1
|
Gupta P, Kalvatala S, Joseph A, Panghal A, Santra S. Outline of Therapeutic Potential of Different Plants Reported Against Psoriasis via In Vitro, Pre-Clinical or Clinical Studies. Phytother Res 2025; 39:1139-1173. [PMID: 39754500 DOI: 10.1002/ptr.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development. Although there is no cure for this disease, topical, oral, and systemic whole-body treatments are available to relieve symptoms. Several plants and phytochemicals which have been found effective in the management of the psoriasis experimentally (preclinical and clinical). These plants/phytochemicals have applications in topical, oral, and systemic treatments. Traditionally, some of the plants have been utilized as the primary treatment, including their extracts and/or phytochemicals, for individuals with moderate to severe psoriasis (due to fewer side effects), while phototherapy is generally reserved for more advanced cases. This report describes various plants and phytochemicals that have been found to be effective against psoriasis in in vitro, preclinical, and clinical studies. This review summarizes the key findings from experimental studies on various pathological aspects of psoriasis and may be useful, effective, and informative for future research.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
- Research and Development Cell, Lovely Professional University, Phagwara, India
| | - Sudhakar Kalvatala
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abhinav Joseph
- Research and Development Cell, Lovely Professional University, Phagwara, India
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Panghal
- Department of Processing and Food Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Soumava Santra
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Liu Y, Sun Q, Guo J, Yan L, Yan Y, Gong Y, Lin J, Yuan H, Jin J, Wang B, Chen H, Zhang L, Zhang W, Luan X. Dual ferroptosis induction in N2-TANs and TNBC cells via FTH1 targeting: A therapeutic strategy for triple-negative breast cancer. Cell Rep Med 2025; 6:101915. [PMID: 39809268 PMCID: PMC11866498 DOI: 10.1016/j.xcrm.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Tumor-associated neutrophils (TANs) play a critical role in the progression and prognosis of triple-negative breast cancer (TNBC), with N2-type TANs known for their pro-tumor characteristics. This study introduces CT-1, a derivative of cryptotanshinone that effectively suppresses TNBC growth while selectively reducing the proportion of N2-type TANs within tumor tissue. Notably, CT-1 induces simultaneous ferroptosis in both N2-type TANs and TNBC cells, a dual mechanism that enhances its therapeutic efficacy. The study identifies ferritin heavy chain 1 (FTH1), a key protein in iron metabolism, as the direct target of CT-1. By targeting FTH1, CT-1 facilitates the interaction between NCOA4 and ferritin, triggering ferritinophagy-mediated ferroptosis. These findings position CT-1 as a promising therapeutic agent, offering a strategy to combat TNBC by inducing ferroptosis in both N2-type TANs and cancer cells. This approach underscores the potential of FTH1 as a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Yichen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyan Sun
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Jingwen Guo
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Li Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yue Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hu Yuan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Ma M, Bao T, Li J, Cao L, Yu B, Hu J, Cheng H, Tian Z. Cryptotanshinone affects HFL-1 cells proliferation by inhibiting cytokines secretion in RAW264.7 cells and ameliorates inflammation and fibrosis in newborn rats with hyperoxia induced lung injury. Front Pharmacol 2023; 14:1192370. [PMID: 37560477 PMCID: PMC10407416 DOI: 10.3389/fphar.2023.1192370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: Bronchopulmonary dysplasia (BPD) is a common complication of prematurity and has no specific treatment option. Moreover, inflammation and fibrosis play a vital role in the development of BPD. Thus, this study aimed to explore the role of the anti-inflammatory and anti-fibrotic drug cryptotanshinone (CTS) in the treatment of inflammation and fibrosis in BPD. Methods: In vivo, Sprague-Dawley rats (male) were divided into air, hyperoxia and CTS groups with different dose interventions (7.5, 15, and 30 mg/kg). A BPD rat model was induced by continuous inhalation of hyperoxia (95%) for 7 days, during which different doses of CTS were injected intraperitoneally. Furthermore, histological examination, hydroxyproline content measurement, Western blot and real-time quantitative polymerase chain reaction were used to detect the levels of inflammation and fibrosis in the tissues. RAW264.7 cells exposed to 95% oxygen were collected and co-cultured with fibroblasts to determine the expression levels of α-SMA, collagen-Ⅰ and MMPs. The levels of pro-inflammatory cytokines such as TNF-α, IL-6 and pro-fibrotic factor TGF-β1 in the supernatants were measured using enzyme-linked immunosorbent assay. Results: Haematoxylin and eosin staining revealed that CTS reduced the inflammatory response in rat lungs. Masson staining revealed that CTS alleviated the level of pulmonary fibrosis. CTS also reduced the levels of TNF-α, IL-6 and TGF-β1 along with the expression of the fibrosis marker α-SMA in lung tissue. Similarly, in vitro analysis revealed that CTS decreased the levels of TNF-α, IL-6 and TGF-β1 expressed in RAW 264.7 cells, and reduced α-SMA, collagen-Ⅰ, MMPs concentrations in HFL-1 cells co-cultured with the supernatant of RAW264.7 cells after hyperoxia. Conclusion: CTS can attenuate the hyperoxia-induced inflammatory response and the level of fibrosis by regulating the levels of inflammatory factors and fibrotic factor TGF-β1 expressed by macrophages, thereby highlighting the therapeutic potential of CTS in the treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
5
|
Nikolic D, Bosco L, Moschetti M, Tinnirello V, Pucci M, Corleone V, Raimondo S, Alessandro R, Fontana S. Anti-inflammatory properties of an aldehydes-enriched fraction of grapefruit essential oil. J Food Sci 2023; 88:1172-1187. [PMID: 36651875 DOI: 10.1111/1750-3841.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Chronic inflammation is linked to the development of numerous diseases and is accompanied by increased cytokine secretion. Macrophages provide a first line of defense against pathogens that under inflammatory stimuli release pro-inflammatory cytokines. The essential oil (EO) fractions obtained from Citrus spp. rich in different compounds have gained the attention of both researchers and users during the last decades. In particular, grapefruit (Citrus paradisi) peel is rich in phenolics and flavonoids with several health benefits, including anti-inflammatory actions. Additionally, its EO consists of a large number of compounds such as monoterpenes, sesquiterpenes, alcohols, aldehydes, esters, and oxides. Among the methods for encapsulating EOs, spray-drying is the main one. In the present study, we aimed to determine the in vitro anti-inflammatory activity of EO from C. paradisi (grapefruit essential oil [GEO]) (whole and fractions) in a lipopolysaccharide (LPS)-induced inflammation model. Results indicate that Fr-GEO and Fr-GEO_SD exert protective effects against LPS-induced inflammation by decreasing gene expression and levels of pro-inflammatory cytokines as IL-6 and TNF-α. Monoterpenes as the most common components, as well as aldehydes and sesquiterpenes, might be responsible for such effects, although a synergistic action is not excluded. Furthermore, a higher percent of aldehydes is linked to improved olfactory properties. Our findings support the anti-inflammatory effects of selected Fr-GEO with a great potential for the development of new nutraceuticals and/or functional food for the treatment of inflammatory-associated diseases. PRACTICAL APPLICATION: The findings of this study support the anti-inflammatory effects of selected Fr-GEO with a great potential for the development of new nutraceuticals and/or functional food for the treatment of inflammatory-associated diseases.
