 2024; 5:1241015. [PMID: 38601924 PMCID: PMC11004280 DOI: 10.3389/fpain.2024.1241015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Specific Aim Provide an overview of the literature addressing major areas pertinent to pain in transgender persons and to identify areas of primary relevance for future research. Methods A team of scholars that have previously published on different areas of related research met periodically though zoom conferencing between April 2021 and February 2023 to discuss relevant literature with the goal of providing an overview on the incidence, phenotype, and mechanisms of pain in transgender patients. Review sections were written after gathering information from systematic literature searches of published or publicly available electronic literature to be compiled for publication as part of a topical series on gender and pain in the Frontiers in Pain Research. Results While transgender individuals represent a significant and increasingly visible component of the population, many researchers and clinicians are not well informed about the diversity in gender identity, physiology, hormonal status, and gender-affirming medical procedures utilized by transgender and other gender diverse patients. Transgender and cisgender people present with many of the same medical concerns, but research and treatment of these medical needs must reflect an appreciation of how differences in sex, gender, gender-affirming medical procedures, and minoritized status impact pain. Conclusions While significant advances have occurred in our appreciation of pain, the review indicates the need to support more targeted research on treatment and prevention of pain in transgender individuals. This is particularly relevant both for gender-affirming medical interventions and related medical care. Of particular importance is the need for large long-term follow-up studies to ascertain best practices for such procedures. A multi-disciplinary approach with personalized interventions is of particular importance to move forward.
Collapse
Affiliation(s)
- Jennifer T. Anger
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Laura K. Case
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| | - Andrew P. Baranowski
- Pelvic Pain Medicine and Neuromodulation, University College Hospital Foundation Trust, University College London, London, United Kingdom
| | - Ardin Berger
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Rebecca M. Craft
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - Lyn Ann Damitz
- Division of Plastic and Reconstructive Surgery, University of North Carolina, Chapel Hill, NC, United States
| | - Rodney Gabriel
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Tracy Harrison
- Department of OB/GYN & Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Kirsten Kaptein
- Division of Plastic Surgery, University of California San Diego, San Diego, CA, United States
| | - Sanghee Lee
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Engy Said
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Stacey Abigail Smith
- Division of Infection Disease, The Hope Clinic of Emory University, Atlanta, GA, United States
| | - David A. Thomas
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD, United States
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor Trasvina
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
13
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
14
|
Shen Y, Li Y, Cao J, Li W, Lin Q, Wang J, Wei Z, Chang Y. Mechanisms of Immune Tolerance and Inflammation via Gonadal Steroid Hormones in Preterm Birth. MATERNAL-FETAL MEDICINE 2023; 5:229-237. [PMID: 40406556 PMCID: PMC12094338 DOI: 10.1097/fm9.0000000000000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 05/26/2025] Open
Abstract
In 2019, preterm births (PTB) accounted for approximately 0.66 million deaths globally. PTB is also associated with a significantly higher risk of mortality and long-term complications for newborns. Long-term studies associated several factors, including disruption of immune tolerance and inflammation, with PTB. However, the pathogenesis of PTB remains unclear. Gonadal steroid hormones are critical for pregnancy maintenance and regulation of immune and inflammatory responses. However, it is not clear how unbalanced gonadal steroid hormones, such as imbalanced estrogen/androgen or estrogen/progesterone contribute to PTB. In this review, we discuss how gonadal steroid hormones mediate dysfunction in immune tolerance and inflammatory responses, which are known to promote the occurrence of PTB, and provide insight into PTB prediction.
Collapse
Affiliation(s)
- Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| | - Yaqi Li
- School of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| | - Jianxi Wang
- Biological Sample Resource Sharing Center, Tianjin First Center Hospital, Tianjin 300192, China
| | - Zhuo Wei
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and NanKai University Maternity Hospital, Tianjin 300100, China
| |
Collapse
|
15
|
May L, Shows K, Nana-Sinkam P, Li H, Landry JW. Sex Differences in Lung Cancer. Cancers (Basel) 2023; 15:3111. [PMID: 37370722 PMCID: PMC10296433 DOI: 10.3390/cancers15123111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
16
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Negishi Y, Shima Y, Kato M, Ichikawa T, Ino H, Horii Y, Suzuki S, Morita R. Inflammation in preterm birth: Novel mechanism of preterm birth associated with innate and acquired immunity. J Reprod Immunol 2022; 154:103748. [PMID: 36126439 DOI: 10.1016/j.jri.2022.103748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Preterm birth (PB) is the most-frequent complication occurring during pregnancy, with a significant impact on neonatal morbidity and mortality. Chorioamnionitis (CAM), the neutrophil infiltration into chorioamniotic membranes, is a major cause of PB. However, several cases of PB have also been reported without apparent pathogenic infection or CAM. Such cases are now attributed to "sterile inflammation." The concept of sterile inflammation has already attracted attention in various diseases, like cardiovascular diseases, diabetes, and autoimmune diseases; recently been discussed for obstetric complications such as miscarriage, PB, gestational hypertension, and gestational diabetes. Sterile inflammation is induced by alarmins, such as high-mobility group box 1 (HMGB1), interleukins (IL-33 and IL-1α), and S100 proteins, that are released by cellular damage without apparent pathogenic infection. These antigens are recognized by pattern-recognition receptors, expressed mainly on antigen-presenting cells of decidua, placenta, amnion, and myometrium, which consequently trigger inflammation. In reproduction, these alarmins are associated with the development of various pregnancy complications, including PB. In this review, we have summarized the development of PB related to acute CAM, chronic CAM, and sterile inflammation as well as proposed a new mechanism for PB that involves innate immunity, acquired immunity, and sterile inflammation.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan.
| | - Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Tomoko Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Hajime Ino
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yumi Horii
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
18
|
Xu L, Huang G, Cong Y, Yu Y, Li Y. Sex-related Differences in Inflammatory Bowel Diseases: The Potential Role of Sex Hormones. Inflamm Bowel Dis 2022; 28:1766-1775. [PMID: 35486387 DOI: 10.1093/ibd/izac094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gastrointestinal tract, is a global health care problem. Compelling evidence shows sex differences regarding the prevalence, pathophysiology, clinical presentation, and treatment outcome of IBD. Sex hormones, including estrogen, progesterone, and androgen, have been proposed to have a role in the pathogenesis of sexual dimorphism in IBD. Clinical and experimental data support the modulatory effects of sex hormones on various clinical characteristics of the disease, including intestinal barrier dysfunction and mucosal immune activation. Additionally, the potential role of sex hormones in the modulation of gut microbiota is attracting increasing attention. Here, we discuss the sex dimorphic disease profile and address the potential mechanisms involved in the sex-specific pathogenesis of IBD. Improved understanding of these sex differences in the clinic could improve the knowledge of patients with IBD with heterogeneous disease profiles.
