1
|
Feng S, Lei N, Peng X, Wei X, Luo Y, Pu X, Yu X. Mangiferin- and GNPs/ECPP-loaded platform of UH with dual bi-directional dynamic modulation of stem cells/macrophages and osteoblasts/osteoclasts for the prevention of aseptic loosening. J Mater Chem B 2025; 13:695-710. [PMID: 39620621 DOI: 10.1039/d4tb02079k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Aseptic inflammation and osteolysis triggered by the phagocytosis of implant wear particles by macrophages are important reasons for aseptic loosening (AL) in total joint replacement, which ultimately leads to implant failure. Therefore, the development of implants with long-term effectiveness in preventing AL is a pressing issue. In contrast to the conventional idea of reducing the occurrence of AL through anti-inflammatory treatment, we prepared implants based on a novel concept: to prevent AL by returning the dynamic balance of osteogenesis/osteolysis through dynamic modulation, which is expected to completely resolve the problem of AL. In this study, a natural polyphenol, mangiferin (MAN), and a composite filler (GNPs/ECPP) were loaded into ultrahigh-molecular-weight polyethylene (UH) to construct a hip implant component with the ability to prevent AL. This modified implant was able to improve the oxidation resistance and wear resistance of implants, which could reduce the production of wear particles, recruit BMSCs as well as promote their proliferation/osteogenic differentiation and inhibit macrophage activity and RANKL-induced macrophage osteoclast differentiation in vitro. These effects suggest that this modified implant has achieved the dual bi-directional dynamic modulation of stem cells/macrophages and osteoblasts/osteoclasts for the prevention of aseptic loosening. Notably, in vivo experiments for implantation of wear-particle-coated titanium rods demonstrated that wear particles from the prepared implant significantly promoted the osseointegration capacity of implanted prosthesis (titanium rod) and effectively inhibited peri-prosthesis osteolysis. This work provides a new concept and presents a promising way for the development of durable implant components with long-term protection against AL.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Luo K, Geng Y, Oosterhuis D, de Meijer VE, Olinga P. Evaluating the antifibrotic potential of naringenin, asiatic acid, and icariin using murine and human precision-cut liver slices. Physiol Rep 2024; 12:e16136. [PMID: 39501714 PMCID: PMC11538472 DOI: 10.14814/phy2.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 11/09/2024] Open
Abstract
Liver fibrosis is an exaggerated wound healing response defined by the excessive accumulation of extracellular matrix. This study investigated the antifibrotic potential of naringenin (NRG), asiatic acid (AA), and icariin (ICA) using murine and human precision-cut liver slices (PCLS). These natural products have shown promise in animal models, but human data are lacking. In this study, PCLS prepared from male mouse liver tissue (mPCLS), healthy human liver tissue (hhPCLS), and cirrhotic human liver tissue (chPCLS) were cultured for 48 h with varying concentrations of the three compounds. Our findings indicate that NRG reduced collagen type 1 (COL1A1) expression in a concentration-dependent manner in both mPCLS and chPCLS, decreased fibrosis-related gene expression, and significantly lowered pro-collagen type 1 (PCOL1A1) levels in the culture medium by 54 ± 21% (mPCLS) and 78 ± 35% (chPCLS). Furthermore, NRG effectively inhibited IL-1β and TNF-α in mPCLS and IL-1β in chPCLS on both gene and protein levels. AA specifically reduced COL1A1 and PCOL1A1 in chPCLS, while ICA selectively downregulated Col1a1 and Acta2 gene expression in mPCLS. This study suggests NRG's potential as an effective antifibrotic agent, warranting further investigation into its mechanisms and therapeutic applications in liver fibrosis.