Collapse
Affiliation(s)
- Dragana Nikolic
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy.,Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy
| | - Liana Bosco
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy.,Agrumaria Corleone s.p.a., Palermo, Italy
| | - Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | | | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Bouhlel M, Sahnoun M, Zouari N, Brini F, Saibi W. The metabolic and biochemical mapping of Agave americana leave juice encode their prospective biotechnological uses. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Wang C, Wang T, Lian BW, Lai S, Li S, Li YM, Tan WJ, Wang B, Mei W. Developmental toxicity of cryptotanshinone on the early-life stage of zebrafish development. Hum Exp Toxicol 2021; 40:S278-S289. [PMID: 34423663 DOI: 10.1177/09603271211009954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryptotanshinone (Cry) has multiple potential functions in treating different diseases. Most studies on Cry focus on its pharmacological effects and mechanisms, but toxicological reports on Cry are rare. Zebrafish is used as a model organism in drug development as it saves costs and time. This work aimed to investigate the toxicity of Cry on zebrafish. Results showed that growth retardation, pericardial edema, and scoliosis occurred when zebrafish embryos were exposed to Cry, indicating its teratogenic effects. Cell apoptosis was observed in the brainstem area of embryos using acridine orange staining, and qPCR showed that caspase-3 was increased in Cry-exposed embryos. The results of locomotor activity and touched-evoke escape reaction experiments showed that Cry significantly reduced the swimming speed and escape reaction time of larvae.
Collapse
Affiliation(s)
- C Wang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - T Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - B-W Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - S Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - S Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - Y-M Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - W-J Tan
- Department of Food Safety, School of Food Science, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - B Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - W Mei
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
The Skeletal Effects of Tanshinones: A Review. Molecules 2021; 26:molecules26082319. [PMID: 33923673 PMCID: PMC8073409 DOI: 10.3390/molecules26082319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Osteoporosis results from excessive bone resorption and reduced bone formation, triggered by sex hormone deficiency, oxidative stress and inflammation. Tanshinones are a class of lipophilic phenanthrene compounds found in the roots of Salvia miltiorrhiza with antioxidant and anti-inflammatory activities, which contribute to its anti-osteoporosis effects. This systematic review aims to provide an overview of the skeletal beneficial effects of tanshinones. Methods: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered. Results: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption. Conclusions: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.
Collapse
|
11
|
Liu H, Zhan X, Xu G, Wang Z, Li R, Wang Y, Qin Q, Shi W, Hou X, Yang R, Wang J, Xiao X, Bai Z. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases. Pharmacol Res 2021; 164:105384. [PMID: 33352229 DOI: 10.1016/j.phrs.2020.105384] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
NLRP3 inflammasome activation is implicated in the pathogenesis of a wide range of inflammatory diseases, but medications targeting the NLRP3 inflammasome are not available for clinical use. Here, we demonstrate that cryptotanshinone (CTS), a major component derived from the traditional medicinal herb Salvia miltiorrhiza Bunge, is a specific inhibitor for the NLRP3 inflammasome. Cryptotanshinone inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanistically, cryptotanshinone blocks Ca2+ signaling and the induction of mitochondrial reactive oxygen species (mtROS), which are important upstream signals of NLRP3 inflammasome activation. In vivo, cryptotanshinone attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3 inflammasome-mediated diseases such as endotoxemia syndrome and methionine- and choline-deficient-diet-induced nonalcoholic steatohepatitis (NASH). Our findings suggest that cryptotanshinone may be a promising therapeutic agent for the treatment of NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Hongbin Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Guang Xu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Qin Qin
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruichuang Yang
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaohe Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
12
|
Zhao J, Chen Y, Dong L, Li X, Dong R, Zhou D, Wang C, Guo X, Zhang J, Xue Z, Xi Q, Zhang L, Yang G, Li Y, Zhang R. Arctigenin protects mice from thioglycollate-induced acute peritonitis. Pharmacol Res Perspect 2020; 8:e00660. [PMID: 32960513 PMCID: PMC7507838 DOI: 10.1002/prp2.660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Acute peritonitis is an acute inflammatory response of the peritoneal cavity to physical injury and chemical stimulation. Timely resolution of this response is critical to prevent further damage to the body, which can eventually lead to more severe chronic inflammation. Arctigenin (ATG) is the main active ingredient of the Chinese medicine Arctium lappa. In recent years, there have been an increasing number of studies on the anti-inflammatory effect of ATG, but there have been few studies on the effect of ATG on acute inflammation, especially in acute peritonitis, which has not been reported. In this study, a mouse model of experimental acute peritonitis induced by thioglycolate (TG) solution was used to study the protective anti-inflammatory effect of ATG against acute peritonitis and the relevant mechanism. Our results showed that, after 12 hours of TG treatment, ATG significantly reduced inflammatory cell infiltration in mouse tissues and inhibited the secretion and expression of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in mice. ATG significantly reduced the percentage of CD11b+ Ly6G+ neutrophils and F4/80+ macrophages in the spleen and peritoneal exudate. In addition, ATG significantly inhibited the expression of the chemokines CCL3 and CCL4 and the adhesion molecule CD62L on the surface of CD11b-positive monocytes. ATG was observed to inhibit the phosphorylation of p65 and p38 in LPS-stimulated RAW264.7 cells. In conclusion, ATG can improve the symptoms of TG-induced acute peritonitis through immune regulation. ATG can reduce the inflammatory response in TG-induced acute peritonitis in mice.