Collapse
Affiliation(s)
- Leiqi Xu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
19
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
McDonald CR, Weckman AM, Richardson E, Hawkes MT, Leligdowicz A, Namasopo S, Opoka RO, Conroy AL, Kain KC. Sex as a determinant of disease severity and clinical outcome in febrile children under five presenting to a regional referral hospital in Uganda. PLoS One 2022; 17:e0276234. [PMID: 36269702 PMCID: PMC9586386 DOI: 10.1371/journal.pone.0276234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Sex and gender are well-established determinants of health in adult and adolescent populations in low resource settings. There are limited data on sex as a determinant of host response to disease and clinical outcome in febrile children in sub-Saharan Africa, where the risk of infection-related mortality is greatest. We examined sex differences and gender biases in health-seeking behavior, clinical care, biological response to infection, or outcome in a prospective observational cohort of febrile children under 5 years of age presenting to a regional referral hospital in Jinja, Uganda. Main outcomes (stratified by sex) were disease severity at presentation measured by clinical and biological parameters, clinical management (e.g., time to see a physician, treatment by diagnosis), and disease outcome (e.g., mortality). Clinical measures of disease severity included Lambaréné Organ Dysfunction Score (LODS), Signs of Inflammation in Children that Kill (SICK), and the Pediatric Early Death Index for Africa (PEDIA). Biological measures of disease severity were assessed using circulating markers of immune and endothelial activation associated with severe and fatal infections. Differences in outcome by sex were analyzed using bivariate analyses with Bonferroni correction for multiple comparisons. In this cohort of febrile patients admitted to hospital (n = 2049), malaria infection was common (59.2%). 15.9% of children presented with severe disease (LODS score ≥ 2). 97 children (4.7%) died, and most deaths (n = 83) occurred within 48 hours of hospital admission. Clinical measures of disease severity at presentation, clinical management, and outcome (e.g., mortality) did not differ by sex in children under five years of age. Host response to infection, as determined by endothelial and inflammatory mediators (e.g., sTREM1, Ang-2) quantified at hospital presentation, did not differ by sex. In this cohort of children under the age of five, sex was not a principal determinant of disease severity at hospital presentation, clinical management, disease outcome, or biological response to infection (p-values not significant for all comparisons, after Bonferroni correction). The results suggest that health seeking behavior by caregivers and clinical care in the hospital setting did not reflect a gender bias in this cohort.
Collapse
Affiliation(s)
- Chloe R. McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Andrea M. Weckman
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Emma Richardson
- Clinical Epidemiology & Biostatistics Department, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Michael T. Hawkes
- Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Aleksandra Leligdowicz
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Canada
| | - Sophie Namasopo
- Department of Paediatrics, Kabale Regional Referral Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kawempe, Kampala, Uganda
| | - Andrea L. Conroy
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Kevin C. Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada,Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada,* E-mail:
| |
Collapse
|
21
|
Studying the Anticancer Effects of Thymoquinone on Breast Cancer Cells through Natural Killer Cell Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9218640. [PMID: 36199754 PMCID: PMC9527111 DOI: 10.1155/2022/9218640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy is quickly growing and can now be viewed as the “fifth column” of cancer treatment. In addition, cancer immunotherapy has shown promising results with different kinds of cancers and may be used as a complementary therapy with various types of treatments. Thus, “immuno-oncology” is showing astounding advantages. However, one of the main challenges that face this type of therapy is that cancer cells can evade immune system elimination through different mechanisms. Many studies were done to overcome this issue including adding immune stimulants to generate synergistic effects or by genetically modifying NK cells themselves to be stronger and more resistant. Nigella sativa, also known as black cumin, is a well-known example of a widely applicable herbal medicine. It can effectively treat a variety of diseases, such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer qualities of Nigella sativa appear to be mediated by an immune-modulatory effect that stimulates human natural killer (NK) cells. These are a type of lymphocyte and first line of defense against pathogens. Objectives. In this study, we investigated the therapeutic effect of thymoquinone, a major component of Nigella sativa, on the cytotoxic pathways of NK cells. Methods. NK cells were cultured with breast cancer cell line Michigan Cancer Foundation-7 (MCF-7); and were treated with Thymoquinone. The cytotoxicity of NK cells on cancer cells was measured. The cultured media were then collected and measured via enzyme-linked immunosorbent assay (ELISA) for concentrations of perforin, granzyme B and interferon-α (IFN-α). Results. The cytotoxic effect of NK cells on tumor cells was increased in the presence of thymoquinone, with an increased release of perforin, granzyme B, and IFN-α. Conclusion. Thymoquinone promotes the cytotoxic activity of NK cells against breast cancer MCF-7 cells.
Collapse
|
22
|
Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Front Immunol 2022; 13:928171. [PMID: 35983046 PMCID: PMC9379861 DOI: 10.3389/fimmu.2022.928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.
