1
|
Hu JJ, Deng F, Sun QS, Xiong QM, Min Y, Feng SY, Lin ZB, Chen PH, Hu Z, Wu L, Chen XF, Xie S, Liu WF, Li C, Liu KX. Time-restricted feeding protects against septic liver injury by reshaping gut microbiota and metabolite 3-hydroxybutyrate. Gut Microbes 2025; 17:2486515. [PMID: 40223164 PMCID: PMC12005432 DOI: 10.1080/19490976.2025.2486515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Liver injury is an independent risk factor for multiple organ dysfunction and high mortality in patients with sepsis. However, the pathological mechanisms and therapeutic strategies for sepsis-associated liver injury have not been fully elucidated. Time-restricted feeding (TRF) is a promising dietary regime, but its role in septic liver injury remains unknown. Using 16S rRNA gene sequencing, Q200 targeted metabolomics, transcriptomics, germ-free mice, Hmgcs2/Lpin1 gene knockout mice, and Aml12 cells experiments, we revealed that TRF can mitigate septic liver injury by modulating the gut microbiota, particularly by increasing Lactobacillus murinus (L. murinus) abundance, which was significantly reduced in septic mice. Further study revealed that live L. murinus could markedly elevate serum levels of metabolite 3-hydroxybutyrate (3-HB) and alleviate sepsis-related injury, while the knockout of the key enzyme for 3-HB synthesis (3-hydroxy-3-methylglutaryl-CoA synthase 2, Hmgcs2) in the liver negated this protective effect. Additionally, serum 3-HB levels were significantly positively correlated with L. murinus abundance and negatively correlated with liver injury indicators in septic patients, demonstrating a strong predictive value for septic liver injury (AUC = 0.8429). Mechanistically, 3-HB significantly inhibited hepatocyte ferroptosis by activating the PI3K/AKT/mTOR/LPIN1 pathway, reducing ACSL4, MDA, LPO, and Fe2+ levels. This study demonstrates that TRF reduces septic liver injury by modulating gut microbiota to increase L. murinus, which elevates 3-HB to activate PI3K/AKT/mTOR/LPIN1 and inhibit hepatocyte ferroptosis. Overall, this study elucidates the protective mechanism of TRF against septic liver injury and identifies 3-HB as a potential therapeutic target and predictive biomarker, thereby providing new insights into the clinical management and diagnosis of septic liver injury.
Collapse
Affiliation(s)
- Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Qing-Ming Xiong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Yue Min
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Si-Yuan Feng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Peng-Han Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Zhen Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Ling Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Xiao-Feng Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Sun Xie
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Omidkhoda SF, Rajabian F, Hosseinzadeh H. Lipoic acid as a protective agent against lipopolysaccharide and other natural toxins: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04123-w. [PMID: 40227307 DOI: 10.1007/s00210-025-04123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Alpha-lipoic acid, also known as lipoate or lipoic acid (LA), is naturally present in the mitochondria of cells, where it functions as a cofactor for dehydrogenase enzyme complexes. It has also been reported that LA is a potent antioxidant. Not only does it scavenge free radicals directly, but it can also regenerate other essential cellular antioxidants. LA exhibits various anti-inflammatory effects and offers protection to mitochondria. Numerous studies have assessed the potential protective effects of LA against natural toxins, including lipopolysaccharides, galactosamine, mycotoxins, snake venoms, and toxins derived from cyanobacteria and plants. In general, the results of these studies indicate that LA can be effective in mitigating various toxicities, primarily due to the previously mentioned capabilities. Furthermore, novel mechanisms have been proposed for LA against specific toxins, for example, direct inactivation of secretory phospholipase A2 in some snake venoms or enhancement of p-glycoprotein activity to prevent saxitoxin entry into the neuronal cells. However, the gaps in the available data from most animal experiments conducted to date have resulted in insufficient evidence to justify further clinical evaluations of the effects of LA on human poisoning cases. Consequently, more extensive research is required to address these gaps and fully realize the therapeutic potential of this valuable substance.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2025; 83:e1270-e1285. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
4
|
Li FJ, Hu H, Wu L, Luo B, Zhou Y, Ren J, Lin J, Reiter RJ, Wang S, Dong M, Guo J, Peng H. Ablation of mitophagy receptor FUNDC1 accentuates septic cardiomyopathy through ACSL4-dependent regulation of ferroptosis and mitochondrial integrity. Free Radic Biol Med 2024; 225:75-86. [PMID: 39326685 DOI: 10.1016/j.freeradbiomed.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Sepsis evokes compromised myocardial function prompting heart failure albeit target therapy remains dismal. Our study examined the possible role of mitophagy receptor FUNDC1 in septic cardiomyopathy. A sepsis model was established using cecal ligation and puncture (CLP) in FUNDC1 knockout (FUNDC1-/-) and WT mice prior to the evaluation of cardiac morphology, echocardiographic and cardiomyocyte contractile, oxidative stress, apoptosis, necroptosis, and ferroptosis. RNAseq analysis depicted discrepant patterns in mitophagy, oxidative stress and ferroptosis between CLP-challenged and control murine hearts. Septic patients displayed cardiac injury alongside low plasma FUNDC1 and iron levels. CLP evoked interstitial fibrosis, cardiac dysfunction (lowered ejection fraction, fractional shortening, shortening/relengthening velocity, peak shortening and electrically-stimulated intracellular Ca2+ rise, alongside increased LV end systolic diameter and relengthening duration), O2- buildup, apoptosis, necroptosis, and ferroptosis (downregulated GPX4 and SLC7A11), the responses of which were accentuated by FUNDC1 ablation. In particular, levels of lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) were upregulated following CLP procedure, with a more pronounced response in FUNDC1-/- mice. Co-immunoprecipitation and interaction interface revealed an evident interaction between FUNDC1 and ACSL4. In vitro studies revealed that the endotoxin lipopolysaccharide provoked cardiomyocyte contractile and lipid peroxidation anomalies, the responses were reversed by the mitophagy inducer oleanolic acid, inhibition of ACSL4 and ferroptosis. These findings favor a role for FUNDC1-ACSL4-ferroptosis cascade in septic cardiomyopathy.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China
| | - Huantao Hu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou,510630,China
| | - Bijun Luo
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China.