Collapse
Affiliation(s)
- Jingyi Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Lijun Dong
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xin Li
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ruijie Dong
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Dongmei Zhou
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Chengzhi Wang
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Xiangdong Guo
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Jieyou Zhang
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Zhenyi Xue
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Qing Xi
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Lijuan Zhang
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Guangze Yang
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjinChina
| | - Yan Li
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesInstitute of Basic Medical Sciences and Department of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
13
|
Totzke J, Scarneo SA, Yang KW, Haystead TAJ. TAK1: a potent tumour necrosis factor inhibitor for the treatment of inflammatory diseases. Open Biol 2020; 10:200099. [PMID: 32873150 PMCID: PMC7536066 DOI: 10.1098/rsob.200099] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant tumour necrosis factor (TNF) signalling is a hallmark of many inflammatory diseases including rheumatoid arthritis (RA), irritable bowel disease and lupus. Maladaptive TNF signalling can lead to hyper active downstream nuclear factor (NF)-κβ signalling in turn amplifying a cell's inflammatory response and exacerbating disease. Within the TNF intracellular inflammatory signalling cascade, transforming growth factor-β-activated kinase 1 (TAK1) has been shown to play a critical role in mediating signal transduction and downstream NF-κβ activation. Owing to its role in TNF inflammatory signalling, TAK1 has become a potential therapeutic target for the treatment of inflammatory diseases such as RA. This review highlights the current development of targeting the TNF-TAK1 signalling axis as a novel therapeutic strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Juliane Totzke
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Scott A Scarneo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelly W Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
15
|
The oxygenated products of cryptotanshinone by biotransformation with Cunninghamella elegans exerting anti-neuroinflammatory effects by inhibiting TLR 4-mediated MAPK signaling pathway. Bioorg Chem 2020; 104:104246. [PMID: 32911197 DOI: 10.1016/j.bioorg.2020.104246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 μM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.
Collapse
|
16
|
Wu JS, Meng QY, Zhang YH, Shi XH, Fu XM, Zhang P, Li X, Shao CL, Wang CY. Annular oxygenation and rearrangement products of cryptotanshinone by biotransformation with marine-derived fungi Cochliobolus lunatus and Aspergillus terreus. Bioorg Chem 2020; 103:104192. [PMID: 32889382 DOI: 10.1016/j.bioorg.2020.104192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Structural modification of natural products by biotransformation with fungi is an attractive tool to obtain novel bioactive derivatives. In the present study, cryptotanshinone (1), a quinoid abietane diterpene from traditional Chinese medicine Salvia miltiorrhiza (Danshen), was transformed by two marine-derived fungi. By using Cochliobolus lunatus TA26-46, one new oxygenated and rearranged product (2), containing a 5,6-dihydropyrano[4,3-b]chromene moiety, together with one known metabolite (10), were obtained from the converted broth of cryptotanshinone (1) with the isolated yields of 1.0% and 2.1%, respectively. While, under the action of Aspergillus terreus RA2905, seven new transformation products (3-9) as well as 10 with the fragments of 2-methylpropan-1-ol and oxygenated p-benzoquinone were produced and obtained with the isolated yields of 0.1%-1.3%. The structures of the new compounds were elucidated by comprehensive spectroscopic analysis including High Resolution Electrospray Ionization Mass Spectroscopy (HRESIMS), Nuclear Magnetic Resonance (NMR) and Electronic Circular Dichroism (ECD). The metabolic pathways of cryptotanshinone by these two fungi were presumed to be the opening and rearrangement of furan ring, and/or oxygenation of cyclohexane ring. Cryptotanshinone (1) and its metabolites displayed anti-inflammatory activities against NO production in LPS-stimulated BV-2 cells and antibacterial activities towards methicillin-resistant Staphylococcus aureus. These findings revealed the potential of marine fungi to transform the structures of natural products by biotransformation.
Collapse
Affiliation(s)
- Jing-Shuai Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qin-Yu Meng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiao-Hui Shi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China.
| |
Collapse
|
17
|
Wang D, Zhou M, Wang Y, Sun S. Suppression of high-mobility group box 1 ameliorates xerostomia in a Sjögren syndrome-triggered mouse model. Can J Physiol Pharmacol 2020; 98:351-356. [PMID: 31935120 DOI: 10.1139/cjpp-2019-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Xerostomia is a self-conscious symptom. High-mobility group box 1 (HMGB1) promotes pro-inflammatory effects in many diseases. This study aimed to clarify the role of HMGB1 in Sjögren syndrome (SS)-triggered xerostomia. Nonobese diabetic (NOD)/Ltj mice were used to establish an SS-triggered xerostomia model. The results showed that saliva production was decreased and anti-Sjögren syndrome B (anti-SSB) level was increased in SS. PCR, Western blot, and immunohistochemistry experiments indicated that the HMGB1 and aquaporin 5 (AQP5) levels were enhanced and diminished in SS compared with those in the control, respectively. While the mice were treated with anti-HMGB1, xerostomia was reversed due to the elevated saliva production and reduced anti-SSB level. In addition, it was found that the inhibition of HMGB1 restrained the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) axis activation. The TLR4 and p-IκB levels were alleviated, while the IκBα and NF-κB p65 levels were augmented. The NF-κB p65 binding activity was attenuated via the electrophoretic mobility shift assay (EMSA) after anti-HMGB1 treatment. Moreover, the repression of HMGB1 facilitated the expression of AQP5. These findings demonstrate that suppression of HMGB1 ameliorates SS-triggered xerostomia via suppressing the HMGB1/TLR4/NF-κB signaling pathway and upregulating AQP5 expression.