Collapse
Affiliation(s)
- Ke Luo
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Yana Geng
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, University of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
3
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
4
|
Su L, Wei ZF, Pi CC, Qin TX, Song F, Zhang YW, Gao SJ. Icariin protects against acute graft-versus-host disease while preserving graft-versus-leukemia activity after allogeneic hematopoietic stem cell transplantation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155901. [PMID: 39067193 DOI: 10.1016/j.phymed.2024.155901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD), which is mainly mediated by allogeneic T cells, is a decisive factor in the success of allogeneic hematopoietic stem cell transplantation (allo-HCT). Prophylaxis for aGVHD in clinical patients is unsatisfactory, and there is still a huge unmet need for novel approaches. Icariin (ICA) shows potent anti-inflammatory activity and suppresses T cell-mediated immune responses. Thus, ICA is a potential drug for the prevention of aGVHD. However, there is no data assessing the impact of ICA on aGVHD after allo-HCT. PURPOSE This study aimed to investigate the protective effect of ICA against aGVHD and its mechanisms. Moreover, the impact of ICA on the graft-versus-leukemia (GVL) effect and engraftment of donor hematopoietic and immune cells were assessed. METHODS Different murine models of allo-HCT were developed to study the influence of the ICA on GVHD and GVL effect. Flow cytometry was used to analyze the growth of leukemia cells, alterations in different immune cells, and apoptosis. Cell proliferation was determined using a CCK-8 assay. RNA sequencing and quantitative proteomic analysis were performed to elucidate the underlying mechanisms, which were further verified by polymerase chain reaction or functional experiments. RESULTS Different concentrations of ICA exhibited opposite effects: low-concentration ICA promoted, while high concentrations suppressed the proliferation and function of T cells. A high dose of ICA administration during days +3 to +5 post-allo-HCT can alleviate murine aGVHD but does not affect the course of chronic GVHD (cGVHD), the GVL effect against both acute myeloid and lymphoblastic leukemia, or the recovery of donor hematological and immune cells. ICA extensively represses the expansion, function, and infiltration of donor alloreactive T cells, while preserving regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC). Quantitative proteomic analysis showed that downregulation of integrin-linked kinase (ILK) and lymphocyte cytosolic protein 2 (LCP2) expression was possibly associated with ICA-mediated aGVHD protective effects. Furthermore, an inhibitor of ILK, which can alleviate murine aGVHD administered early after allo-HCT. CONCLUSION These findings suggest that the bioactivities of ICA are associated with its concentration and that ICA can effectively mitigate aGVHD without losing GVL activity or engraftment of donor hematopoietic and immune cells. Thus, ICA may be a promising drug for preventing aGVHD in clinical settings.
Collapse
Affiliation(s)
- Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhi-Feng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen-Chen Pi
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Tian-Xue Qin
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China
| | - Fei Song
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China
| | - Yun-Wei Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Hematology Precision Medicine of Jilin Province, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Liu B, Wang C, Liu R, Xiang W, Yang C, Li D. Function and mechanism exploring of icariin in schizophrenia through network pharmacology. Brain Res 2024; 1835:148931. [PMID: 38604555 DOI: 10.1016/j.brainres.2024.148931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
This study aims to explore the therapeutic effect and possible mechanisms of icariin in schizophrenia. SD rats were divided into five groups, a control group, a MK801-induced schizophrenia model group, and three icariin treatment groups, with twelve rats in each group. Morris water maze and open field were used to observe the spatial learning and memory ability of rats. Compared with the control group, rats in the MK801-induced model group showed an increase in stereotypic behavior score, distance of spontaneous activities, escape latency, malondialdehyde (MDA) content, and IL-6, IL-1β, TNF-α expression, but a decrease in platform crossing times and superoxide dismutase (SOD) activity (P < 0.05). Furthermore, all the above changes of the model group were reversed after icariin treatment in a dose-dependent manner (P < 0.05). Network pharmacology found that icariin can exert anti-schizophrenic effects through some signaling pathways, such as relaxin, estrogen, and TNF signaling pathways. MAPK1, MAPK3, FOS, RELA, TNF, and JUN were the key targets of icariin on schizophrenia, and their expression was detected in animal models, which was consistent with the predicted results of network pharmacology. Icariin treatment may improve the spatial learning and memory ability of schizophrenic rats through TNF signaling pathway.