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
5
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
6
|
Chen Y, Zhao J, Ye H, Ceylan-Isik AF, Zhang B, Liu Q, Yang Y, Dong M, Luo B, Ren J. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci 2024; 336:122291. [PMID: 38030060 DOI: 10.1016/j.lfs.2023.122291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
AIMS Sepsis represents a profound proinflammatory response with a major contribution from oxidative injury. Here we evaluated possible impact of heavy metal scavenger metallothionein (MT) on endotoxin lipopolysaccharide (LPS)-induced oxidative stress, endoplasmic reticulum (ER) stress, autophagy, and ferroptosis enroute to myocardial injury along with interplay among these stress domains. MATERIALS AND METHODS Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ responses were monitored in myocardia from WT and transgenic mice with cardiac-selective MT overexpression challenged with LPS. Oxidative stress, stress signaling (p38, ERK, JNK), ER stress, autophagy, and ferroptosis were scrutinized. KEY FINDINGS RNAseq analysis revealed discrepant patterns in ferroptosis between LPS-exposed and normal murine hearts. LPS insult enlarged LV end systolic dimension, suppressed fractional shortening, ejection fraction, maximal velocity of shortening/relengthening and peak shortening, as well as elongated relengthening along with dampened intracellular Ca2+ release and reuptake. In addition, LPS triggered oxidative stress (lowered glutathione/glutathione disulfide ratio and O2- production), activation of stress cascades (p38, ERK, JNK), ER stress (GRP78, PERK, Gadd153, and IRE1α), inflammation (TNFα and iNOS), unchecked autophagy (LCB3, Beclin-1 and Atg7), ferroptosis (GPx4 and SLC7A11) and interstitial fibrosis. Although MT overexpression itself did not reveal response on cardiac function, it attenuated or mitigated LPS-evoked alterations in echocardiographic, cardiomyocyte contractile and intracellular Ca2+ characteristics, O2- production, TNFα level, ER stress and ferroptosis (without affecting autophagy, elevated AMP/ATP ratio, and iNOS). In vitro evidence revealed beneficial effects of suppression of oxidative stress, ER stress and ferroptosis against LPS-elicited myocardial anomalies. SIGNIFICANCE These data strongly support the therapeutic promises of MT and ferroptosis in septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jian Zhao
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Asli F Ceylan-Isik
- Ankara Yildirim Beyazit University, Faculty of Medicine, Department of Medical Pharmacology, Bilkent, Ankara, Turkey
| | - Bingfang Zhang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bijun Luo
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Xie H, Lin Y, Fang F. AR-A014418, a glycogen synthase kinase-3β inhibitor, mitigates lipopolysaccharide-induced inflammation in rat dental pulp stem cells via NLR family pyrin domain containing 3 inflammasome impairment. J Dent Sci 2023; 18:1534-1543. [PMID: 37799857 PMCID: PMC10548004 DOI: 10.1016/j.jds.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Cell pyroptosis and gingival inflammation have been implicated in periodontitis progression. Our previous study revealed that AR-A014418, a pharmacological inhibitor of glycogen synthase kinase-3β (GSK-3β), can enhance the migratory and osteogenic differentiation abilities of rat dental pulp stem cells (rDPSCs). The present study aimed to explore the effect of AR on the inflammation of rDPSCs. Materials and methods The primary rDPSCs were isolated and identified by flow cytometry, as well as Oil red O and Alizarin Red S staining. The rDPSCs were cultured and exposed to lipopolysaccharide (LPS) before treating them with different concentrations of AR-A014418. The cell viability was detected using the CCK-8 assay. The generation and secretion of pro-inflammatory cytokines (IL-18, TNF-α, L-1β, and IL-6) were examined by qPCR and ELISA, respectively. To investigate the activation of the NLRP3 inflammasome, the expression levels of pro-caspase 1, cleaved caspase 1, as well as NLRP3 were analyzed by western blotting and immunofluorescence, respectively. Results In the rDPSCs, LPS prohibited cell viability and enhanced the generation and secretion of pro-inflammatory cytokines. LPS upregulated NLRP3 and cleaved caspase-1 protein levels and promoted ASC speck formation in the rDPSCs. AR-A014418 administration effectively blocked the LPS-induced inflammation of the rDPSCs in a dose-dependent way. Mechanistically, AR-A014418 significantly restrained the up-regulation of NLRP3 and cleaved caspase-1 in LPS-treated rDPSCs. Conclusion Collectively, our findings suggest that AR-A014418 significantly mitigates LPS-induced inflammation of rDPSCs by blocking the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huilan Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Lin
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
8
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
9
|
Hobai IA. CARDIOMYOCYTE REPROGRAMMING IN ANIMAL MODELS OF SEPTIC SHOCK. Shock 2023; 59:200-213. [PMID: 36730767 DOI: 10.1097/shk.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. Among the latter, ROS- and estrogen-dependent p38 and ERK 1/2 are proinflammatory, whereas JNK may play antagonistic, anti-inflammatory roles. Nuclear factors induce the synthesis of cytokines, which can amplify the inflammatory signal in a paracrine fashion, and of several effector enzymes, such as NOS-2, NOX-1, and others, which are ultimately responsible for the degradation of cardiomyocyte contractility. In parallel, the downregulation of enzymes involved in oxidative phosphorylation causes metabolic reprogramming, followed by a decrease in ATP production and the release of fragmented mitochondrial DNA, which may augment the process in a positive feedback loop. Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, GRB 444, Boston, MA
| |
Collapse
|
10
|
Yao H, Liu S, Zhang Z, Xiao Z, Li D, Yi Z, Huang Y, Zhou H, Yang Y, Zhang W. A bibliometric analysis of sepsis-induced myocardial dysfunction from 2002 to 2022. Front Cardiovasc Med 2023; 10:1076093. [PMID: 36793476 PMCID: PMC9922860 DOI: 10.3389/fcvm.2023.1076093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis-induced myocardial dysfunction (SIMD) has a significant contribution to sepsis-caused death in critically ill patients. In recent years, the number of published articles related to SIMD has increased rapidly. However, there was no literature that systematically analyzed and evaluated these documents. Thus, we aimed to lay a foundation for researchers to quickly understand the research hotspots, evolution processes and development trends in the SIMD field via a bibliometric analysis. Methods Articles related to SIMD were retrieved and extracted from the Web of Science Core Collection on July 19th, 2022. CiteSpace (version 6.1.R2) and VOSviewer (version 1.6.18) were used for performing visual analysis. Results A total of 1,076 articles were included. The number of SIMD-related articles published each year has increased significantly. These publications mainly came from 56 countries, led by China and the USA, and 461 institutions, but without stable and close cooperation. As authors, Li Chuanfu published the most articles, while Rudiger Alain had the most co-citations. Shock was the journal with the most studies, and Critical Care Medicine was the most commonly cited journal. All keywords were grouped into six clusters, some of which represented the current and developing research directions of SIMD as the molecular mechanisms. Conclusion Research on SIMD is flourishing. It is necessary to strengthen cooperation and exchanges between countries and institutions. The molecular mechanisms of SIMD, especially oxidative stress and regulated cell death, will be critical subjects in the future.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyu Zhang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongping Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuyang Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Weizhi Zhang,
| |
Collapse
|
11
|
Wang H, Zhu J, Wei L, Wu S, Shang L, Ye X, Li S. TSLP protects against sepsis-induced liver injury by inducing autophagy via activation of the PI3K/Akt/STAT3 pathway. Pathol Res Pract 2022; 236:153979. [PMID: 35751928 DOI: 10.1016/j.prp.2022.153979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Liver injury is the main factor in multiple organ failure caused by sepsis. Thymic stromal lymphopoietin (TSLP) is derived from epithelial cells and plays an important role in inflammation, allergies and cancer. The role of TSLP in sepsis-induced liver injury (SILI) is unclear. The purpose of this study was to investigate the effect of TSLP on sepsis-induced liver injury and to clarify the mechanism. METHODS Wild-type (WT) mice and TSLPR knockout (TSLPR-/-) mice were subjected to cecal ligation and puncture (CLP) to generate a SILI model. Liver injury was assessed by measuring the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), histologic liver injury scores, hepatocyte death, and liver inflammatory factors. Signal pathways were explored in vivo to identify possible mechanisms for TSLP in SILI. RESULTS The expression of TSLP and TSLPR increased during SILI. Deletion of TSLPR exacerbated liver injury in terms of serum ALT, AST, histologic liver injury scores, and liver inflammatory factors. Compared with controls, administration of exogenous recombinant mouse TSLP reduced liver injury in WT mice during SILI, but failed to reduce liver injury in TSLPR-/- mice. TSLP induced autophagy in hepatocytes during SILI. Mechanistically, Akt and STAT3 were activated in WT mice during SILI. The opposite results were observed in TSLPR-/- mice. In addition, the protective effects of TSLP in WT mice were blocked by PI3K inhibitor, LY294002, during SILI. CONCLUSION These results suggest that TSLP can improve liver injury caused by sepsis and its specific mechanism may be related to inducing autophagy through the PI3K/Akt/STAT3 signaling pathway.
Collapse
Affiliation(s)
- He Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liuzi Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shaolei Wu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
12
|
Chan C, Zhang W, Xue Z, Fang Y, Qiu F, Pan J, Tian J. Near-Infrared Photoacoustic Probe for Reversible Imaging of the ClO -/GSH Redox Cycle In Vivo. Anal Chem 2022; 94:5918-5926. [PMID: 35385655 DOI: 10.1021/acs.analchem.2c00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Homeostasis of the cellular redox status plays an indispensable role in diverse physiological and pathological processes. Hypochlorite anion (ClO-) and glutathione (GSH) represent an important redox couple to reflect the redox status in living cells. The current cellular redox probes that detect either ClO- or GSH alone are not accurate enough to monitor the real redox status. In this work, a reversible photoacoustic (PA) probe, DiOH-BDP, has been synthesized and applied for PA imaging to monitor the ClO-/GSH couple redox state in an acute liver injury (ALI) model. The near-infrared PA probe DiOH-BDP features significant changes in absorption between 648 and 795 nm during the selective oxidation by ClO- and the reductive recovery of GSH, which exhibits excellent selectivity and sensitivity toward ClO- and GSH with the limits of detection of 77.7 nM and 7.2 μM, respectively. Additionally, using PA770 as a detection signal allows for the in situ monitoring of the ClO-/GSH couple, which realizes mapping of the localized redox status of the ALI by the virtue of a PA imaging system. Therefore, the probe provides a potentially technical tool to understand redox imbalance-related pathological formation processes.