Collapse
Affiliation(s)
- Di Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Yan Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| |
Collapse
|
18
|
Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, Yang S, Vong CT, Gao H, Wang Y. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med 2020; 15:20. [PMID: 32158495 PMCID: PMC7053069 DOI: 10.1186/s13020-020-00303-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. Methods In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. Results Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/β, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. Conclusions Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Xin-Xing Li
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Xiaoting Zheng
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Zhenjie Liu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qiongming Xu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,4College of Pharmaceutical Science, Soochow University, Suzhou, 215123 China
| | - Hongzhen Tang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Jianfang Feng
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Shilin Yang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Chi Teng Vong
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Hongwei Gao
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Yitao Wang
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| |
Collapse
|
19
|
Nagappan A, Kim JH, Jung DY, Jung MH. Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways. Int J Mol Sci 2019; 21:ijms21010265. [PMID: 31906014 PMCID: PMC6981483 DOI: 10.3390/ijms21010265] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cryptotanshinone (CT), a diterpene that is isolated from Salvia miltiorrhiza Bunge, exhibits anti-cancer, anti-oxidative, anti-fibrosis, and anti-inflammatory properties. Here, we examined whether CT administration possess a hepatoprotective effect on chronic ethanol-induced liver injury. We established a chronic alcohol feeding mouse model while using C57BL/6 mice, and examined the liver sections with hematoxylin-eosin (H&E) and Oil Red O (ORO) staining. Further, we analyzed the lipogenesis, fatty acid oxidation, oxidative stress, and inflammation genes by using quantitative polymerase chain reaction (qPCR) and immunoblotting in in vivo, and in vitro while using HepG2 and AML-12 cells. CT treatment significantly ameliorated ethanol-promoted hepatic steatosis, which was consistent with the decreased hepatic triglyceride levels. Interestingly, CT activated the phosphorylation of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and nuclear factor E2-related factor 2 (Nrf2) proteins. Importantly, compound C (AMPK inhibitor) significantly blocked the CT-mediated reduction in TG accumulation, but not Ex52735 (SIRT1 inhibitor), which suggested that CT countering ethanol-promoted hepatic steatosis is mediated by AMPK activation. Furthermore, CT significantly inhibited cytochrome P450 2E1 (CYP2E1) and enhanced both the expression of antioxidant genes and hepatic glutathione levels. Finally, CT inhibited the ethanol-induced inflammation in ethanol-fed mice and HepG2 cells. Overall, CT exhibits a hepatoprotective effect against ethanol-induced liver injury by the inhibition of lipogenesis, oxidative stress, and inflammation through the activation of AMPK/SIRT1 and Nrf2 and the inhibition of CYP2E1. Therefore, CT could be an effective therapeutic agent for treating ethanol-induced liver injury.
Collapse
Affiliation(s)
- Arulkumar Nagappan
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (A.N.); (J.-H.K.); (D.Y.J.)
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji-Hyun Kim
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (A.N.); (J.-H.K.); (D.Y.J.)
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dae Young Jung
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (A.N.); (J.-H.K.); (D.Y.J.)
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Myeong Ho Jung
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea; (A.N.); (J.-H.K.); (D.Y.J.)
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8468
| |
Collapse
|
20
|
Cui S, Chen S, Wu Q, Chen T, Li S. A network pharmacology approach to investigate the anti-inflammatory mechanism of effective ingredients from Salvia miltiorrhiza. Int Immunopharmacol 2019; 81:106040. [PMID: 31818704 DOI: 10.1016/j.intimp.2019.106040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023]
Abstract
Salvia miltiorrhiza, known as Danshen in Chinese, has been widely used to treat cardiovascular diseases in China. Tanshinone I (Tan I) and cryptotanshinone (CST) are the lipid-soluble and effective components from Salvia miltiorrhiza. However, the molecular mechanism of Tan I and CST for treating inflammation is still not known. Therefore, this study was designed to use network pharmacology-based strategy to predict therapeutic targets of Tan I and CST against inflammation, and further to investigate the pharmacological molecular mechanism in vitro. Inflammation targets were identified and followed by acquisition of verified targets of Tan I and CST. After constructing target-functional protein interaction network of Tan I and CST against inflammation, the core therapeutic targets of Tan I and CST against inflammation were obtained. Further, pathway enrichment analyses were performed on core therapeutic targets to evaluate key signaling pathways of Tan I and CST against inflammation. As revealed in network pharmacology analysis, 8 key hub targets for Tan I and CST against inflammation were identified, respectively: JUN, VEGFA, IL-6, TNF, MAPK8, CXCL8, and PTGS2 for Tan I, while STAT3, AKT1, CCND1, MAPK14, VEGFA, ESR1, MAPK8 and AR for CST. Pathway enrichment analysis by DAVID database indicated that Tan I and CST principally regulated the inflammation-associated pathway, such as TLR, JAK-STAT signaling pathway, focal adhesion, apoptosis, mTOR signaling pathway. In vitro, we found that both Tan I and CST exerts significantly effect on LPS stimulated NO secretion and iNOS expression in macrophages. Taken together, our data elucidate that anti-inflammatory pharmacological activities of Tan I and CST may be predominantly related to inhibition of TLR signaling pathway and regulating iNOS synthesis. These findings highlight the predicted therapeutic targets may be potential targets of Tan I and CST for anti-inflammation treatment.
Collapse
Affiliation(s)
- Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, JiangYang Middle Road 136, Yangzhou 225001, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou, China.