Collapse
Affiliation(s)
- Marina Averyanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
| | - Svetlana Yureneva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Oksana Yakushevskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, Laboratory of Growth and Development, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
23
|
Wisgalla A, Ramien C, Streitz M, Schlickeiser S, Lupu AR, Diemert A, Tolosa E, Arck PC, Bellmann-Strobl J, Siebert N, Heesen C, Paul F, Friese MA, Infante-Duarte C, Gold SM. Alterations of NK Cell Phenotype During Pregnancy in Multiple Sclerosis. Front Immunol 2022; 13:907994. [PMID: 35860238 PMCID: PMC9289470 DOI: 10.3389/fimmu.2022.907994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56bright NK cell frequencies increase during pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed significant frequency shifts, notably an increase of CD56bright NK cells and a decrease of CD56dim NK cells toward the third trimester, indicating a general rather than an MS-specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a specific CD56bright subset with receptor expression related to cytotoxicity and cell activity (e.g., CD16+ NKp46high NKG2Dhigh NKG2Ahigh phenotype) that may drive the expansion of CD56bright NK cells during pregnancy in MS. Our data confirm that pregnancy promotes pronounced shifts of NK cells toward the regulatory CD56bright population. Although exploratory results on in-depth CD56bright phenotype need to be confirmed in larger studies, our findings suggest an increased regulatory NK activity, thereby potentially contributing to disease amelioration of MS during pregnancy.
Collapse
Affiliation(s)
- Anne Wisgalla
- Medizinische Klinik m.S. Psychosomatik, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Streitz
- Institut für Medizinische Immunologie, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Schlickeiser
- Institut für Medizinische Immunologie, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Andreea-Roxana Lupu
- Cantacuzino National Military Medical Institute for Research and Development, Bucharest, Romania
| | - Anke Diemert
- Klinik für Geburtshilfe und Pränatalmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C. Arck
- Klinik für Geburtshilfe und Pränatalmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nadja Siebert
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan M. Gold
- Medizinische Klinik m.S. Psychosomatik, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- *Correspondence: Stefan M. Gold,
| |
Collapse
|
24
|
Godoy‑Pacheco A, García‑Chagollán M, Ramírez‑De‑Arellano A, Hernández‑Silva C, Villegas‑Pineda J, Ramírez‑López I, Zepeda‑Nuño J, Aguilar‑Lemarroy A, Pereira‑Suárez A. Differential modulation of natural killer cell cytotoxicity by 17β‑estradiol and prolactin through the NKG2D/NKG2DL axis in cervical cancer cells. Oncol Lett 2022; 24:288. [DOI: 10.3892/ol.2022.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alejandro Godoy‑Pacheco
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Mariel García‑Chagollán
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adrián Ramírez‑De‑Arellano
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Christian Hernández‑Silva
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Julio Villegas‑Pineda
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Inocencia Ramírez‑López
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - José Zepeda‑Nuño
- Center for Research and Diagnosis of Pathology, Department of Microbiology and Pathology, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adriana Aguilar‑Lemarroy
- Department of Immunology, Western Biomedical Research Center, Guadalajara, Jalisco 44340, Mexico
| | - Ana Pereira‑Suárez
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
25
|
Marie JC, Bonnelye E. Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Front Immunol 2022; 13:899104. [PMID: 35677054 PMCID: PMC9168268 DOI: 10.3389/fimmu.2022.899104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss associated with estrogen deficiency indicates a fundamental role of these hormones in skeletal growth and bone remodeling. In the last decades, growing recent evidence demonstrated that estrogens can also affect the immune compartment of the bone. In this review, we summarize the impacts of estrogens on bone immune cells and their consequences on bone homeostasis, metastasis settlement into the bone and tumor progression. We also addressed the role of an orphan nuclear receptor ERRalpha (“Estrogen-receptor Related Receptor alpha”) on macrophages and T lymphocytes, and as an immunomodulator in bone metastases. Hence, this review links estrogens to bone immune cells in osteo-oncology.
Collapse
Affiliation(s)
- Julien C Marie
- Cancer Research Center of Lyon (CRCL), Tumor Escape Resistance Immunity Department, INSERM-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
26
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
27
|
卓 灵, 王 烁, 刘 星, 陈 保, 李 想. [Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1 α-XBP1 signaling axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:432-437. [PMID: 35426809 PMCID: PMC9010986 DOI: 10.12122/j.issn.1673-4254.2022.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway. METHODS Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR. RESULTS Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist. CONCLUSION Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Collapse
Affiliation(s)
- 灵剑 卓
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 烁辰 王
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 星 刘
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 保安 陈
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 想 李
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Abstract
There is increasing understanding that a multifaceted interplay of sex-dependent genetic and immune dysregulation underpins the development of glomerular disorders. Regional and ethnic variations in glomerular disease incidence make delineating the effects of sex and gender on disease pathophysiology more complex, but there is a marked paucity of research in this area. This review article presents a summary of the current understanding of sex and gender in glomerular disease, highlighting the broader effects of sex and gender on autoimmunity, clinical presentations, and pathophysiology of individual glomerular diseases, as well as exploring sex, gender, and glomerular disease within a wider socioenvironmental context. It is important to specifically consider the effects of sex and gender when presenting and analyzing clinical and scientific studies on glomerular disease. Failure to do so risks promoting disparities within health care provision, neglecting opportunities to identify sex-specific biomarkers, and potentially hindering the development of sex-specific therapies.