Collapse
Affiliation(s)
- Bing Liu
- Department of Psychiatry, Wuhan Wudong Hospital, Wuhan 430084, Hubei, China
| | - Chengqiang Wang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ruyuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Weilai Xiang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Chang Yang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China.
| | - Di Li
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
6
|
Song LJ, Han QX, Ding ZB, Liu K, Zhang XX, Guo MF, Ma D, Wang Q, Xiao BG, Ma CG. Icariin ameliorates the cuprizone-induced demyelination associated with antioxidation and anti-inflammation. Inflammopharmacology 2024; 32:809-823. [PMID: 38177566 DOI: 10.1007/s10787-023-01388-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 01/06/2024]
Abstract
The treatment of immunomodulation in multiple sclerosis (MS) can alleviate the severity and relapses. However, it cannot improve the neurological disability of patients due to a lack of myelin protection and regeneration. Therefore, remyelinating therapies may be one of the feasible strategies that can prevent axonal degeneration and restore neurological disability. Natural product icariin (ICA) is a flavonol compound extracted from epimedium flavonoids, which has neuroprotective effects in several models of neurological diseases. Here, we attempt to explore whether ICA has the potential to treat demyelination and its possible mechanisms of action using lipopolysaccharide-treated BV2 microglia, primary microglia, bone marrow-derived macrophages, and cuprizone-induced demyelination model. The indicators of oxidative stress and inflammatory response were evaluated using commercial kits. The results showed that ICA significantly reduced the levels of oxidative intermediates nitric oxide, hydrogen peroxide, malondialdehyde, and inflammatory cytokines TNF-α, IL-1β, and increased the levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase, and anti-inflammatory cytokines IL-10 and TGF-β in vitro cell experiments. In vivo demyelination model, ICA significantly alleviated the behavioral abnormalities and enhanced the integrated optical density/mm2 of Black Gold II and myelin basic protein myelin staining, accompanied by the inhibition of oxidative stress/inflammatory response. Immunohistochemical staining showed that ICA significantly induced the expression of nuclear factor erythroid derived 2/heme oxygenase-1 (Nrf2/HO-1) and inhibited the expression of toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB), which are two key signaling pathways in antioxidant and anti-inflammatory processes. Our results strongly suggest that ICA may be used as a potential agent to treat demyelination via regulating Nrf2/HO-1-mediated antioxidative stress and TLR4/NF-κB-mediated inflammatory responses.
Collapse
Affiliation(s)
- Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Kexin Liu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiao-Xu Zhang
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
| | - Min-Fang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Dong Ma
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China.
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China.
- Institute of Brain Science, Shanxi Datong University, Datong, China.
| |
Collapse
|
7
|
Dos Santos BL, Dos Santos CC, Soares JRP, da Silva KC, de Oliveira JVR, Pereira GS, de Araújo FM, Costa MDFD, David JM, da Silva VDA, Butt AM, Costa SL. The Flavonoid Agathisflavone Directs Brain Microglia/Macrophages to a Neuroprotective Anti-Inflammatory and Antioxidant State via Regulation of NLRP3 Inflammasome. Pharmaceutics 2023; 15:pharmaceutics15051410. [PMID: 37242652 DOI: 10.3390/pharmaceutics15051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Agathisflavone, purified from Cenostigma pyramidale (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear. Here we investigated the effects of agathisflavone in microglia submitted to inflammatory stimulus in view of elucidating mechanisms of neuroprotection. Microglia isolated from cortices of newborn Wistar rats were exposed to Escherichia coli lipopolysaccharide (LPS, 1 µg/mL) and treated or not with agathisflavone (1 µM). Neuronal PC12 cells were exposed to a conditioned medium from microglia (MCM) treated or not with agathisflavone. We observed that LPS induced microglia to assume an activated inflammatory state (increased CD68, more rounded/amoeboid phenotype). However, most microglia exposed to LPS and agathisflavone, presented an anti-inflammatory profile (increased