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, JiangYang Middle Road 136, Yangzhou 225001, China
| | - Qingqing Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, JiangYang Middle Road 136, Yangzhou 225001, China
| | - Tingting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, JiangYang Middle Road 136, Yangzhou 225001, China
| | - Shihua Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Ben Hsouna A, Gargouri M, Dhifi W, Ben Saad R, Sayahi N, Mnif W, Saibi W. Potential anti-inflammatory and antioxidant effects of Citrus aurantium essential oil against carbon tetrachloride-mediated hepatotoxicity: A biochemical, molecular and histopathological changes in adult rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:388-400. [PMID: 30578595 DOI: 10.1002/tox.22693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The present study aimed (1) to investigate the chemical composition as well as the anti-inflammatory properties and in vitro antioxidant activity of Citrus aurantium peel essential oil (pEOCa) and (2) to evaluate its potential effect in vivo. The main results showed that the major components of pEOCa are Limonene and Linalool. Additionally, DPPH scavenging ability and β-carotene bleaching inhibition tests confirmed the antioxidant capacity of pEOCa. Our oil reduced the production of NO by LPS-stimulated RAW264,7 macrophages in a concentration-dependent. This inhibition occurred at a transcriptional level. pEOCa in CCl4 treated rats alleviated hepatotoxicity as monitored by the improvement of hepatic oxidative stress biomarkers levels plasma biochemical parameters, and DNA molecule aspect. Furthermore, the mRNA gene expression of Cu-Zn SOD, CAT, and GPx increased under CCl4 + pEOCa exposure to reach the same value to the control. Similarly, antioxidant activities of these three enzymes changed in accordance with the mRNA levels. These results were confirmed by the histological results. It seems obvious that the treatment with pEOCa prevented liver damage induced by CCl4 , thus preventing the harmful effects of free radicals.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, Gafsa, Tunisia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Manel Gargouri
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, BP, Sfax, Tunisia
| | - Wissal Dhifi
- University of Manouba, ISBST, LR17-ES03 Physiopathology, Food and Biomolecules, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Naima Sayahi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Wissem Mnif
- Faculty of Sciences and Arts in Balgarn PO BOX 60 Balgarn - Sabt Al Alaya 61985, University of Bisha, Kingdom of Saudi Arabia
- University of Manouba, ISBST, BVBGR-LR11ES31, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Walid Saibi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
22
|
Plastina P, Apriantini A, Meijerink J, Witkamp R, Gabriele B, Fazio A. In Vitro Anti-Inflammatory and Radical Scavenging Properties of Chinotto ( Citrus myrtifolia Raf.) Essential Oils. Nutrients 2018; 10:nu10060783. [PMID: 29912150 PMCID: PMC6024861 DOI: 10.3390/nu10060783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023] Open
Abstract
Chinotto (Citrus myrtifolia Raf.) is a widely diffused plant native from China and its fruits have a wide-spread use in confectionary and drinks. Remarkably, only little has been reported thus far on its bioactive properties, in contrast to those of the taxonomically related bergamot (Citrus bergamia Risso). The present study aimed to investigate potential in vitro anti-inflammatory and radical scavenging properties of chinotto essential oils (CEOs) and to establish to what extent their composition and bioactivities are dependent on maturation. Essential oil from half ripe chinotto (CEO2) reduced the production of nitric oxide (NO) and the expression of inflammatory genes, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), cytokines, including interleukin-1β (IL-1β) and interleukin-6 (IL-6), and chemokine monocyte chemotactic protein-1 (MCP-1) by lipopolysaccharide (LPS)-stimulated RAW264,7 macrophages. Limonene, linalool, linalyl acetate, and γ-terpinene were found to be the main components in CEO2. Moreover, CEO2 showed high radical scavenging activity measured as Trolox equivalents (TE) against both 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). These findings show that chinotto essential oil represents a valuable part of this fruit and warrants further in vivo studies to validate its anti-inflammatory potential.
Collapse
Affiliation(s)
- Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Astari Apriantini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Bartolo Gabriele
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
23
|
The Signaling Pathways Involved in the Antiatherosclerotic Effects Produced by Chinese Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5392375. [PMID: 30009170 PMCID: PMC6020658 DOI: 10.1155/2018/5392375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in the world. Chinese herb medicines (CHMs) have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence. Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS. However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation and progression and discover newly effective agents for AS management.
Collapse
|
24
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Li Z, Zhang S, Yan H, Liu J. Development of cryptotanshinone-loaded pellets for angina chronotherapy: In vitro/ in vivo prediction and evaluation. Asian J Pharm Sci 2018; 13:310-316. [PMID: 32104404 PMCID: PMC7032200 DOI: 10.1016/j.ajps.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/04/2018] [Accepted: 02/24/2018] [Indexed: 12/29/2022] Open
Abstract
The clinical manifestations of variant angina is unevenly distributed during the 24 h, thus the in vivo performance of drugs should be tailored according to the angina circadian rhythm. Cryptotanshinone (CTN) is one of the representative bioactive lipid-soluble components of Danshen which has been commonly used for cardiovascular diseases such as angina pectoris. The aim of this study was to develop a novel CTN sustained-released pellets (CTN-SRPs) to precisely synchronize the CTN plasma concentrations with predicted occurrence of angina pectoris for angina chronotherapy. A deconvolution-based method was applied to develop and optimize the CTN-SRPs. The plasma concentration-time curve of CTN immediate-released formulation after oral administration in rats was used as the weight function. The predicted plasma concentration-time curve of CTN-SRPs simulated according to the incidence of variant angina during 24 h was used as the response function. Then the desired drug release profile of CTN-SRPs was calculated based on deconvolution using weight function and response function, and subsequently used for guiding the formulation optimization. CTN-SRPs were prepared with the combinations of PVP, poloxamer 127 and EC as matrix using fluidized bed technology. An orthogonal design was employed to obtain the optimal formulation with its release profile similar with the desired one. Pharmacokinetic studies validated that the actual plasma concentration-time curve of these optimized CTN-SRPs was similar with the predicted one. In addition, the percent errors (%PE) of CTN plasma concentrations in 8-12 h were less than 10%. In conclusion, this deconvolution-based method could be applied to adjust the in vivo performance of drugs for angina chronotherapy.
Collapse
Affiliation(s)
| | | | | | - Jianping Liu
- Corresponding author. China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing 210009, China. Tel: +862583271293.