Collapse
Affiliation(s)
- Hannah Beckwith
- Department of Renal Medicine, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| | - Liz Lightstone
- Department of Renal Medicine, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Steve McAdoo
- Department of Renal Medicine, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
29
|
Newson L, Manyonda I, Lewis R, Preissner R, Preissner S, Seeland U. Sensitive to Infection but Strong in Defense-Female Sex and the Power of Oestradiol in the COVID-19 Pandemic. Front Glob Womens Health 2021; 2:651752. [PMID: 34816207 PMCID: PMC8593953 DOI: 10.3389/fgwh.2021.651752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of SARS-CoV2 infections is around 15% higher in premenopausal women compared to age matched men, yet the fatality rate from COVID-19 is significantly higher in men than women for all age strata. Sex differences have also been observed in recent epidemics including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), with SARS-CoV 2 virus infection sex differences appear more dramatic. The regulation and expression of the angiotensin converting enzyme 2 (ACE2) is the key for this special coronavirus SARS-CoV-2 to enter the cell. 17β-oestradiol increases expression level and activity of angiotensin converting enzyme-2 (ACE2) and the alternative signaling pathway of Ang II via the angiotensin II receptor type II (AT2R) and the Mas receptor is more dominant in female sex than in male sex. Maybe a hint to explain the higher infection risk in women. The same hormonal milieu plays a major role in protecting women where morbidity and mortality are concerned, since the dominant female hormone, oestradiol, has immune-modulatory properties that are likely to be protective against virus infections. It is also known that the X chromosome contains the largest number of immune-related genes, potentially conferring an advantage to women in efficient immune responsiveness. Lifestyle factors are also likely to be contributory. Premenopausal women could possibly face higher exposure to infection (hence higher infection rates) because economic conditions are often less favorable for them with less opportunity for home office work because of jobs requiring mandatory attendance. Due to the additional task of childcare, it is likely that contact times with other people will be longer. Women generally make healthier lifestyle choices, thus reducing the disease burden that confers high risk of mortality in COVID-19 infected men. This narrative review aims to present key concepts and knowledge gaps on the effects of oestrogen associated with SARS-CoV2 infection and COVID-19 disease.
Collapse
Affiliation(s)
- Louise Newson
- Newson Health Ltd, Winton House, Stratford-upon-Avon, United Kingdom
| | - Isaac Manyonda
- Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rebecca Lewis
- Newson Health Ltd, Winton House, Stratford-upon-Avon, United Kingdom
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Saskia Preissner
- Department Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ute Seeland
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
Han W, Wu YZ, Zhao XY, Gong ZH, Shen GL. Integrative Analysis of Minichromosome Maintenance Proteins and Their Prognostic Significance in Melanoma. Front Oncol 2021; 11:715173. [PMID: 34490114 PMCID: PMC8417415 DOI: 10.3389/fonc.2021.715173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Minichromosome maintenance (MCM) is known for participating in cell cycle progression, as well as DNA replication. While the diverse expression patterns and prognostic values of MCMs in melanoma still remained unclear. Methods In the present study, the transcriptional and clinical profiles of MCMs were explored in patients with melanoma from multiple databases, including GEO, TCGA, ONCOMINE, GEPIA, UALCAN, cBioPortal, and TIMER databases. Results We found that the elevated expressions of MCM2–6 and MCM10 were significantly expressed in melanoma compared to normal skin. High mRNA levels of MCM4, MCM5, and MCM10 were closely related to worse prognosis in patients with melanoma. GSEA showed hallmark pathways were most involved in mTORC1 signaling, G2M checkpoint, E2F targets, and mitotic spindle. Furthermore, we found potential correlations between the MCM expression and the immune cell infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Conclusion Upregulated MCM gene expression in melanoma probably played a crucial part in the development and progression of melanoma. The upregulated MCM4/5/10 expressions could be used as potential prognostic markers to improve the poor outcome and prognostic accuracy in patients with melanoma. Our study might shed light on the selection of prognostic biomarkers as well as the underlying molecular pathogenesis of melanoma.
Collapse
Affiliation(s)
- Wei Han
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Yi-Zhu Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Xiao-Yu Zhao
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Zhen-Hua Gong
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Abstract
The ongoing COVID-19 pandemic has increased awareness about sex-specific differences in immunity and outcomes following SARS-CoV-2 infection. Strong evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated by sex differential immune responses against SARS-CoV-2. This hypothesis is based on data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and others that have demonstrated sex-specific immunity to viral infections. Although males are more susceptible to most viral infections, females possess immunological features that render them more vulnerable to distinct immune-related disease outcomes. Both sex chromosome complement and related genes as well as sex steroids play important roles in mediating the development of sex differences in immunity to viral infections.
Collapse
Affiliation(s)
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
32
|
Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc Natl Acad Sci U S A 2021; 118:2023216118. [PMID: 34385315 PMCID: PMC8379935 DOI: 10.1073/pnas.2023216118] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Differences in immune functioning stem from multiple factors, including sex and aging. However, the specific roles of these variables in immunity remain elusive. We profiled immunocytes from young and old males and females at single-cell resolution and constructed a precise atlas of blood-circulating immunocytes. T cell– and B cell–activated signals were higher in young females than males, while aging increased the sex-related differences in immunocytes, cellular composition, and inflammatory signaling. Additionally, males showed a higher accumulation of inflammatory factors during aging, whereas cell–cell communication analysis revealed different trends in gene expression between females and males with aging. These findings might aid in the understanding of the mechanisms underlying sex-based differences in immunity and disease susceptibility across the lifespan. Sex and aging influence the human immune system, resulting in disparate responses to infection, autoimmunity, and cancer. However, the impact of sex and aging on the immune system is not yet fully elucidated. Using small conditional RNA sequencing, we found that females had a lower percentage of natural killer (NK) cells and a higher percentage of plasma cells in peripheral blood compared with males. Bioinformatics revealed that young females exhibited an overrepresentation of pathways that relate to T and B cell activation. Moreover, cell–cell communication analysis revealed evidence of increased activity of the BAFF/APRIL systems in females. Notably, aging increased the percentage of monocytes and reduced the percentage of naïve T cells in the blood and the number of differentially expressed genes between the sexes. Aged males expressed higher levels of inflammatory genes. Collectively, the results suggest that females have more plasma cells in the circulation and a stronger BAFF/APRIL system, which is consistent with a stronger adaptive immune response. In contrast, males have a higher percentage of NK cells in blood and a higher expression of certain proinflammatory genes. Overall, this work expands our knowledge of sex differences in the immune system in humans.