Collapse
Affiliation(s)
- Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
13
|
Hong X, Wang J, Li S, Zhao Z, Feng Z. RETRACTED: MicroRNA-375-3p in endothelial progenitor cells-derived extracellular vesicles relieves myocardial injury in septic rats via BRD4-mediated PI3K/AKT signaling pathway. Int Immunopharmacol 2021; 96:107740. [PMID: 34020393 DOI: 10.1016/j.intimp.2021.107740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1E, 4A+F, 5A+B and Supplementary Fig. 1O+P, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Xiaoyang Hong
- PICU, The Seventh Medical Center, PLA General Hospital, Beijing 100700, China
| | - Jie Wang
- Surgical Pediatric Intensive Care Unit, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Shuanglei Li
- Cardiovascular Surgery Department, PLA General Hospital, Beijing 100853, China
| | - Zhe Zhao
- PICU, The Seventh Medical Center, PLA General Hospital, Beijing 100700, China
| | - Zhichun Feng
- PICU, The Seventh Medical Center, PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
14
|
Cortés-Vieyra R, Silva-García O, Gómez-García A, Gutiérrez-Castellanos S, Álvarez-Aguilar C, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites. Front Immunol 2021; 12:675751. [PMID: 34017345 PMCID: PMC8129516 DOI: 10.3389/fimmu.2021.675751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Knowledge of glycogen synthase kinase 3β (GSK3β) activity and the molecules identified that regulate its function in infections caused by pathogenic microorganisms is crucial to understanding how the intensity of the inflammatory response can be controlled in the course of infections. In recent years many reports have described small molecular weight synthetic and natural compounds, proteins, and interference RNA with the potential to regulate the GSK3β activity and reduce the deleterious effects of the inflammatory response. Our goal in this review is to summarize the most recent advances on the role of GSK3β in the inflammatory response caused by bacteria, bacterial virulence factors (i.e. LPS and others), viruses, and parasites and how the regulation of its activity, mainly its inhibition by different type of molecules, modulates the inflammation.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Anel Gómez-García
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Sergio Gutiérrez-Castellanos
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Cleto Álvarez-Aguilar
- Coordinación Auxiliar Médica de Investigación en Salud, IMSS Michoacán, Morelia, Mexico
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
15
|
Zhao G, Wang X, Edwards S, Dai M, Li J, Wu L, Xu R, Han J, Yuan H. NLRX1 knockout aggravates lipopolysaccharide (LPS)-induced heart injury and attenuates the anti-LPS cardioprotective effect of CYP2J2/11,12-EET by enhancing activation of NF-κB and NLRP3 inflammasome. Eur J Pharmacol 2020; 881:173276. [PMID: 32574674 DOI: 10.1016/j.ejphar.2020.173276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
NLRX1 weakens lipopolysaccharide (LPS)-induced NF-κB activation on immune cells. Cytochrome P450 epoxygenase 2J2 (CYP2J2) attenuates LPS-induced cardiac injury by inhibiting NF-κB activation. However, it is still unclear whether NLRX1 could reduce LPS-induced heart damage and whether it is involved in the anti-LPS cardioprotective effect of CYP2J2. In this study, we found that NLRX1 knockout further exacerbated LPS-induced heart injury and up-regulated the proinflammatory cytokines in serum and heart tissue, and weakened the inhibitory effect of CYP2J2 on the harmful effects caused by LPS. We also found that LPS treatment induced ubiquitination of NLRX1 and promoted its binding to IKKα/β in myocardial tissue, which should theoretically inhibit NF-κB activation. However, LPS eventually leads to activation of NF-κB and NLRP3 inflammasome. Under the action of LPS, CYP2J2 further promoted the ubiquitination of NLRX1 and its binding to IKKα/β, impaired NF-κB activation and NLRP3 inflammasome activation. NLRX1 knockout notably aggravated LPS-induced NF-κB activation and NLRP3 inflammasome activation, and attenuated the inhibitory effects of CYP2J2 on NF-κB signal and NLRP3 inflammasome. More, CYP2J2 reduced LPS-induced reactive oxygen species (ROS) production and mitochondrial depolarization in heart cells, thereby inhibiting NLRP3 inflammasome activation. NLRX1 knockdown aggravated mitochondrial depolarization induced by LPS and weakened the protective effect of CYP2J2 on mitochondrial potential, although it had no significant effect on reactive oxygen species production. Together, these findings demonstrated that NLRX1 knockout aggravated LPS-induced heart injury and weakened the anti-LPS cardioprotective effect of CYP2J2 by enhancing activation of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China; Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China.
| | - Xiaoting Wang
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Meiyan Dai
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jianfeng Li
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Lujin Wu
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Rong Xu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jinxiang Han
- Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
16
|
Higher Epoxyeicosatrienoic Acids in Cardiomyocytes-Specific CYP2J2 Transgenic Mice Are Associated with Improved Myocardial Remodeling. Biomedicines 2020; 8:biomedicines8060144. [PMID: 32486275 PMCID: PMC7344501 DOI: 10.3390/biomedicines8060144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023] Open
Abstract
Elevated cis-epoxyeicosatrienoic acids (EETs) are known to be cardioprotective during ischemia-reperfusion injury in cardiomyocyte-specific overexpressing cytochrome P450 2J2 (CYP2J2) transgenic (Tr) mice. Using the same Tr mice, we measured changes in cardiac and erythrocyte membranes EETs following myocardial infarction (MI) to determine if they can serve as reporters for cardiac events. Cardiac function was also assessed in Tr vs. wild-type (WT) mice in correlation with EET changes two weeks following MI. Tr mice (N = 25, 16 female, nine male) had significantly higher cardiac cis- and trans-EETs compared to their WT counterparts (N = 25, 18 female, seven male). Total cardiac cis-EETs in Tr mice were positively correlated with total cis-EETs in erythrocyte membrane, but there was no correlation with trans-EETs or in WT mice. Following MI, cis- and trans-EETs were elevated in the erythrocyte membrane and cardiac tissue in Tr mice, accounting for the improved cardiac outcomes observed. Tr mice showed significantly better myocardial remodeling following MI, evidenced by higher % fractional shortening, smaller infarct size, lower reactive oxygen species (ROS) formation, reduced fibrosis and apoptosis, and lower pulmonary edema. A positive correlation between total cardiac cis-EETs and total erythrocyte membrane cis-EETs in a Tr mouse model suggests that erythrocyte cis-EETs may be used as predictive markers for cardiac events. All cis-EET regioisomers displayed similar trends following acute MI; however, the magnitude of change for each regioisomer was markedly different, warranting measurement of each individually.
Collapse
|
17
|
Peng P, Zhang X, Qi T, Cheng H, Kong Q, Liu L, Cao X, Ding Z. Alpha-lipoic acid inhibits lung cancer growth via mTOR-mediated autophagy inhibition. FEBS Open Bio 2020; 10:607-618. [PMID: 32090494 PMCID: PMC7137803 DOI: 10.1002/2211-5463.12820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death, and there remains a need for novel therapies for this malignancy. Here, we examined the effects of alpha‐lipoic acid (LA), a drug used for treating human diabetic complications, on lung cancer growth. We report that LA limited lung cancer growth in xenograft mice and reduced lung cancer A549 cell viability. We observed autophagy activation in human lung cancers, and report that LA inactivated autophagy in A549 cells. In addition, LA activated mammalian target of rapamycin (mTOR)/p70S6K signaling. Inhibition of mTOR with rapamycin reversed LA‐induced inactivation of autophagy and abolished LA‐induced suppression of A549 cell viability. Altogether, the data suggest that LA exerts an anti‐lung cancer effect through mTOR‐mediated inhibition of autophagy, and thus LA may have therapeutic potential for lung cancer management.