CD206 and branched-phenotype), associated with the reduction in NO, GSH mRNA for NRLP3 inflammasome, IL1-β, IL-6, IL-18, TNF, CCL5, and CCL2. Molecular docking also showed that agathisflavone bound at the NLRP3 NACTH inhibitory domain. Moreover, in PC12 cell cultures exposed to the MCM previously treated with the flavonoid most cells preserved neurites and increased expression of β-tubulin III. Thus, these data reinforce the anti-inflammatory activity and the neuroprotective effect of agathisflavone, effects associated with the control of NLRP3 inflammasome, standing out it as a promising molecule for the treatment or prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Pernambuco, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Janaina R P Soares
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Karina C da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Juciele Valeria R de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Gabriele S Pereira
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Fillipe M de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Maria de Fátima D Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | - Victor Diogenes A da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| |
Collapse
|
8
|
Gao D, Zheng CC, Hao JP, Yang CC, Hu CY. Icariin ameliorates behavioral deficits and neuropathology in a mouse model of multiple sclerosis. Brain Res 2023; 1804:148267. [PMID: 36731819 DOI: 10.1016/j.brainres.2023.148267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Multiple sclerosis (MS) is a systemic inflammatory illness of the central nervous system that involves demyelinating lesions in the myelin-rich white matter and pathology in the grey matter. Despite significant advancements in drug research for MS, the disease's complex pathophysiology makes it difficult to treat the progressive forms of the disease. In this study, we identified a natural flavonoid compound icariin (ICA) as a potent effective agent for MS in ameliorating the deterioration of symptoms including the neurological deficit score and the body weight in a murine experimental autoimmune encephalomyelitis (EAE) model. These improvements were associated with decreased demyelination in the corpus callosum and neuron loss in the hippocampus and cortex confirmed by immunohistochemistry analysis. Meanwhile, it was observed that the activation of microglia in cerebral cortex and hippocampus were inhibited followed by the neuroinflammatory cytokines downregulation such as IL-1β, IL-6 and TNF-α after ICA treatment, which was probably attributable to the suppression of microglial NLRP3 inflammasome activation. Additionally, molecular docking also revealed the binding force of ICA to NLRP3 inflammasome protein complexes in vitro. Taken together, our findings have demonstrated that ICA, as pleiotropic agent, prevents EAE-induced MS by improving demyelination and neuron loss, which interferes with the neuroinflammation via microglial NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Ceng-Ceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Jin-Ping Hao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China.
| | - Chao-Ying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China; Phase I Clinical Trial Unit, Beijing Ditan Hospital Capital Medical University, Beijing 100015, China.
| |
Collapse
|
9
|
Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, Li X. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal 2023; 13:239-254. [PMID: 37102112 PMCID: PMC10123947 DOI: 10.1016/j.jpha.2022.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium (EF) and possess excellent therapeutic effects on various diseases. Encouragingly, in 2022, icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma (HCC) by National Medical Products Administration (NMPA) of China. Moreover, recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects. Nonetheless, both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content, poor bioavailability, and unfavorable in vivo delivery efficiency. Recently, various strategies, including enzyme engineering and nanotechnology, have been developed to increase productivity and activity, improve delivery efficiency, and enhance therapeutic effects of epimedium flavonoids. In this review, the structure-activity relationship of epimedium flavonoids is described. Then, enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed. The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized. Finally, the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.