Collapse
|
33
|
Viveiros A, Rasmuson J, Vu J, Mulvagh SL, Yip CYY, Norris CM, Oudit GY. Sex differences in COVID-19: candidate pathways, genetics of ACE2, and sex hormones. Am J Physiol Heart Circ Physiol 2021. [PMID: 33275517 DOI: 10.1152/ajpheart.00755.2020/asset/images/large/aj-ahrt200091f004.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biological sex is increasingly recognized as a critical determinant of health and disease, particularly relevant to the topical COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Epidemiological data and observational reports from both the original SARS epidemic and the most recent COVID-19 pandemic have a common feature: males are more likely to exhibit enhanced disease severity and mortality than females. Sex differences in cardiovascular disease and COVID-19 share mechanistic foundations, namely, the involvement of both the innate immune system and the canonical renin-angiotensin system (RAS). Immunological differences suggest that females mount a rapid and aggressive innate immune response, and the attenuated antiviral response in males may confer enhanced susceptibility to severe disease. Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19, either to serve as a protective mechanism by deactivating the RAS or as the receptor for viral entry, respectively. Loss of membrane ACE2 and a corresponding increase in plasma ACE2 are associated with worsened cardiovascular disease outcomes, a mechanism attributed to a disintegrin and metalloproteinase (ADAM17). SARS-CoV-2 infection also leads to ADAM17 activation, a positive feedback cycle that exacerbates ACE2 loss. Therefore, the relationship between cardiovascular disease and COVID-19 is critically dependent on the loss of membrane ACE2 by ADAM17-mediated proteolytic cleavage. This article explores potential mechanisms involved in COVID-19 that may contribute to sex-specific susceptibility focusing on the innate immune system and the RAS, namely, genetics and sex hormones. Finally, we highlight here the added challenges of gender in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anissa Viveiros
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Jaslyn Rasmuson
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jennie Vu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sharon L Mulvagh
- Division of Cardiology, Dalhousie University, Halifax, Canada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Cindy Y Y Yip
- Heart and Stroke Foundation of Canada, Toronto, Canada
| | - Colleen M Norris
- Division of Cardiology, Dalhousie University, Halifax, Canada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Viveiros A, Rasmuson J, Vu J, Mulvagh SL, Yip CYY, Norris CM, Oudit GY. Sex differences in COVID-19: candidate pathways, genetics of ACE2, and sex hormones. Am J Physiol Heart Circ Physiol 2020; 320:H296-H304. [PMID: 33275517 PMCID: PMC8083171 DOI: 10.1152/ajpheart.00755.2020] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biological sex is increasingly recognized as a critical determinant of health and disease, particularly relevant to the topical COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Epidemiological data and observational reports from both the original SARS epidemic and the most recent COVID-19 pandemic have a common feature: males are more likely to exhibit enhanced disease severity and mortality than females. Sex differences in cardiovascular disease and COVID-19 share mechanistic foundations, namely, the involvement of both the innate immune system and the canonical renin-angiotensin system (RAS). Immunological differences suggest that females mount a rapid and aggressive innate immune response, and the attenuated antiviral response in males may confer enhanced susceptibility to severe disease. Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19, either to serve as a protective mechanism by deactivating the RAS or as the receptor for viral entry, respectively. Loss of membrane ACE2 and a corresponding increase in plasma ACE2 are associated with worsened cardiovascular disease outcomes, a mechanism attributed to a disintegrin and metalloproteinase (ADAM17). SARS-CoV-2 infection also leads to ADAM17 activation, a positive feedback cycle that exacerbates ACE2 loss. Therefore, the relationship between cardiovascular disease and COVID-19 is critically dependent on the loss of membrane ACE2 by ADAM17-mediated proteolytic cleavage. This article explores potential mechanisms involved in COVID-19 that may contribute to sex-specific susceptibility focusing on the innate immune system and the RAS, namely, genetics and sex hormones. Finally, we highlight here the added challenges of gender in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anissa Viveiros
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Jaslyn Rasmuson
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jennie Vu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sharon L Mulvagh
- Division of Cardiology, Dalhousie University, Halifax, Canada.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Cindy Y Y Yip
- Heart and Stroke Foundation of Canada, Toronto, Canada
| | - Colleen M Norris
- Division of Cardiology, Dalhousie University, Halifax, Canada.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
35
|
Di Bella S, Cabas P, Antonello RM, Rizzo M. Interferon: The invisible link in the physiopathology of COVID-19 and BCGitis? Scand J Immunol 2020; 92:e12939. [PMID: 32697854 PMCID: PMC7404370 DOI: 10.1111/sji.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Di Bella
- Department of Infectious DiseaseMaggiore HospitalUniversity of TriesteTriesteItaly
| | - Paolo Cabas
- Department of UrologyCattinara HospitalUniversity of TriesteTriesteItaly
| | | | - Michele Rizzo
- Department of UrologyCattinara HospitalUniversity of TriesteTriesteItaly
| |
Collapse
|
36
|
Spielmann J, Mattheis L, Jung JS, Rauße H, Glaß M, Bähr I, Quandt D, Oswald J, Kielstein H. Effects of obesity on NK cells in a mouse model of postmenopausal breast cancer. Sci Rep 2020; 10:20606. [PMID: 33244094 PMCID: PMC7692502 DOI: 10.1038/s41598-020-76906-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widely spread disease and a crucial risk factor for malign disorders, including breast cancer of women in the postmenopause. Studies demonstrated that in case of obesity crucial natural killer (NK) cell functions like combating tumor cells are affected. This study aims to analyze NK cells and NK cell receptor expression of obese mice in a model for postmenopausal breast cancer. Therefore, female BALB/c mice were fed either a high fat or a standard diet. Thereafter, ovaries were ectomized and a syngeneic and orthotopical injection of 4T1-luc2 mouse mammary tumor cells into the mammary adipose tissue pad was performed. Obese mice showed increased body weights and visceral fat mass as well as increased levels of leptin and IL-6 in plasma. Moreover, compared to the lean littermates, tumor growth was increased and the NKp46-expression on circulating NK cells was decreased. Furthermore, the activating NK cell receptor NKG2D ligand (MULT1) expression was enhanced in adipose tissue of obese tumor bearing mice. The present study gives novel insights into gene expression of NK cell receptors in obesity and aims to promote possible links of the obesity-impaired NK cell physiology and the elevated breast cancer risk in obese women.