Collapse
Affiliation(s)
- Peipei Peng
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Xiaojin Zhang
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Tao Qi
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Hao Cheng
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Qiuyue Kong
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Li Liu
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsFirst Affiliated Hospital with Nanjing Medical UniversityChina
- Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityChina
| | - Xiaofei Cao
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| | - Zhengnian Ding
- Department of AnesthesiologyFirst Affiliated Hospital with Nanjing Medical UniversityChina
| |
Collapse
|
18
|
Shang X, Lin K, Yu R, Zhu P, Zhang Y, Wang L, Xu J, Chen K. Resveratrol Protects the Myocardium in Sepsis by Activating the Phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway and Inhibiting the Nuclear Factor-κB (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:9290-9298. [PMID: 31806860 PMCID: PMC6911307 DOI: 10.12659/msm.918369] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Sepsis combined with myocardial injury is an important cause of septic shock and multiple organ failure. However, the molecular mechanism of sepsis-induced myocardial dysfunction has not yet been thoroughly studied. Resveratrol has been an important research topic due its organ-protection function, but the specific mechanism is unclear. The purpose of this study was to explore the mechanism of organ injury in sepsis and to investigate the molecular mechanism of resveratrol in myocardial protection in sepsis. Material/Methods A classical Sprague-Dawley rat model of sepsis peritonitis was constructed for further experiments. The PI3K inhibitor LY294002 and resveratrol were used to intervene in a rat model of cardiomyopathy. HE staining was used to observe pathological changes. Cardiomyocyte apoptosis was detected by TUNEL assay. Western blot analysis was used to detect the level of maker proteins. Results The PI3K inhibitors could promote cardiac abnormalities and apoptosis, but resveratrol showed the opposite effect. The upregulation function of the PI3K inhibitor on the expression of NF-κB, IL-6, IL-1β, and TLR4 in LPS rats was not obvious, but the expression of TNF-α in LPS+LY294002 rats was increased by 22.85% compared with that in LPS rats (P<0.05). Compared with the LPS group, the expression of NF-κB, TNF-α, IL-6, IL-1β, and TLR4 in the LPS+resveratrol group was decreased. The expression of p-PI3K, p-AKT, and p-mTOR in LPS+LY294002 was reduced. The expression p-PI3K, p-AKT, and p-mTOR in the myocardium of the LPS+resveratrol group was increased. Conclusions Resveratrol can protect the myocardium in sepsis by activating the PI3K/AKT/mTOR signaling pathway and inhibiting the NF-κB signaling pathway and related inflammatory factors.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Cardiovascular Institute, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial, Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ling Wang
- Department of Pharmacy, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Kaihua Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
19
|
Jia J, Gong X, Zhao Y, Yang Z, Ji K, Luan T, Zang B, Li G. Autophagy Enhancing Contributes to the Organ Protective Effect of Alpha-Lipoic Acid in Septic Rats. Front Immunol 2019; 10:1491. [PMID: 31333648 PMCID: PMC6615199 DOI: 10.3389/fimmu.2019.01491] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022] Open
Abstract
Alpha-lipoic acid (ALA) reportedly has protective effects against sepsis, which is a leading cause of mortality worldwide and is associated with multiple organ dysfunction. The present study aimed to investigate further the possible action mechanisms of ALA. Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) in order to establish a sepsis model. The rats received an oral gavage of 200 mg/kg ALA or saline immediately after surgery. The heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and maximum rising and lowering rates of left ventricular pressure (±dp/dt) were examined for assessing the cardiac function. Blood urea nitrogen (BUN) and serum creatinine levels were assessed for evaluating renal function. Neutrophil gelatinase-associated lipocalin (NAGL) was examined for reflecting acute renal injury. Histopathological alterations of the small intestine were examined by hematoxylin-eosin staining. The ultrastructure of the small intestine and kidney was observed under electron microscopy. The levels of autophagy- and inflammation-associated proteins were determined via western blot analysis. The binding of nuclear factor-kappa B (NF-κB) to DNA was tested via an electrophoretic mobility shift assay. Cell apoptosis was examined using TUNEL staining. ALA treatment improved the survival rate, restored the loss of body weight and pro-inflammatory cytokines production in the serum of CLP-induced septic rats. ALA improved the cardiac and renal functions, downregulated the expression levels of interleukin-1β, tumor necrosis factor-α, and inducible nitric oxide synthase in the myocardium and small intestine of septic rats. ALA treatment also inactivated the NF-κB signaling pathway in the small intestine. An examination of autophagy showed that ALA increased the LC3II/I ratio, upregulated Atg5, Atg7, and beclin-1 and downregulated p62 protein levels in the myocardium, kidney, and small intestine of septic rats, and further promoted autophagosome accumulation in the kidney and small intestine. In addition, ALA could also reduce cell apoptosis in myocardium, kidney and small intestine tissues. These effects can be completely or party inhibited by 3-MA. Our findings suggest that autophagy enhancing may contribute to the organ protective effect of ALA in septic rats.
Collapse
Affiliation(s)
- Jia Jia
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Gong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyu Yang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaiqiang Ji
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guofu Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Ismawati, Mukhyarjon, Asni E, Romus I. The effect of alpha-lipoic acid on expression of VCAM-1 in type 2 diabetic rat. Anat Cell Biol 2019; 52:176-182. [PMID: 31338234 PMCID: PMC6624340 DOI: 10.5115/acb.2019.52.2.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/01/2019] [Accepted: 02/22/2019] [Indexed: 11/27/2022] Open
Abstract
Macrovascular diabetes complications are generally caused by a process called atherosclerosis. Evidences suggest that to initiate atherosclerosis, oxidated low-density lipoprotein (oxLDL) has to promote the expression of adhesion molecule. Several studies have evidenced the relevance of oxidative stress and atherosclerosis. However, the protective effect of alpha-lipoic acid (ALA) at atherosclerosis still needs to be explored. This study is aimed at investigating the concentration of plasma oxLDL and the expression of adhesion molecule of type 2 diabetes mellitus (DM) using rat model. Eighteen male rats were segregated into three groups labeled as control group, DM group and DM+ALA group. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg) followed by nicotinamide (110 mg/kg). ALA was administered at a dose of 60 mg/kg body weight/day throughout the feeding period of 3 weeks. Plasma oxLDL concentration was measured by enzyme-linked immunosorbent assays and expression of vascular cell adhesion molecule-1 (VCAM-1) was measured by immunohistochemistry. Expression of abdominal aortic adhesion molecule was assessed by calculation with Adobe Photoshop CS3. Analysis of variance test was used to compare the concentration of plasma oxLDL and expression of adhesion molecule. A P-value of 0.05 was considered statistically significant. Plasma oxLDL was lower in diabetic rat+ALA compared with the diabetic rat. Percentage of area VCAM-1 in DM+ALA group was lower than DM group. There were no significant differences between groups in intensity of VCAM-1. In conclusion, ALA showed protective effects against early atherosclerosis in diabetic rats.
Collapse
Affiliation(s)
- Ismawati
- Department of Biochemistry, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Mukhyarjon
- Department of Internal Medicine, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Enikarmila Asni
- Department of Biochemistry, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Ilhami Romus
- Department of Pathology Anatomy, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| |
Collapse
|
21
|
Chao CN, Lo JF, Khan FB, Day CH, Lai CH, Chen CH, Chen RJ, Viswanadha VP, Kuo CH, Huang CY. Tid1-S attenuates LPS-induced cardiac hypertrophy and apoptosis through ER-a mediated modulation of p-PI3K/p-Akt signaling cascade. J Cell Biochem 2019; 120:16703-16710. [PMID: 31081962 DOI: 10.1002/jcb.28928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/02/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Myocardial dysfunction is clinically relevant? repercussion that follows sepsis. Tid 1 protein has been implicated in many biological process. However, the role of Tid 1 in lipopolysaccharide (LPS)-induced cardiomyocyte hypertrophy and apoptosis remains elusive. In the current research endeavor, we have elucidated the role of Tid1-S on LPS-induced cardiac hypertrophy and apoptosis. Interestingly, we found that overexpression of Tid1-S suppressed TLR-4, NFATc3, and BNP protein expression which eventually led to inhibition of LPS-induced cardiac hypertrophy. Moreover, Tid1-S overexpression attenuated cellular apoptosis and activated survival proteins p-PI3K and pser473 Akt. Besides this, Tid1-S overexpression enhanced ER-a protein expression. Collectively, our data suggest that Tid1-S plausibly enhance ER-a protein and further activate p-PI3K and p ser473 Akt survival protein expression; which thereby led to attenuation of LPS-induced apoptosis in cardiomyoblast cells. Interestingly, our data suggest that Tid1-S is involved in attenuation of cardiomyoblast cells damages induced by LPS.