| |
Collapse
|
26
|
Tang L, He S, Wang X, Liu H, Zhu Y, Feng B, Su Z, Zhu W, Liu B, Xu F, Li C, Zhao J, Zheng X, Lu C, Zheng G. Cryptotanshinonereduces psoriatic epidermal hyperplasia via inhibiting the activation of STAT3. Exp Dermatol 2018; 27:268-275. [PMID: 29427477 DOI: 10.1111/exd.13511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
- The Postdoctoral Research Station; Guangzhou University of Chinese Medicine; Guangzhou, Guangdong China
| | - Songmin He
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Xieqi Wang
- The Second Clinical Medical College; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Hongying Liu
- Department of Pathology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ying Zhu
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Bing Feng
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Zuqing Su
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Wei Zhu
- Traditional Chinese Medicine Material Basic Research Team; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Bo Liu
- Department of Chemical Research and Structural Optimization based on Chinese Material Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Fangfang Xu
- Department of Chemical Research and Structural Optimization based on Chinese Material Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Chutian Li
- Department of Pathology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Jie Zhao
- Department of Pathology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Xirun Zheng
- Department of Pathology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Chuanjian Lu
- Department of Dermatology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
- Department of Pathology; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
27
|
Cao SG, Chen R, Wang H, Lin LM, Xia XP. Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells. Microb Pathog 2018; 116:313-317. [PMID: 29353005 DOI: 10.1016/j.micpath.2017.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Crytotanshinone (CTN), one of the main constituents of Salvia miltiorrhiza, has been known to exhibit antioxdative, anti-inflammatory and other important therapeutic activities. The aim of this study was to evaluate the effect of CTN on prostaglandin E2 and COX-2 production in LPS-stimulated human intestinal cells (Caco-2 cells). Caco-2 cells were stimulated with LPS in the presence or absence of CTN. The production of prostaglandin E2 (PGE2) was detected by ELISA. The expression of COX-2 was detected by qRT-PCR and Western blot. The extent of phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4 were detected by western blot. The results showed that CTN dose-dependently inhibited the expression of COX-2 both in mRNA and protein levels, resulting in a decreased production of PGE2. We also found that CTN suppressed LPS-induced NF-κB activation and IκBα degradation. Furthermore, CTN inhibited the expression of TLR4 up-regulated by LPS. These results suggest that CTN exerts an anti-inflammatory property by inhibiting TLR4/NF-κB signaling pathway and the release of pro-inflammatory mediators. These findings suggest that CTN may be a therapeutic agent against intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Shu-Guang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rujie Chen
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Li-Miao Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xuan-Ping Xia
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| |
Collapse
|
28
|
Cryptotanshinone protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice. Int Immunopharmacol 2017; 50:161-167. [DOI: 10.1016/j.intimp.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/30/2017] [Accepted: 06/17/2017] [Indexed: 11/23/2022]
|
29
|
Yang Y, Ma Z, Yang G, Wan J, Li G, Du L, Lu P. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2565-2579. [PMID: 28919708 PMCID: PMC5590761 DOI: 10.2147/dddt.s140206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endovascular aortic repair (EVAR) is often followed by aneurysm recurrence. Alginate oligosaccharide (AOS) has potential antitumor properties as a natural product while the related mechanisms remain unclear. Toll-like receptor (TLR) signaling is associated with inflammatory activity of aneurysm and may be affected by miR-29b. Thus, inhibitory function of AOS on aneurysms was explored by measuring the important molecules in TLR4 signaling. After EVAR, a total of 248 aortic aneurysm patients were recruited and randomly assigned into two groups: AOS group (AG, oral administration 10-mg AOS daily) and control group (CG, placebo daily). The size of residual aneurysms, aneurysm recurrence, and side effects were investigated. Aneurysm recurrence was determined by Kaplan-Meier analysis. After 2 years, eight and two patients died in the CG and AG, respectively. The sizes of residual aneurysms were significantly larger in the CG than in the AG (P<0.05). The incidence of aneurysm recurrence was also significantly higher in the CG than in the AG (P<0.05). AOS treatment reduced the levels of miR-29b, TLR4, mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-kappa B), interleukin 1 (IL-1) beta, and interleukin 6 (IL-6). Overexpression and silence of miR-29b increased and reduced the level of TLR4, phospho-p65 NF-kappa B, phospho-p38 MAPK, IL-1 beta, and IL-6. Spearman's rank correlation analysis shows that the level of miR-29b is positively related to the levels of TLR4, NF-kappa B, IL-1 beta, and IL-6 (P<0.05). Thus, AOS represses aneurysm recurrence by indirectly affecting TLR signaling via miR-29b.
Collapse
Affiliation(s)
- Yong Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Zhenhuan Ma
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Guokai Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Guojian Li
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Lingjuan Du
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| | - Ping Lu
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, China.,Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China.,Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China
| |
Collapse
|
30
|
Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, Wang Y, Guo T, Zhu LL, Zhou H. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders. Int J Mol Med 2017; 39:819-830. [PMID: 28260042 PMCID: PMC5360435 DOI: 10.3892/ijmm.2017.2904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, Traffic Hospital of Shandong Province, Jinan, Shandong 250031, P.R. China
| | - You Song Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Miao Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Rui Bian
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ting Guo
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lin Lin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hang Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
31
|
Fang J, Little PJ, Xu S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2017; 38:201-228. [PMID: 28295428 DOI: 10.1002/med.21438] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 01/07/2023]
Abstract
Medicinal plant-derived bioactive compounds modulate multiple therapeutic targets in cardiovascular diseases (CVDs), rendering herb-derived phytochemicals effective against one of the major CVDs-atherosclerosis. Danshen (Salvia milthiorriza Bunge) is a Chinese medicine that has been used in cardio- and cerebro-vascular therapeutic remedies in Asian countries for many years. Emerging evidence from cellular, animal, and clinical studies suggests that major lipophilic tanshinones from Danshen can treat atherosclerotic CVDs. In this review, we highlight recent advances in understanding the molecular mechanisms of tanshinones in treating atherosclerosis, ranging from endothelial dysfunction to chronic inflammation. We also overview new molecular targets of tanshinones, including endothelial nitric oxide synthase, AMP-activated protein kinase, ABC transporter A1, heme oxygenase 1, soluble epoxide hydrolase, 11β-hydroxysteroid dehydrogenase, estrogen receptor, and proprotein convertase subtilisin/kexin type 9. Thus, this review provides a new perspective for advancing our understanding of the "ancient" herb Danshen from "modern" biomedical perspectives, supporting the possibility of exploiting tanshinones and derivatives as effective therapeutics against atherosclerosis-related cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jian Fang
- Department of Pharmacy, Huadu District People's Hospital,Southern Medical University, 48 Xinhua Road, Guangzhou, 510800, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence (PACE), School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Xinhua College, Sun Yat-sen University, Guangzhou, 510520, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
32
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
33
|
Ma S, Zhang D, Lou H, Sun L, Ji J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:193-199. [PMID: 27178632 DOI: 10.1016/j.jep.2016.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza var. alba roots are used as the Chinese traditional medicine Danshen for the treatment of cardiovascular diseases in local clinical practice. Tanshinones are the major effective constituents of S. miltiorrhiza var. alba roots, but only tanshinone IIA, tanshinone I, cryptotanshinone, and 15,16-dihydrotanshinone have been investigated for their anti-inflammatory activities. MATERIALS AND METHODS Eleven known compounds were isolated from S. miltiorrhiza var. alba roots, and the structures of all compounds were elucidated by spectroscopic analysis and comparisons with reported data. Immune anti-inflammatory activities were assessed by the ability to inhibit the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and interleukin (IL)-8 using enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was also used to compare the inhibitory effects of the compounds on TNF-α, IL-1β, and IL-8 mRNA expression with that of tanshinone IIA in lipopolysaccharide-stimulated THP-1 macrophages. RESULTS All tanshinones, except for compound 5, significantly inhibited the mRNA and protein expression of TNF-α, IL-1β, and IL-8, and their anti-inflammatory activities were stronger than that of tanshinone IIA. Compound 9 (5μM) showed the highest inhibitory effects for TNF-α, IL-1β, and IL-8, at 56.3%, 67.6%, and 51.7%, respectively. CONCLUSIONS Ten of the 11 tanshinones were shown to have anti-inflammatory properties superior to those of TSIIA, and which significantly inhibited the expression of TNF-α, IL-1β, and IL-8. The present results provided a referential basis for explaining the use of S. miltiorrhiza var. alba root as a Chinese folk medicine for treating cardiovascular diseases associated with inflammation, and show the importance of trace constituents of this herb.