Collapse
Affiliation(s)
- Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany.
| | - Laura Mattheis
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Deptartment of Internal Medicine I, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Henrik Rauße
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Clinic for Psychosomatics and Psychotherapy, Landschaftsverband Westfalen-Lippe Clinic, Lengerich, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Charles Tanford Protein Center, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Jana Oswald
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| |
Collapse
|
37
|
Bähr I, Pörtner OJ, Glass M, Doberstein H, Goritz V, Hiller GGR, Spielmann J, Kielstein H. Characterization of natural killer cells in colorectal tumor tissue of rats fed a control diet or a high-fat diet. Ann Anat 2020; 233:151586. [PMID: 32916268 DOI: 10.1016/j.aanat.2020.151586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obesity is a major public health problem with an increasing prevalence reaching pandemic levels. The incidence and mortality for colorectal cancer is augmented in overweight and obese individuals. Previous studies demonstrated an impaired number, phenotype and functionality of natural killer (NK) cells under obese conditions. So far, the influence of obesity on NK cells in colorectal cancer tissue remained unclear. Therefore, the aim of the study was to investigate the occurrence and localization of NK cells in colorectal tumors of normal weight and diet-induced obese rats. METHODS Wistar rats were fed a normal-fat diet (control) or a high-fat diet (HFD) to induce obesity. In half of the experimental groups azoxymethane (AOM) was injected to induce colorectal cancer. Tumors in colon and rectum were histopathologically classified in adenomas and adenocarcinomas and immunohistologically stained with the rat NK cell marker CD161. Occurrence and localization of NK cells were analyzed and quantified in the tunica mucosa and tunica submucosa of colorectal adenomas and the tunica submucosa of colorectal adenocarcinomas. RESULTS NK cells are localized in the tunica mucosa and the tunica submucosa of colorectal tumors with NK cell accumulations as follicle-like aggregates especially in regions of the lamina muscularis mucosae and the lamina propria mucosae of the tunica mucosa as well as in regions of the tunica submucosa adjacent to the lamina muscularis mucosae. Although not statistically significant, the CD161 staining was clearly reduced in the tunica mucosa of colorectal tumors of rats fed a HFD compared to rats fed a control diet. Moreover, the CD161 staining in the tunica mucosa was positively correlated with the final body weight of AOM-treated rats independent of the supplied diet. DISCUSSION For the first time, these results provide information about the localization and quantity of NK cells in colorectal tumor tissue of rats fed a control diet or high-fat diet. The slight reduction of NK cell number in colorectal tissue of rats fed a high-fat diet may contribute to an impaired tumor defense and the increased colorectal tumor outcome in diet-induced obese rats.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - O J Pörtner
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Glass
- Institute of Molecular Medicine, Charles Tanford Protein Center, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Henriette Doberstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vincent Goritz
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Grit Gesine Ruth Hiller
- Institute of Pathology, University Hospital of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
38
|
Gadi N, Wu SC, Spihlman AP, Moulton VR. What's Sex Got to Do With COVID-19? Gender-Based Differences in the Host Immune Response to Coronaviruses. Front Immunol 2020; 11:2147. [PMID: 32983176 PMCID: PMC7485092 DOI: 10.3389/fimmu.2020.02147] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2, the cause of the coronavirus disease 2019 (COVID-19) pandemic, has ravaged the world, with over 22 million total cases and over 770,000 deaths worldwide as of August 18, 2020. While the elderly are most severely affected, implicating an age bias, a striking factor in the demographics of this deadly disease is the gender bias, with higher numbers of cases, greater disease severity, and higher death rates among men than women across the lifespan. While pre-existing comorbidities and social, behavioral, and lifestyle factors contribute to this bias, biological factors underlying the host immune response may be crucial contributors. Women mount stronger immune responses to infections and vaccinations and outlive men. Sex-based biological factors underlying the immune response are therefore important determinants of susceptibility to infections, disease outcomes, and mortality. Despite this, gender is a profoundly understudied and often overlooked variable in research related to the immune response and infectious diseases, and it is largely ignored in drug and vaccine clinical trials. Understanding these factors will not only help better understand the pathogenesis of COVID-19, but it will also guide the design of effective therapies and vaccine strategies for gender-based personalized medicine. This review focuses on sex-based differences in genes, sex hormones, and the microbiome underlying the host immune response and their relevance to infections with a focus on coronaviruses.
Collapse
Affiliation(s)
- Nirupa Gadi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Samantha C. Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Allison P. Spihlman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Vaishali R. Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Peterson LS, Stelzer IA, Tsai AS, Ghaemi MS, Han X, Ando K, Winn VD, Martinez NR, Contrepois K, Moufarrej MN, Quake S, Relman DA, Snyder MP, Shaw GM, Stevenson DK, Wong RJ, Arck P, Angst MS, Aghaeepour N, Gaudilliere B. Multiomic immune clockworks of pregnancy. Semin Immunopathol 2020; 42:397-412. [PMID: 32020337 PMCID: PMC7508753 DOI: 10.1007/s00281-019-00772-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.