Collapse
Affiliation(s)
- Chun-Nun Chao
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Farheen B Khan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Cecilia H Day
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung, General Hospital, Taichung, Taiwan
| | - Chia-Hua Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
23
|
Li HM, Li KY, Xing Y, Tang XX, Yang DM, Dai XM, Lu DX, Wang HD. Phenylephrine Attenuated Sepsis-Induced Cardiac Inflammation and Mitochondrial Injury Through an Effect on the PI3K/Akt Signaling Pathway. J Cardiovasc Pharmacol 2019; 73:186-194. [PMID: 30839512 DOI: 10.1097/fjc.0000000000000651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether phenylephrine (PE) inhibits sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway. METHODS A rat model of sepsis was established by cecal ligation and puncture. PE and/or wortmannin (a PI3K inhibitor) were administered to investigate the role of PI3K/Akt signaling in mediating the effects of PE on inhibiting sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury. Hematoxylin-eosin staining, echocardiography, and Langendorff system were used to examine the myocardial injury and function. The concentrations of TNF-α and IL-6 were analyzed by enzyme-linked immunosorbent assay. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, mitochondria-related fusion/fission proteins, and PI3K/Akt signaling pathway-associated proteins were analyzed by Western blotting. RESULTS PE improved the cardiac function and survival in septic rats. PE decreased TNF-α, IL-6, ICAM-1, VCAM-1, and myeloperoxidase contents in the myocardium of septic rats. Meanwhile, PE increased the fusion-related proteins and decreased the fission-related proteins in the myocardial mitochondria of septic rats. On the other hand, PE activated the PI3K/Akt signaling pathway in the cecal ligation and puncture-treated rats, and all the protective effects of PE were abolished by wortmannin. CONCLUSIONS PE attenuated sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nitrite administration improves sepsis-induced myocardial and mitochondrial dysfunction by modulating stress signal responses. J Anesth 2017; 31:885-894. [PMID: 29063286 DOI: 10.1007/s00540-017-2417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE A specific therapeutic strategy in sepsis-induced myocardial dysfunction remains to be determined. Nitrite may have cardioprotective effects against sepsis-induced myocardial dysfunction. This study investigated the cardioprotective effects of nitrite on myocardial function, mitochondrial bioenergetics, and its underlying molecular mechanisms in severe septic rats. METHODS Sepsis was induced in male Wistar rats by cecal ligation and puncture (CLP). After CLP, we administered normal saline (NS group) or nitrite (nitrite group) subcutaneously. We administered nitrite at different doses (0.1-10 mg/kg) to ascertain the most effective dose and examined cardiac function in an isolated heart experiment 8 h after CLP. We investigated mitochondrial bioenergetics and molecular mechanisms underlying the administration of nitrite in vitro. RESULTS In isolated heart experiments, the left ventricular developed pressure (96 ± 5 mmHg) at a moderate nitrite dose (1.0 mg/kg) was significantly higher than that in the NS group (75 ± 4 mmHg, P < 0.05). Mitochondrial oxidative phosphorylation in the nitrite group was significantly higher than that in the NS group (P < 0.01). Immunoblotting revealed that nitrite significantly increased the phosphorylation of Akt (P < 0.05) and reduced the nuclear translocation of NF-κB (P < 0.05) compared with the NS group. Nitrite was also shown to improve the rate of survival in severe septic rats (P < 0.001). CONCLUSIONS Our results showed that a moderate nitrite dose improved septic myocardial dysfunction at organ, cellular, and molecular levels via modulation of stress signal responses, which resulted in an improvement in survival.
Collapse
|
25
|
Neuroglobin Protects Rats from Sepsis-Associated Encephalopathy via a PI3K/Akt/Bax-Dependent Mechanism. J Mol Neurosci 2017; 63:1-8. [PMID: 28601977 DOI: 10.1007/s12031-017-0933-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and has no generally accepted treatment due to its complicated pathophysiology. Previously, we demonstrated the protective role of neuroglobin (Ngb) in SAE rats, but the exact mechanism has not been determined. To investigate the potential neuroprotective roles and mechanisms of Ngb, Sprague-Dawley rats were used. Overexpression of Ngb via intracerebroventricular injection with Ngb plasmids attenuated brain damage assessed by hematoxylin and eosin (HE) staining and neurological dysfunction assessed by Morris water maze test. Western blot analysis also showed that the phosphorylation of Akt increased and the protein level of Bax decreased. Furthermore, the protective effect can be abolished by PI3K/Akt pathway inhibitor LY294002. Our results demonstrate that Ngb can protect rats from SAE via a PI3K/Akt/Bax-dependent mechanism.
Collapse
|
26
|
Okuhara Y, Yokoe S, Iwasaku T, Eguchi A, Nishimura K, Li W, Oboshi M, Naito Y, Mano T, Asahi M, Okamura H, Masuyama T, Hirotani S. Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity. Int J Cardiol 2017; 243:396-403. [PMID: 28526544 DOI: 10.1016/j.ijcard.2017.04.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-18 (IL-18) neutralization protects against lipopolysaccharide (LPS)-induced injuries, including myocardial dysfunction. However, the mechanism is yet to be fully elucidated. The aim of the present study was to determine whether IL-18 gene deletion prevents sepsis-induced cardiac dysfunction and to elucidate the potential mechanisms underlying IL-18-mediated cardiotoxicity by LPS. METHODS AND RESULTS Ten-week-old male wild-type (WT) and IL-18 knockout (IL-18 KO) mice were intraperitoneally administered LPS. Serial echocardiography showed better systolic pump function and less left ventricular (LV) dilatation in LPS-treated IL-18 KO mice compared with those in LPS-treated WT mice. LPS treatment significantly decreased the levels of phospholamban (PLN) and Akt phosphorylation in WT mice compared with those in saline-treated WT mice, while the LPS-induced decrease in the phosphorylation levels was attenuated in IL-18 KO mice compared with that in WT mice. IL-18 gene deletion also attenuated an LPS-induced increase of type 2 protein phosphatase 2A (PP2A) activity, a molecule that dephosphorylates PLN and Akt. There was no difference in type 1 protein phosphatase (PP1) activity. To address whether IL-18 affects PLN and Akt phosphorylation via PP2A activation in cardiomyocytes, rat neonatal cardiac myocytes were cultured and stimulated using 100ng/ml of recombinant rat IL-18. Exogenous IL-18 decreased the level of PLN and Akt phosphorylation in cardiomyocytes. PP2A activity but not PP1 activity was increased by IL-18 stimulation in cardiomyocytes. CONCLUSIONS IL-18 plays a pivotal role in advancing sepsis-induced cardiac dysfunction, and the mechanisms underlying IL-18-mediated cardiotoxicity potentially involve the regulation of PLN and Akt phosphorylation through PP2A activity.
Collapse
Affiliation(s)
- Yoshitaka Okuhara
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Toshihiro Iwasaku
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiyo Eguchi
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koichi Nishimura
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Makiko Oboshi
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshiro Naito
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshiaki Mano
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Hirotani
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
27
|
Fan TT, Feng XY, Yang YZ, Gao F, Liu Q. Downregulation of PI3K-γ in a mouse model of sepsis-induced myocardial dysfunction. Cytokine 2017; 96:208-216. [PMID: 28458167 DOI: 10.1016/j.cyto.2017.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/25/2023]
Abstract
A key component during sepsis is the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, of which the PI3K-γ isoform is a major regulator in many inflammatory responses. However, the role of PI3K-γ in the development of sepsis-induced myocardial dysfunction (SIMD) is unknown. In this study, we established a model of SIMD induced by lipopolysaccharide (LPS), subsequently used the selective inhibitor LY294002 and AS605240 to block the effect of PI3K and PI3K-γ, respectively. Cardiac function was evaluated by echocardiography, hearts were obtained for histological and protein expression examinations. ELISA was used to measure the serum levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), cardiac troponin I (cTnI) and heart-type fatty acid binding protein (H-FABP). LPS-treated mice showed an increase to cardiac inflammation, myocardial damage and production of TNF-α, IL-6, NF-κB, cTnI and H-FABP. Administration of AS605240 to LPS-treated mice reduced some patho-physiological characteristics of SIMD and reduced TNF-α, IL-6, cTnI and H-FABP production. However, administration of LY294002 did not improve those same conditions. The results showed that PI3K-γ is likely a crucial element in SIMD by regulating the PI3K/Akt pathway, and become a new marker of myocardial injury. Inhibition of PI3K-γ might be a potential therapeutic target in SIMD.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, Chengdu First People's Hospital, Sichuan 610016, PR China
| | - Xuan-Yun Feng
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan-Zheng Yang
- Department of Critical Care Medicine, The Affiliated Hospital of Hainan Medical College, Hainan 571101, PR China
| | - Feng Gao
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
28
|
Hwang HR, Tai BY, Cheng PY, Chen PN, Sung PJ, Wen ZH, Hsu CH. Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes. Mar Drugs 2017; 15:md15020025. [PMID: 28125029 PMCID: PMC5334606 DOI: 10.3390/md15020025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating LPS-induced arrhythmogenesis.