Collapse
Key Words
- 1,2,6,7,8,9-hexahydro-1,6,6- trimethyl-3,11-dioxanaphtho [2,1-e] azulene-10,12-dione (PubChem CID: 14609845)
- 2-isopropyl-8-methylphenanthrene-3,4-dione (PubChem CID: 135872)
- Anti-inflammatory activity
- Atherosclerosis
- Bioactivity evaluation
- Pro-inflammatory cytokines
- Tanshinones
- arucadiol (PubChem CID: 11011966)
- danshenol A (PubChem CID: 3083514)
- sugiol (PubChem CID: 275529)
- tanshindiol C (PubChem CID: 5321620)
- tanshinone IIA (PubChem CID: 164676)
- tanshinone IIB (PubChem CID: 318797)
Collapse
Affiliation(s)
- Shuli Ma
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Dawei Zhang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Longru Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| | - Jianbo Ji
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| |
Collapse
|
34
|
Yu Z, Lv H, Han G, Ma K. Ethosomes Loaded with Cryptotanshinone for Acne Treatment through Topical Gel Formulation. PLoS One 2016; 11:e0159967. [PMID: 27441661 PMCID: PMC4956045 DOI: 10.1371/journal.pone.0159967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to develop ethosomes loaded with cryptotanshinone (CPT) and formulate them as a topical gel for the treatment of acne. Ethosomes were prepared and evaluated for vesicle size, CPT loading and encapsulation efficiency. Optimized ethosomes were formulated as Carbomer 974 gels and compared with conventional hydroethanolic gels for transdermal permeation and skin deposition in vitro. The anti-acne activity and skin irritation of the gel was investigated in rabbits. Optimized ethosomes had an average vesicle size of 69.1 ± 1.9 nm with CPT loading and encapsulation efficiency of 0.445 ± 0.007 mg/mL and 40.31 ± 0.67%, respectively. The transdermal flux and skin deposition of the optimized ethosomal gel were 2.5- and 2.1-times those of conventional gels. The ethosomal gel revealed better anti-acne effect with only slight skin irritation. This study demonstrates that ethosomal formulation is an effective dermal delivery system for CPT, and that CPT ethosomal gels are promising future acne treatments.
Collapse
Affiliation(s)
- Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyan Lv
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Gang Han
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- * E-mail:
| | - Ke Ma
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
35
|
Zhang X, Wang Y, Ma Z, Liang Q, Tang X, Hu D, Tan H, Xiao C, Gao Y. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6343-62. [PMID: 26674743 PMCID: PMC4676510 DOI: 10.2147/dddt.s79388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility.
Collapse
Affiliation(s)
- Xianxie Zhang
- Air Force General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yuguang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qiande Liang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Donghua Hu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
36
|
Zhu Z, Zhao Y, Li J, Tao L, Shi P, Wei Z, Sheng X, Shen D, Liu Z, Zhou L, Tian C, Fan F, Shen C, Zhu P, Wang A, Chen W, Zhao Q, Lu Y. Cryptotanshinone, a novel tumor angiogenesis inhibitor, destabilizes tumor necrosis factor‐α mRNA via decreasing nuclear–cytoplasmic translocation of RNA‐binding protein HuR. Mol Carcinog 2015; 55:1399-410. [DOI: 10.1002/mc.22383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/19/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Zhijie Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yang Zhao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Junbo Li
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Li Tao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Zhonghong Wei
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Xiaobo Sheng
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Dandan Shen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Zhaoguo Liu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Liang Zhou
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Chao Tian
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Fangtian Fan
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Cunsi Shen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Pingting Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Aiyun Wang
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| | - Wenxing Chen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| | - Qingshun Zhao
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Yin Lu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
37
|
Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways. Acta Pharm Sin B 2015; 5:323-9. [PMID: 26579462 PMCID: PMC4629269 DOI: 10.1016/j.apsb.2015.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
Neocryptotanshinone (NCTS) is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Moreover, NCTS could decrease LPS-induced nitric oxide (NO) production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS), p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2). In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.
Collapse
|
38
|
Zhang X, Ma Z, Liang Q, Tang X, Hu D, Liu C, Tan H, Xiao C, Zhang B, Wang Y, Gao Y. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:357-367. [PMID: 25660334 DOI: 10.1016/j.jep.2015.01.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Tanshinone IIA (Tan IIA) is one of the main natural active ingredients purified from Salvia miltiorrhiza radix, which has long been used in clinical practice in China to treat diseases including liver fibrosis, Alzheimer׳s disease, and cardiovascular diseases. Tan IIA has hepatoprotective properties, and is an efficacious PXR agonist. Our study was designed to observe the function and mechanism of the hepatoprotective properties of Tan IIA. HepG2 cells were used to investigate the vitrol effects of Tan IIA on PXR and CYP3A4. Gut-formed LCA is hepatotoxic, and has been implicated in the pathogenesis of cholestatic diseases. To further investigate the hepatoprotective mechanisms of Tan IIA against LCA-induced cholestasis in vivo, we choose the normal mice and siRNA-treated mice. The in vitro study demonstrated that the effect of Tan IIA on CYP3A4 was mediated by transactivation of PXR in a dose- and time-dependent manner. The in vivo experiments using PXR siRNA revealed that Tan IIA could protect against LCA-induced hepatotoxicity and cholestasis in a dose-dependent manner. These effects were partially caused by the upregulation of PXR, as well as Cyp3a11, Cyp3a13, and Mdr1, which are the enzymes responsible for LCA metabolism. This is the first report showing that the hepatoprotective effects of Tan IIA are partly mediated by PXR.