Collapse
Affiliation(s)
- Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad S Ghaemi
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadine R Martinez
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Contrepois
- Stanford Metabolic Health Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mira N Moufarrej
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Stephen Quake
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin S Angst
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Rubika A, Luoto S, Krama T, Trakimas G, Rantala MJ, Moore FR, Skrinda I, Elferts D, Krams R, Contreras-Garduño J, Krams IA. Women's socioeconomic position in ontogeny is associated with improved immune function and lower stress, but not with height. Sci Rep 2020; 10:11517. [PMID: 32661326 PMCID: PMC7359344 DOI: 10.1038/s41598-020-68217-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Immune function, height and resource accumulation comprise important life history traits in humans. Resource availability models arising from life history theory suggest that socioeconomic conditions influence immune function, growth and health status. In this study, we tested whether there are associations between family income during ontogeny, adult height, cortisol level and immune response in women. A hepatitis B vaccine was administered to 66 young Latvian women from different socioeconomic backgrounds, and blood samples were then collected to measure the level of antibodies that the women produced in response to the vaccination. Cortisol levels were measured from plasma samples pre- and post-vaccination. Women from wealthier families had lower cortisol levels, and women from the highest family income group had the highest levels of antibody titers against hepatitis B vaccine. No significant relationships were observed between cortisol level and immune function, nor between family income and height. The results show that income level during ontogeny is associated with the strength of immune response and with psychoneuroendocrine pathways underlying stress perception in early adulthood. The findings indicate that the quality of the developmental niche is associated with the condition-dependent expression of immune function and stress response.
Collapse
Affiliation(s)
- Anna Rubika
- Department of Anatomy and Physiology, Daugavpils University, Daugavpils, 5401, Latvia
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, 1010, New Zealand
- School of Psychology, University of Auckland, Auckland, 1010, New Zealand
| | - Tatjana Krama
- Institute of Ecology and Earth Sciences, University of Tartu, 51010, Tartu, Estonia
- Chair of Plant Health, Estonian University of Life Sciences, 51014, Tartu, Estonia
- Department of Biotechnology, Daugavpils University, Daugavpils, 5401, Latvia
| | - Giedrius Trakimas
- Department of Biotechnology, Daugavpils University, Daugavpils, 5401, Latvia
- Institute of Biosciences, Vilnius University, 10257, Vilnius, Lithuania
| | - Markus J Rantala
- Department of Biology, University of Turku, 20014, Turku, Finland
- Turku Brain and Mind Centre, University of Turku, 20014, Turku, Finland
| | - Fhionna R Moore
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ilona Skrinda
- Daugavpils Regional Hospital, Daugavpils, 5417, Latvia
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, Rīga, 1004, Latvia
| | - Ronalds Krams
- Chair of Plant Health, Estonian University of Life Sciences, 51014, Tartu, Estonia
- Department of Biotechnology, Daugavpils University, Daugavpils, 5401, Latvia
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, 58190, Morelia, Mexico
| | - Indrikis A Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51010, Tartu, Estonia.
- Department of Biotechnology, Daugavpils University, Daugavpils, 5401, Latvia.
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Rīga, 1004, Latvia.
- Latvian Biomedical Research and Study Centre, Rīga, 1067, Latvia.
| |
Collapse
|
41
|
Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol 2020; 11:245. [PMID: 32231659 PMCID: PMC7082404 DOI: 10.3389/fimmu.2020.00245] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is accompanied by a systemic chronic low-grade inflammation as well as dysfunctions of several innate and adaptive immune cells. Recent findings emphasize an impaired functionality and phenotype of natural killer (NK) cells under obese conditions. This review provides a detailed overview on research related to overweight and obesity with a particular focus on NK cells. We discuss obesity-associated alterations in subsets, distribution, phenotype, cytotoxicity, cytokine secretion, and signaling cascades of NK cells investigated in vitro as well as in animal and human studies. In addition, we provide recent insights into the effects of physical activity and obesity-associated nutritional factors as well as the reduction of body weight and fat mass on NK cell functions of obese individuals. Finally, we highlight the impact of impaired NK cell physiology on obesity-associated diseases, focusing on the elevated susceptibility for viral infections and increased risk for cancer development and impaired treatment response.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
42
|
Chang RQ, Zhou WJ, Li DJ, Li MQ. Innate Lymphoid Cells at the Maternal-Fetal Interface in Human Pregnancy. Int J Biol Sci 2020; 16:957-969. [PMID: 32140065 PMCID: PMC7053337 DOI: 10.7150/ijbs.38264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy constitutes a major challenge to the maternal immune system, which must tolerate fetal alloantigen encoded by paternal genes. In addition to their role in inducing maternal-fetal immune tolerance, accumulating evidence indicates that decidual immune cells are involved in several processes required for a successful pregnancy, including trophoblast invasion as well as tissue and spiral artery remodeling. Innate lymphoid cells (ILCs), an important branch of the innate immune system, which has expanded rapidly in recent years, are strong actors in mucosal immunity, tissue homeostasis and metabolism regulation. With the recent identification of ILCs in the human decidua, the role of ILCs at the maternal-fetal interface raises concern. Herein, we review the presence and characterization of ILCs in the human decidua, as well as their function in normal pregnancy and pathological pregnancy, including reproductive failure, preeclampsia and others.