Collapse
Affiliation(s)
- Hwong-Ru Hwang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Cardiology, Department of Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Buh-Yuan Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Department of Traditional Medicine, Jianan Mental Hospital, Tainan 717, Taiwan.
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics and Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Nan Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 804, Taiwan.
| | - Chih-Hsueng Hsu
- Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
29
|
Oyagbemi AA, Bester D, Esterhuyse J, Farombi EO. Kolaviron, a biflavonoid of Garcinia kola seed mitigates ischemic/reperfusion injury by modulation of pro-survival and apoptotic signaling pathways. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 6:42-49. [PMID: 28163959 PMCID: PMC5289087 DOI: 10.5455/jice.20160923100223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Objective: The study was designed to investigate the ameliorative effect of Kolaviron (KV) on ischemic/reperfusion injury in experimental animal models. Materials and Methods: Male Wistar rats were randomly divided into two groups: Group 1 received corn oil as a vehicle and rats in Group 2 were administered KV at 200 mg/kg for 4 weeks. The rats were fed with rat standard chow pellet and water administered ad libitum. After 4 weeks of KV administration, hearts were excised and mounted on the working heart perfusion system. Western blot analysis for protein expression was carried out on frozen heart samples. Results: There was significant (P < 0.05) reduction in the activity of catalase, superoxide dismutase, and glutathione peroxidase with concomitant reduction in oxygen radical absorbance capacity in ischemic rat heart of control compared to group pre-treated with KV, respectively. Similarly, intracellular reactive oxygen species and malondialdehyde were significantly elevated in control compared to KV pre-treated rats. KV significantly increased total Akt/protein kinase B (PKB), phosphorylated Akt/PKB at serine 473 and also caused a significant reduction in p38 mitogen-activated protein kinase, Caspase 3, and cleaved poly adenosine diphosphate ribose polymerase. Conclusion: Taken together, KV offered significant cardioprotection via free radical scavenging activity and upregulation of pro-survival pathway.
Collapse
Affiliation(s)
| | - Dirk Bester
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Oxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Johan Esterhuyse
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Oxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Ebenezer Olatunde Farombi
- Department of Biochemistry, Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
30
|
Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol 2016; 81:307-314. [PMID: 27477311 DOI: 10.1016/j.biocel.2016.07.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Septic patients with myocardial dysfunction have a 3-fold increase in mortality compared with patients without cardiovascular impairment, and usually show myocarditis, disruption of the contractile apparatus, increased amounts of interstitial collagen, and damaged mitochondria. The presence of nitric oxide and cytokines in cardiac tissue constitute the molecular markers and the intracellular messengers of inflammatory conditions in the heart due to the onset of sepsis and endotoxemia, derived from the nuclear factor-κB pathway activation and proinflammatory gene transcription. Sepsis occurs with an exacerbated inflammatory response that damages tissue mitochondria and impaired bioenergetic processes. The heart consumes 20-30 times its own weight in adenosine triphosphate every day, and 90% of this molecule is derived from mitochondrial oxidative phosphorylation. Cardiac energy management is comprised in sepsis and endotoxemia; both a deficit in energy production and alterations in the source of energy substrates are believed to be involved in impaired cardiac function. Although several hypotheses try to explain the molecular mechanisms underlying the complex condition of sepsis and endotoxemia, the current view is that these syndromes are the result of an intricate balance between prevailing levels of mitochondrial stress, biogenesis/autophagy signaling and mitochondria quality control processes, rather on a single factor. The aim of this review is to discuss current hypothesis of cardiac dysfunction related to energy metabolism and mitochondrial function in experimental models of sepsis and endotoxemia, and to introduce the importance of lipids (mainly cardiolipin) in the mechanism of cardiac energy mismanagement in these inflammatory conditions.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Tamara Vico
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Virginia Vanasco
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
31
|
Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull 2016; 124:278-85. [DOI: 10.1016/j.brainresbull.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 01/14/2023]
|
32
|
Jing Y, Cai X, Xu Y, Zhu C, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1720-1729. [PMID: 26855124 DOI: 10.1021/acs.jafc.5b05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.
Collapse
Affiliation(s)
- Yuanyuan Jing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xingcai Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yaqiong Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Canjun Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| |
Collapse
|
33
|
Okeke EB, Uzonna JE. In Search of a Cure for Sepsis: Taming the Monster in Critical Care Medicine. J Innate Immun 2016; 8:156-70. [PMID: 26771196 DOI: 10.1159/000442469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
In spite of over half a century of research, sepsis still constitutes a major problem in health care delivery. Although advances in research have significantly increased our knowledge of the pathogenesis of sepsis and resulted in better prognosis and improved survival outcome, sepsis still remains a major challenge in modern medicine with an increase in occurrence predicted and a huge socioeconomic burden. It is generally accepted that sepsis is due to an initial hyperinflammatory response. However, numerous efforts aimed at targeting the proinflammatory cytokine network have been largely unsuccessful and the search for novel potential therapeutic targets continues. Recent studies provide compelling evidence that dysregulated anti-inflammatory responses may also contribute to sepsis mortality. Our previous studies on the role of regulatory T cells and phosphoinositide 3-kinases in sepsis highlight immunological approaches that could be explored for sepsis therapy. In this article, we review the current and emerging concepts in sepsis, highlight novel potential therapeutic targets and immunological approaches for sepsis treatment and propose a biphasic treatment approach for management of the condition.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Man., Canada
| | | |
Collapse
|
34
|
Alpha-lipoic acid prevents endotoxic shock and multiple organ dysfunction syndrome induced by endotoxemia in rats. Shock 2016; 43:405-11. [PMID: 25514429 DOI: 10.1097/shk.0000000000000295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alpha-lipoic acid (ALA), a naturally occurring disulfide derivative of octanoic acid, serves as a strong antioxidant and has been reported to possess anti-inflammatory effects. The aim of the present study is to investigate the preventive and therapeutic effects of ALA on multiple organ dysfunction syndrome (MODS) caused by endotoxemia in rats. Male Wistar rats were intravenously infused with lipopolysaccharide (LPS) (10 mg/kg) to induce endotoxemia. Alpha-lipoic acid 10, 20, or 40 mg/kg was administered intravenously 60 min before (pretreatment) LPS challenge, and ALA 40 mg/kg was administered intravenously 30 min after (posttreatment) LPS challenge. Pretreatment and posttreatment with ALA significantly improved the deleterious hemodynamic changes 8 h after LPS challenge, including hypotension and bradycardia. Alpha-lipoic acid reduced the plasma levels of glutamic pyruvic transaminase, blood urea nitrogen, lactate dehydrogenase, tumor necrosis factor-α, nitric oxide metabolites, and thrombin-antithrombin complex, which increased markedly after LPS challenge. The induction of inducible nitric oxide synthase both in the liver and the lung and vascular superoxide anion production were also significantly suppressed by ALA. Moreover, ALA significantly attenuated LPS-induced caspase-3 activation in cardiomyocytes and improved survival rate. In conclusion, ALA effectively attenuated LPS-induced acute inflammatory response and improved MODS. The antioxidant and anti-inflammatory effects of ALA may contribute to these beneficial effects. Alpha-lipoic acid might be considered as a novel therapeutic strategy in the prevention of sepsis-induced MODS and inflammatory vascular diseases.