Collapse
Affiliation(s)
- Yi Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiulan Luo
- College of Fashion & Design, Jiaxing Nanhu University, Jiaxing, Zhejiang, 314001, China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
10
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Khezri MR, Ghasemnejad-Berenji M. Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease. Neurochem Res 2022; 47:2954-2962. [PMID: 35802286 DOI: 10.1007/s11064-022-03667-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Bi Z, Zhang W, Yan X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother 2022; 151:113180. [PMID: 35676785 DOI: 10.1016/j.biopha.2022.113180] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Inflammation and immunity dysregulation have received widespread attention in recent years due to their occurrence in the pathophysiology of many conditions. In this regard, several pharmacological studies have been conducted aiming to evaluate the potential anti-inflammatory and immunomodulatory effects of phytochemicals. Epimedium, a traditional Chinese medicine, is often used as a tonic, aphrodisiac, and anti-rheumatic agent. Icariin (ICA) is the main active ingredient of Epimedium and is, once ingested, mainly metabolized into Icaritin (ICT). Data from in vitro and in vivo studies suggested that ICA and its metabolite (ICT) regulated the functions and activation of immune cells, modulated the release of inflammatory factors, and restored aberrant signaling pathways. ICA and ICT were also involved in anti-inflammatory and immune responses in several diseases, including multiple sclerosis, asthma, atherosclerosis, lupus nephritis, inflammatory bowel diseases, rheumatoid arthritis, and cancer. Yet, data showed that ICA and ICT exhibited similar but not identical pharmacokinetic properties. Therefore, based on their higher solubility and bioavailability, as well as trends indicating that single-ingredient compounds offer broader and safer therapeutic capabilities, ICA and ICT delivery systems and treatment represent interesting avenues with promising clinical applications. In this study, we reviewed the anti-inflammatory and immunomodulatory mechanisms, as well as the pharmacokinetic properties of ICA and its metabolite ICT.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Yan
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
13
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
14
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
15
|
Safari H, Anani Sarab G, Naseri M. Artemisia dracunculus L . modulates the immune system in a multiple sclerosis mouse model. Nutr Neurosci 2021; 24:843-849. [PMID: 31665978 DOI: 10.1080/1028415x.2019.1681742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Multiple sclerosis along with its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory and degenerative diseases of the central nervous system (CNS). Due to the unknown cause of the disease, the most common treatments of MS are targeted for the reduction of inflammation and the repairment of CNS tissue damage, especially myelin restoration. Due to the immune protective nature of herbs, it may be useful to evaluate the impact of herbs in the diet regimen of MS patients along with their immune-mediated effects. The purpose of this study was to investigate the effect of an aqueous extract of Artemisia dracunculus (Tarragon) on the treatment of EAE in C57BL/6 mice.Methods: In this experimental study, mice were divided into the following control, untreated EAE, and A. dracunculus treated EAE groups. EAE was induced by myelin oligodendrocyte glycoprotein (MOG35-55) in female C57BL/6 mice. The symptoms of the disease and the weight of the mice were recorded daily. On day 33 after EAE induction, the mice were sacrificed and the specimens were collected. Cell proliferation and cytokine release (TGF-β, IL-17 and IL-23) from mice cultured spleen cells was measured by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and ELISA respectively.Results: Administration of the extract of A. dracunculus mitigated EAE symptoms (P < 0.05). Furthermore, there was a reduction in the levels of inflammatory cytokines including IL-17 (P = 0.009) and IL-23 (P = 0.012) and confirmed increased serum antioxidant levels in A. dracunculus treated EAE mice (P = 0.008).Conclusions: These observations indicate that A. dracunculus extracts could reduce inflammatory cytokines and attenuate certain signs of EAE, suggesting the potential of a useful adjuvant therapy for MS.
Collapse
Affiliation(s)
- Hamidreza Safari
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
16
|
Syafni N, Devi S, Zimmermann-Klemd AM, Reinhardt JK, Danton O, Gründemann C, Hamburger M. Immunosuppressant flavonoids from Scutellaria baicalensis. Biomed Pharmacother 2021; 144:112326. [PMID: 34653757 DOI: 10.1016/j.biopha.2021.112326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Some plants used in Traditional Chinese Medicine serve as treatment for disease states where a suppression of the cellular immune response is desired. However, the compounds responsible for the immunosuppressant effects of these plants are not necessarily known. The immunosuppressant compounds in the roots of Scutellaria baicalensis, one of the most promising plants identified in a previous screening, were tracked by HPLC activity profiling and concomitant on-line spectroscopic analysis. Compounds were then isolated by preparative chromatography, and structures elucidated by spectroscopic methods. Twelve flavonoids (5-16) were identified from the active time windows, and structurally related flavones 2, 4, and 17, and flavanones 1 and 3 were isolated from adjacent fractions. All flavonoids possessed an unusual substitution pattern on the B-ring, with an absence of substituents at C-3 and C-4. Compounds 11, 13, 14, and 16 inhibited T-cell proliferation (IC50 values at 12.1-39 μM) at non-cytotoxic concentrations. The findings may support the use of S. baicalensis in disorders where a modulation of the cellular immune response is desirable.