Collapse
Affiliation(s)
- Rui-Qi Chang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| |
Collapse
|
43
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
44
|
Maglione A, Rolla S, Mercanti SFD, Cutrupi S, Clerico M. The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells 2019; 8:E1280. [PMID: 31635066 PMCID: PMC6829884 DOI: 10.3390/cells8101280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| |
Collapse
|
45
|
Liao ZH, Huang T, Xiao JW, Gu RC, Ouyang J, Wu G, Liao H. Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet Muscle 2019; 9:20. [PMID: 31358063 PMCID: PMC6661750 DOI: 10.1186/s13395-019-0205-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Estrogen signaling is indispensable for muscle regeneration, yet the role of estrogen in the development of muscle inflammation, especially in the intramuscular T cell response, and the influence on the intrinsic immuno-behaviors of myofibers remain largely unknown. We investigated this issue using the mice model of cardiotoxin (CTX)-induced myoinjury, with or without estrogen level adjustment. Methods CTX injection i.m. (tibialis anterior, TA) was performed for preparing mice myoinjury model. Injection s.c. of 17β-estradiol (E2) or estrogen receptor antagonist 4-OHT, or ovariectomy (OVX), was used to change estrogen level of animal models in vivo. Serum E2 level was evaluated by ELISA. Gene levels of estrogen receptor (ERs) and cytokines/chemokines in inflamed muscle were monitored by qPCR. Inflammatory infiltration was observed by immunofluorescence. Macrophage and T cell phenotypes were analyzed by FACS. Immunoblotting was used to assess protein levels of ERs and immunomolecules in C2C12 myotubes treated with E2 or 4-OHT, in the presence of IFN-γ. Results We monitored the increased serum E2 level and the upregulated ERβ in regenerated myofibres after myotrauma. The absence of estrogen in vivo resulted in the more severe muscle inflammatory infiltration, involving the recruitment of monocyte/macrophage and CD4+ T cells, and the heightened proinflammatory (M1) macrophage. Moreover, estrogen signaling loss led to Treg cells infiltration decrease, Th1 response elevation in inflamed muscle, and the markedly expression upregulation of immunomolecules in IFN-γ-stimulated C2C12 myotubes in vitro. Conclusion Our data suggest that estrogen is a positive intervention factor for muscle inflammatory response, through its effects on controlling intramuscular infiltration and phenotypes of monocytes/macrophages, on affecting accumulation and function of Treg cells, and on suppressing Th1 response in inflamed muscle. Our findings also imply an inhibition effect of estrogen on the intrinsic immune behaviors of muscle cells.
Collapse
Affiliation(s)
- Zhao Hong Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jiang Wei Xiao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Rui Cai Gu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Gang Wu
- Department of Emergency, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Holt MR, Miles JJ, Inder WJ, Thomson RM. Exploring immunomodulation by endocrine changes in Lady Windermere syndrome. Clin Exp Immunol 2019; 196:28-38. [PMID: 30697704 DOI: 10.1111/cei.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Lung disease due to nontuberculous mycobacteria (NTM) occurs with disproportionate frequency in postmenopausal women with a unique phenotype and without clinically apparent predisposing factors. Dubbed 'Lady Windermere syndrome', the phenotype includes low body mass index (BMI), tall stature and higher than normal prevalence of scoliosis, pectus excavatum and mitral valve prolapse. Although the pathomechanism for susceptibility to NTM lung disease in these patients remains uncertain, it is likely to be multi-factorial. A role for the immunomodulatory consequences of oestrogen deficiency and altered adipokine production has been postulated. Altered levels of adipokines and dehydroepiandrosterone have been demonstrated in patients with NTM lung disease. Case reports of NTM lung disease in patients with hypopituitarism support the possibility that altered endocrine function influences disease susceptibility. This paper catalogues the evidence for immunomodulatory consequences of predicted endocrine changes in Lady Windermere syndrome, with emphasis on the immune response to NTM. Collectively, the data warrant further exploration of an endocrine link to disease susceptibility in Lady Windermere syndrome.
Collapse
Affiliation(s)
- M R Holt
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - J J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - W J Inder
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - R M Thomson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW To give an overview of recently published articles addressing the mechanisms underlying sex bias in autoimmune disease. RECENT FINDINGS Recent studies investigating the origins of sex bias in autoimmune disease have revealed an extensive and interconnected network of genetic, hormonal, microbial, and environmental influences. Investigation of sex hormones has moved beyond profiling the effects of hormones on activity and prevalence of immune cell types to defining the specific immunity-related genes driving these changes. Deeper examination of the genetic content of the X and Y chromosomes and genetic escapees of X chromosome inactivation has revealed some key drivers of female-biased autoimmunity. Animal studies are offering further insights into the connections among microbiota, particularly that of the gut, and the immune system. SUMMARY Sex bias in autoimmune disease is the manifestation of a complex interplay of the sex chromosomes, sex hormones, the microbiota, and additional environmental and sociological factors.
Collapse
|
49
|
Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev 2018; 286:120-136. [PMID: 30294960 PMCID: PMC6221181 DOI: 10.1111/imr.12707] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
The activities of the immune system in repairing tissue injury and combating pathogens were long thought to be independent of the nervous system. However, a major regulatory role of immunomodulatory molecules released locally or systemically by the neuroendocrine system has recently emerged. A number of observations and discoveries support indeed the notion of the nervous system as an immunoregulatory system involved in immune responses. Innate lymphoid cells (ILCs), including natural killer (NK) cells and tissue-resident ILCs, form a family of effector cells present in organs and mucosal barriers. ILCs are involved in the maintenance of tissue integrity and homeostasis. They can also secrete effector cytokines rapidly, and this ability enables them to play early roles in the immune response. ILCs are activated by multiple pathways including epithelial and myeloid cell-derived cytokines. Their functions are also regulated by mediators produced by the nervous system. In particular, the peripheral nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal and gonadal axis to modulate inflammatory events and maintain homeostasis. We summarize here recent findings concerning the regulation of ILC activities by neuroendocrine mediators in homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Linda Quatrini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Eric Vivier
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
- ImmunologyMarseille ImmunopoleHôpital de la TimoneAssistance Publique des Hôpitaux de MarseilleMarseilleFrance
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
| | - Sophie Ugolini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| |
Collapse
|
50
|
The psychoneuroimmunology of pregnancy. Front Neuroendocrinol 2018; 51:25-35. [PMID: 29110974 DOI: 10.1016/j.yfrne.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/18/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
Pregnancy is associated with a number of significant changes in maternal physiology. Perhaps one of the more notable changes is the significant alteration in immune function that occurs during pregnancy. This change in immune function is necessary to support a successful pregnancy, but also creates a unique period of life during which a female is susceptible to disease and, as we'll speculate here, may also contribute to mental health disorders associated with pregnancy and the postpartum period. Here, we review the known changes in peripheral immune function that occur during pregnancy and the postpartum period, while highlighting the impact of hormones during these times on immune function, brain or neural function, as well as behavior. We also discuss the known and possible impact of pregnancy-induced immune changes on neural function during this time and briefly discuss how these changes might be a risk factor for perinatal anxiety or mood disorders.
Collapse
|