Collapse
|
35
|
Chen RC, Wang J, Yang L, Sun GB, Sun XB. Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice. Food Funct 2016; 7:2278-87. [DOI: 10.1039/c5fo01357g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ginsenoside Re protected against lipopolysaccharide-induced cardiac dysfunction in miceviaERs and PI3K/AKT mediated NFκB inhibition.
Collapse
Affiliation(s)
- Rong-Chang Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Longpo Yang
- Life Science and Environment Science Research Center
- Harbin University of Commerce
- Heilongjiang 150028
- China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Science
- Peking Union Medical College
| |
Collapse
|
36
|
An R, Zhao L, Xi C, Li H, Shen G, Liu H, Zhang S, Sun L. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 2015; 111:8. [PMID: 26671026 DOI: 10.1007/s00395-015-0526-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Myocardial dysfunction is an important manifestation of sepsis. Previous studies suggest that melatonin is protective against sepsis. In addition, activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been reported to be beneficial in sepsis. However, the role of PI3K/Akt signaling in the protective effect of melatonin against sepsis-induced myocardial dysfunction remains unclear. Here, LY294002, a PI3K inhibitor, was used to investigate the role of PI3K/Akt signaling in mediating the effects of melatonin on sepsis-induced myocardial injury. Cecal ligation and puncture (CLP) surgery was used to establish a rat model of sepsis. Melatonin was administrated to rats intraperitoneally (30 mg/kg). The survival rate, measures of myocardial injury and cardiac performance, serum lactate dehydrogenase level, inflammatory cytokine levels, oxidative stress level, and the extent of myocardial apoptosis were assessed. The results suggest that melatonin administration after CLP surgery improved survival rates and cardiac function, attenuated myocardial injury and apoptosis, and decreased the serum lactate dehydrogenase level. Melatonin decreased the production of the inflammatory cytokines TNF-α, IL-1β, and HMGB1, increased anti-oxidant enzyme activity, and decreased the expression of markers of oxidative damage. Levels of phosphorylated Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax were measured by Western blot. Melatonin increased p-Akt levels, which suggests Akt pathway activation. Melatonin induced higher Bcl-2 expression and lower Bax expression, suggesting inhibition of apoptosis. All protective effects of melatonin were abolished by LY294002, the PI3K inhibitor. In conclusion, our results demonstrate that melatonin mitigates myocardial injury in sepsis via PI3K/Akt signaling activation.
Collapse
Affiliation(s)
- Rui An
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Cong Xi
- Department of Neurology, Baoji City People's Hospital, Baoji, 721000, China
| | - Haixun Li
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guohong Shen
- Integrated Branch, Armed Police Corps Hospital of Shanxi Province, Taiyuan, 030006, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Shumiao Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Sun
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
37
|
Li YH, He Q, Yu JZ, Liu CY, Feng L, Chai Z, Wang Q, Zhang HZ, Zhang GX, Xiao BG, Ma CG. Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson's disease model. Metab Brain Dis 2015; 30:1217-26. [PMID: 26084861 DOI: 10.1007/s11011-015-9698-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/04/2015] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease of the central nervous system (CNS), characterized by a loss of dopaminergic neurons, which is thought to be caused by both genetic and environmental factors. Recent findings suggest that neuroinflammation may be a pathogenic factor in the onset and progression of sporadic PD. Here we explore the potential therapeutic effect of lipoic acid (LA) on a lipolysaccharide (LPS)-induced inflammatory PD model. Our results for the first time showed that LA administration improved motor dysfunction, protected dopaminergic neurons loss, and decreased α-synuclein accumulation in the substantia nigra (SN) area of brain. Further, LA inhibited the activation of nuclear factor-κB (NF-κB) and expression of pro-inflammatory molecules in M1 microglia. Taken together, these results suggest that LA may exert a profound neuroprotective effect and is thus a promising anti-neuroinflammatory and anti-oxidative agent for halting the progression of PD. Interventions aimed at either blocking microglia-derived inflammatory mediators or modulating the polarization of microglia may be potentially useful therapies that are worth further investigation.
Collapse
Affiliation(s)
- Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao P, Wang Y, Zeng S, Lu J, Jiang TM, Li YM. Protective effect of astragaloside IV on lipopolysaccharide-induced cardiac dysfunction via downregulation of inflammatory signaling in mice. Immunopharmacol Immunotoxicol 2015; 37:428-33. [DOI: 10.3109/08923973.2015.1080266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Huang L, Zheng M, Zhou Y, Zhu J, Zhu M, Zhao F, Cui S. Tanshinone IIA attenuates cardiac dysfunction in endotoxin-induced septic mice via inhibition of NADPH oxidase 2-related signaling pathway. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1. Immunol Lett 2015; 165:10-9. [PMID: 25794633 DOI: 10.1016/j.imlet.2015.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
Toll-like receptors (TLRs) recognize a wide range of pathogen-associated molecular patterns (PAMP) and are preferentially expressed in innate immune cells. TLR-mediated activation of these cells activates the adaptive immune system. However, it has become clear that TLRs are not only expressed but also functionally active in CD4 T cells. The intestines are continuously exposed to TLR ligands, including lipopolysaccharide (LPS), a TLR4 ligand, and TLR4 is expressed higher in Th17 cells than Th1 and Th2 cells. In addition, development of Th17 cells in the gut mucosa is more dependent on gut microbiota than Th1, Th2, and Treg. Thus, we examined whether LPS directly regulates Th17 differentiation. LPS directly stimulated Th17 differentiation in vitro. In Th17 cells, LPS increased phosphorylation of NF-κB1, resulting in an increase of p50, the processed form of NF-κB1, whereas it decreased phosphorylation of RelB, leading to the up-regulation of RelB. Subcutaneous injection of LPS increased the frequency of IL-17 producing cells in inguinal lymph nodes, worsening experimental autoimmune encephalomyelitis (EAE). Additionally, expression of TLR1, TLR2, TLR4, and TLR5 was reduced upon T cell activation and LPS showed modest effect on TLR4 expression. These findings provide the first evidence that TLR4 activation directly regulate Th17 differentiation.
Collapse
|
41
|
Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2) mimetic scorpiand-like Mn (II) complex. PLoS One 2015; 10:e0119102. [PMID: 25742129 PMCID: PMC4351122 DOI: 10.1371/journal.pone.0119102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/28/2015] [Indexed: 01/22/2023] Open
Abstract
Background The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. Background/Methodology We have recently reported that two SOD mimetic compounds, the MnII complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q MnII complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin. Principal Findings In this report we show that the MnII complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules. Conclusion/Significance The effective anti-inflammatory activity of the MnII complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.