Collapse
Affiliation(s)
- Nova Syafni
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Faculty of Pharmacy and Sumatran Biota Laboratory, University of Andalas, Padang, West Sumatra, Indonesia.
| | - Seema Devi
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Amy M Zimmermann-Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jakob K Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Ombeline Danton
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021; 13:v13071257. [PMID: 34203182 PMCID: PMC8310077 DOI: 10.3390/v13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.
Collapse
|
20
|
Guo YX, Zhang Y, Gao YH, Deng SY, Wang LM, Li CQ, Li X. Role of Plant-Derived Natural Compounds in Experimental Autoimmune Encephalomyelitis: A Review of the Treatment Potential and Development Strategy. Front Pharmacol 2021; 12:639651. [PMID: 34262447 PMCID: PMC8273381 DOI: 10.3389/fphar.2021.639651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is mainly mediated by pathological T-cells. Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and offers a theoretical basis for developing a novel therapy for MS. Good therapeutic effects have been observed after the administration of natural compounds and their derivatives as treatments for EAE. However, there has been a severe lag in the research and development of drug mechanisms related to MS. This review examines natural products that have the potential to effectively treat MS. The relevant data were consulted in order to elucidate the regulated mechanisms acting upon EAE by the flavonoids, glycosides, and triterpenoids derived from natural products. In addition, novel technologies such as network pharmacology, molecular docking, and high-throughput screening have been gradually applied in natural product development. The information provided herein can help improve targeting and timeliness for determining the specific mechanisms involved in natural medicine treatment and lay a foundation for further study.
Collapse
Affiliation(s)
- Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Si-Ying Deng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Mei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui-Qin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
21
|
Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int Immunopharmacol 2021; 95:107562. [PMID: 33770729 DOI: 10.1016/j.intimp.2021.107562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, are diseases resulting in neurological disabilities that are regarded as chronic, inflammatory, and autoimmune diseases of central nervous system (CNS). In this respect, the use of anti-inflammatory compounds including flavonoids, polyphenolic compounds abundantly found in vegetables and fruits, has proposed to combat MS to dampen the inflammation and thereby ameliorating the disease severity. The objective of this study was to clarify the probable therapeutic effect of flavonoids for treatment of MS. Therefore, only English published articles that reported the therapeutic effect of flavonoids alone or in combination with other anti-MS therapeutic agents on MS, were selected by searching scientific electronic databases including PubMed, Scopus and Web of Science. Evaluation of the selected researches (686) showed that a total of 13 studies were suitable to be included in this systematic review. Interestingly, all of the studies (11 studies concerning EAE and 2 studies concerning MS) reported positive outcomes for the therapeutic effect of flavonoids on EAE and MS. All flavonoid compounds which are mentioned herein could successfully decrease the maximum clinical score of EAE, which is particularly connected to the anti-inflammatory property of these compounds. The literature review clearly discloses that flavonoids alone or in combination with other anti-MS therapeutic agents can pave the way for improving MS therapeutic strategies.