Collapse
Affiliation(s)
- Xianxie Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiande Liang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Donghua Hu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Canglong Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuguang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
39
|
Ham YM, Ko YJ, Song SM, Kim J, Kim KN, Yun JH, Cho JH, Ahn G, Yoon WJ. Anti-inflammatory effect of litsenolide B2 isolated from Litsea japonica fruit via suppressing NF-κB and MAPK pathways in LPS-induced RAW264.7 cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Gao J, Tao J, Zhang N, Liu Y, Jiang M, Hou Y, Wang Q, Bai G. Formula optimization of the Jiashitang scar removal ointment and antiinflammatory compounds screening by NF-κB bioactivity-guided dual-luciferase reporter assay system. Phytother Res 2014; 29:241-50. [PMID: 25363818 DOI: 10.1002/ptr.5244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 11/11/2022]
Abstract
Inflammation plays a role in scar formation; therefore, decreasing inflammation benefits scar removal. Jiashitang scar removal ointment (JST) is a commercially available traditional Chinese medicinal formulation. It is composed of extracts from Carthamus tinctorius L. (Car), Rheum officinale Baill. (Rhe), Salvia miltiorrhiza Beg. (Sal), and Panax notoginseng (Burk.) F. H. Chen (Pan), which are all herbs with potent antiinflammatory activities. Our aims are to optimize the formula of JST and to elucidate its antiinflammatory active components. Response surface methodology was applied to optimize proportions of the four herb extracts. The antiinflammatory effects were evaluated using in vitro and in vivo models. To screen for active components in this formula, a bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis was performed. After optimization, the antiinflammatory effects of the new formula were significantly superior to the original one. Screening identified 13 active ingredients: a series of saffiomin, emodin, salvianolic acid, tanshinone, and triterpenoid saponin derivatives. These active ingredients were predicted to exert nuclear factor-κB inhibiting effects through MAPK, PI3K/AKT, and NIK-IKK pathways. In conclusion, the original formula was successfully optimized with more potent antiinflammatory activity. These methods can be applied to researches of other formulas.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; College of Pharmacy, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jin Q, Jiang S, Wu YL, Bai T, Yang Y, Jin X, Lian LH, Nan JX. Hepatoprotective effect of cryptotanshinone from Salvia miltiorrhiza in D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:141-147. [PMID: 24011530 DOI: 10.1016/j.phymed.2013.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/24/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Cryptotanshinone from Salvia miltiorrhiza Bunge was investigated for hepatoprotective effects in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Cryptotanshinone (20 or 40 mg/kg) was orally administered 12 and 1h prior to GalN (700 mg/kg)/LPS (10 μg/kg) injection. The increased mortality and TNF-α levels by GalN/LPS were declined by cryptotanshinone pretreatment. In addition, cryptotanshinone attenuated GalN/LPS-induced apoptosis, characterized by the blockade of caspase-3, -8, and -9 activation, as well as the release of cytochrome c from the mitochondria. In addition, cryptotanshinone significantly suppressed JNK, ERK and p38 phosphorylation induced by GalN/LPS, and phosphorylation of TAK1 as well. Furthermore, cryptotanshinone significantly inhibited the activation of NF-κB and suppressed the production of proinflammatory cytokines. These findings suggested that hepatoprotective effect of cryptotanshinone is likely associated with its anti-apoptotic activity and the down-regulation of MAPKs and NF-κB associated at least in part with suppressing TAK1 phosphorylation.
Collapse
Affiliation(s)
- Quan Jin
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shuang Jiang
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ting Bai
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yong Yang
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xuejun Jin
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
42
|
Tang Y, Chen Y, Chu Z, Yan B, Xu L. Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2014; 723:494-500. [DOI: 10.1016/j.ejphar.2013.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/30/2022]
|
43
|
Scoparone attenuates d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure through inhibition of toll-like receptor 4 signaling in mice. Food Chem Toxicol 2013; 57:132-9. [DOI: 10.1016/j.fct.2013.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/28/2023]
|
44
|
Lee HS, Bilehal D, Lee GS, Ryu DS, Kim HK, Suk DH, Lee DS. Anti-inflammatory effect of the hexane fraction from Orostachys japonicus in RAW 264.7 cells by suppression of NF-κB and PI3K-Akt signaling. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
45
|
Lee HS, Ryu DS, Lee GS, Lee DS. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: suppression of NF-κB activation and MAPK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:271-276. [PMID: 22285522 DOI: 10.1016/j.jep.2012.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonicus A. Berger (O. japonicus) is known to reduce the risk of many diseases. AIM OF THE STUDY We investigated the anti-inflammatory effects of the dichloromethane (DCM) fraction from O. japonicus (OJD) in LPS-stimulated RAW 264.7 cells. MATERIALS AND METHODS NO was measured using the Griess method. Key pro-inflammatory cytokines and mediators including IL-1β, TLR4, iNOS, and COX-2; 2 important pro-inflammatory transcription factors, NF-κB p65 and IκBα; and MAPKs such as ERK1/2, JNK, and p38 were analyzed by Western blotting. RESULTS OJD significantly inhibited NO production, IL-1β, TLR4, iNOS, and COX-2 expression in LPS-stimulated cells. Additionally, it inhibited LPS-induced NF-κB p65 activation via inhibition of IκBα phosphorylation. Furthermore, phosphorylation of p38 and JNK was suppressed by OJD in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. CONCLUSIONS Our data suggest that OJD inhibits the inflammatory response via suppression of NF-κB activation and MAPK signaling.
Collapse
Affiliation(s)
- Hyeong-Seon Lee
- Department of Smart Foods and Drugs, Inje University, Gimhae 621-749, Republic of Korea
| | | | | | | |
Collapse
|