Collapse
|
42
|
Rubicon Deficiency Enhances Cardiac Autophagy and Protects Mice From Lipopolysaccharide-induced Lethality and Reduction in Stroke Volume. J Cardiovasc Pharmacol 2015; 65:252-61. [DOI: 10.1097/fjc.0000000000000188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Hwang JS, An JM, Cho H, Lee SH, Park JH, Han IO. A dopamine-alpha-lipoic acid hybridization compound and its acetylated form inhibit LPS-mediated inflammation. Eur J Pharmacol 2015; 746:41-9. [DOI: 10.1016/j.ejphar.2014.10.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
|
44
|
Catalpol Inhibited the Proliferation of T24 Human Bladder Cancer Cells by Inducing Apoptosis Through the Blockade of Akt-Mediated Anti-apoptotic Signaling. Cell Biochem Biophys 2014; 71:1349-56. [DOI: 10.1007/s12013-014-0355-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Jiang S, Zhu W, Wu J, Li C, Zhang X, Li Y, Cao K, Liu L. α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicol In Vitro 2014; 28:1461-73. [PMID: 25193743 DOI: 10.1016/j.tiv.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/05/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
It has been long noted that cardiac cell apoptosis provoked by excessive production of nitric oxide (NO) plays important roles in the pathogenesis of variant cardiac diseases. Attenuation of NO-induced injury would be an alternative therapeutic approach for the development of cardiac disorders. This study investigated the effects of α-lipoic acid (LA) on the injury induced by sodium nitroprusside (SNP), a widely used NO donor, in rat cardiomyoblast H9c2 cells. SNP challenge significantly decreased cell viability and increased apoptosis, as evidenced by morphological abnormalities, nuclear condensation and decline of mitochondrial potential (ΔΨm). These changes induced by SNP were significantly attenuated by LA pretreatment. Furthermore, LA pretreatment prevented the SNP-triggered suppression of Akt and Gsk-3β activation. Blockade of Akt activation with triciribin (API) completely abolished the cytoprotection of LA against SNP challenge. In addition, LA moderately increased intracellular ROS production. Interestingly, inhibition of ROS with N-acetylcysteine abrogated Akt/Gsk-3β activation and the LA-induced cytoprotection following SNP stimulation. Taken together, the results indicate that LA protected the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt/Gsk-3β signaling in a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weina Zhu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, United States
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Kejiang Cao
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
46
|
Shen X, Yang Q, Jin P, Li X. Alpha-lipoic acid enhances DMSO-induced cardiomyogenic differentiation of P19 cells. Acta Biochim Biophys Sin (Shanghai) 2014; 46:766-73. [PMID: 25112287 DOI: 10.1093/abbs/gmu057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha-lipoic acid (α-LA) is a potent antioxidant that acts as an essential cofactor in mitochondrial dehydrogenase reactions. α-LA has been shown to possess anti-inflammatory and cytoprotective properties, and is used to improve symptoms of diabetic neuropathy. However, the role of α-LA in stem cell differentiation and the underlying molecular mechanisms remain unknown. In the present study, we showed that α-LA significantly promoted dimethyl sulfoxide (DMSO)-induced cardiomyogenic differentiation of mouse embryonic carcinoma P19 cells. α-LA dose dependently increased beating embryonic body (EB) percentages of DMSO-differentiated P19 cells. The expressions of cardiac specific genes TNNT2, Nkx2.5, GATA4, MEF2C, and MLC2V and cardiac isoform of troponin T (cTnT)-positively stained cell population were significantly up-regulated by the addition of α-LA. We also demonstrated that the differentiation time after EB formation was critical for α-LA to take effect. Interestingly, without DMSO treatment, α-LA did not stimulate the cardiomyogenic differentiation of P19 cells. Further investigation indicated that collagen synthesis-enhancing activity, instead of the antioxidative property, plays a significant role in the cardiomyogenic differentiation-promoting function of α-LA. These findings highlight the potential use of α-LA for regenerative therapies in heart diseases.
Collapse
Affiliation(s)
- Xinghua Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qinghui Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peng Jin
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
47
|
Xia X, Su C, Fu J, Zhang P, Jiang X, Xu D, Hu L, Song E, Song Y. Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: studies on oxidative stress, inflammation and apoptosis. Int Immunopharmacol 2014; 22:293-302. [PMID: 25046589 DOI: 10.1016/j.intimp.2014.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Abstract
This study investigated the protective effect of α-lipoic acid (LA) on lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced fulminant hepatic failure in mice. First, we found that LA markedly reduced LPS/d-GalN-induced increases in serum ALT and AST activities, which were supplemented with histopathological examination, suggested that LA has a protective effect on this model of hepatic damage. Livers challenged with LPS/d-GalN exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. On the contrary, these pathological alterations were ameliorated by LA treatment. Next, we found that ROS and TBARS levels were increased in LPS/d-GalN treated liver homogenates, which were attenuated by LA administration. Consistently, decreases in hepatic CAT and GPx activities were observed in LPS/d-GalN group and were significantly restored by LA administration. Moreover, pretreatment with LA markedly reduced LPS/d-GalN-induced iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6 expressions. Furthermore, our data showed that TUNEL-positive cells increased in LPS/d-GalN-treated mice liver which was counteracted by LA administration. LPS/d-GalN induced apoptosis of hepatocytes, as estimated by caspase 3, caspase 8 and caspase 9 activations. Also, the increasing of Bax and the decreasing of Bcl-2 expressions also supported LPS/d-GalN induced apoptosis. Interestingly, LA marked relieved these apoptotic features. Taking together, our results indicated that LA plays an important role on LPS/d-GalN-induced fulminant hepatic failure through its antioxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoji Jiang
- Department of Rehabilitation and Physiotherapy, No. 324 Hospital of PLA, Chongqing 400020, People's Republic of China
| | - Demei Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Lihua Hu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
48
|
Liu P, He S, Gao J, Li J, Fan X, Xiao YB. Liver X receptor activation protects against inflammation and enhances autophagy in myocardium of neonatal mouse challenged by lipopolysaccharides. Biosci Biotechnol Biochem 2014; 78:1504-1513. [PMID: 25209497 DOI: 10.1080/09168451.2014.923295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXRs) has been emerged as negative regulators of cardiomyocytic inflammation. The cellular process of autophagy is believed to play a protective role in myocardium during the inflammatory status. In this study, we investigated the role of LXRs agonist TO901317 (TO) on lipopolysaccharides (LPS)-induced myocardial inflammation and autophagy. The results showed that TO pretreatment significantly reduced the LPS-induced infiltration of inflammatory cells, elevation of NF-κB protein, TNF-α, and IL-6 mRNA levels in the myocardium. Moreover, LPS stimulated autophagy in neonatal mice heart, and this effect was further enhanced by TO pretreatment as evidenced by increased LC3-II/GAPDH ratio increment. Furthermore, TUNEL assay revealed LPS stimulation also increased the number of apoptotic cells in the myocardium, and the increment was inhibited by TO pretreatment. Our findings suggested that attenuation of inflammation and apoptosis, and enhancement of autophagy by TO may contribute to the protection of myocardium under inflammatory condition.
Collapse
Affiliation(s)
- Peng Liu
- a Department of Cardiovascular Surgery , The Second Affiliated Hospital of the Third Military Medical University , Chongqing , China
| | | | | | | | | | | |
Collapse
|
49
|
Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. J Mol Cell Cardiol 2014; 74:76-87. [PMID: 24805195 DOI: 10.1016/j.yjmcc.2014.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/08/2014] [Accepted: 04/22/2014] [Indexed: 01/03/2023]
Abstract
Lipopolysaccharide (LPS), an essential component of the outer membrane of Gram-negative bacteria, plays a pivotal role in myocardial anomalies in sepsis. Recent evidence has depicted a role of Akt in LPS-induced cardiac sequelae although little information is available with regard to the contribution of Akt isoforms in the endotoxin-induced cardiac dysfunction. This study examined the effect of Akt2 knockout on LPS-induced myocardial contractile dysfunction and the underlying mechanism(s) with a focus on TNF receptor-associated factor 6 (TRAF6). Echocardiographic properties and cardiomyocyte contractile function [peak shortening (PS), maximal velocity of shortening/relengthening, time-to-PS, time-to-90% relengthening] were examined in wild-type and Akt2 knockout mice following LPS challenge (4mg/kg, 4h). LPS challenge enlarged LV end systolic diameter, reduced fractional shortening and cardiomyocyte contractile capacity, prolonged TR90, promoted apoptosis, upregulated caspase-3/-12, ubiquitin, and the ubiquitination E3 ligase TRAF6 as well as decreased mitochondrial membrane potential without affecting the levels of TNF-α, toll-like receptor 4 and the mitochondrial protein ALDH2. Although Akt2 knockout failed to affect myocardial function, apoptosis, and ubiquitination, it significantly attenuated or mitigated LPS-induced changes in cardiac contractile and mitochondrial function, apoptosis and ubiquitination but not TRAF6. LPS facilitated ubiquitination, phosphorylation of Akt, GSK3β and p38, the effect of which with the exception of p38 was ablated by Akt2 knockout. TRAF6 inhibitory peptide or RNA silencing significantly attenuated LPS-induced Akt2 ubiquitination, cardiac contractile anomalies and apoptosis. These data collectively suggested that TRAF6 may play a pivotal role in mediating LPS-induced cardiac injury via Akt2 ubiquitination.
Collapse
|
50
|
The effect of IGF-1 on symptoms of sleep deprivation in a rat model of inflammatory heart disease and metabolic syndrome. Biochem Biophys Res Commun 2014; 446:843-9. [DOI: 10.1016/j.bbrc.2014.02.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/19/2022]
|