Collapse
Affiliation(s)
- Payam Bayat
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maral Farshchi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Yousefian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
23
|
Zhu T, Zhang F, Li H, He Y, Zhang G, Huang N, Guo M, Li X. Long-term icariin treatment ameliorates cognitive deficits via CD4 + T cell-mediated immuno-inflammatory responses in APP/PS1 mice. Clin Interv Aging 2019; 14:817-826. [PMID: 31190768 PMCID: PMC6511656 DOI: 10.2147/cia.s208068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is the most common neurodegenerative disorder that also involves neuroinflammation in addition to many other features. Icariin (ICA) as one of the active ingredients of Chinese herbal medicine has the immunomodulating function. This study aimed to investigate the immunotherapeutic potential of ICA on AD. Methods: APP/PS1 mice and wild type C57BL/6 mice were subjected to orally ICA administration (60 mg/kg/d) for 8 months. Then, the ethological and biochemical experiments, such as Morris water maze assay, Aβ ELISA, blood T cell flow cytometry, and plasma and brain cytokines array, were conducted to evaluate the effects of ICA administration. Results: ICA significantly improved spatial learning and memory retention in APP/PS1 mice. Long-term application of ICA could also reduce hippocampus Aβ deposition, modulate the differentiation of CD4+ T cells, and modulate the release of inflammatory cytokines in plasma and brain tissue. Conclusion: ICA shows the neuroprotective effects via modulating the CD4+ T lymphocyte-related immuno-inflammatory responses in APP/PS1 mice and may be a promising drug against AD progression.
Collapse
Affiliation(s)
- Tianrui Zhu
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Heng Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Yi He
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710021, People's Republic of China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Nana Huang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Mingming Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| |
Collapse
|
24
|
Yu S, Liu M, Hu K. Natural products: Potential therapeutic agents in multiple sclerosis. Int Immunopharmacol 2019; 67:87-97. [DOI: 10.1016/j.intimp.2018.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
|
25
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
26
|
Elliott DM, Singh N, Nagarkatti M, Nagarkatti PS. Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells. Front Immunol 2018; 9:1782. [PMID: 30123217 PMCID: PMC6085417 DOI: 10.3389/fimmu.2018.01782] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs.
Collapse
Affiliation(s)
- David M Elliott
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
27
|
Zhong S, Ge J, Yu JY. Icariin prevents cytokine-induced β-cell death by inhibiting NF-κB signaling. Exp Ther Med 2018; 16:2756-2762. [PMID: 30210617 DOI: 10.3892/etm.2018.6502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of insulin secretion in type I diabetes mellitus (T1DM) is caused by autoimmune-mediated destruction of insulin-producing pancreatic β-cells. Inflammatory cytokines and immune cell infiltration activate oxidative and endoplasmic reticulum (ER) stress, resulting in reduced β-cell viability. The current pharmacological agents used to control blood glucose have a limited effective duration and are accompanied by strong side effects. Blocking the inflammatory and immune responses that cause the β-cell damage has been investigated as a novel therapeutic approach to control T1DM. Icariin is a flavonoid component of Chinese medicinal herbs that has anti-inflammatory effects in vitro and in vivo. The results of the present study revealed that icariin abrogates the pro-apoptotic effect of inflammatory cytokines and significantly suppresses the activation of nuclear factor (NF)-κB in rat pancreatic β-cell lines. The present study may provide a basis for the potential use of icariin as a therapeutic agent for T1DM.
Collapse
Affiliation(s)
- Shao Zhong
- Department of Endocrinology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China.,Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jing Ge
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiang-Yi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
28
|
Ren XS, Ding W, Yang XY. [Icariin alleviates lipid peroxidation after spinal cord injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:711-715. [PMID: 29997094 PMCID: PMC6765710 DOI: 10.3969/j.issn.1673-4254.2018.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To assess the effects of intragastric administration of icariin on lipid peroxidation after spinal cord injury in rats. METHODS Seventy-two healthy adult male SD rats were randomized equally into icariin group, control group and sham-operated group. In the control and icariin groups, spinal cord injury was induced using modified Allen's method, and the rats in the sham-operated group underwent laminotomy without damaging the spinal cord. Immediately after the surgery, the rats in icariin group were subjected to intragastric administration of icariin (100 mg/kg), and those in the control and sham-operated groups received an equal volume of saline in the same manner once a day. At 24 h after the operation, malondialdehyde (MDA) content was detected using thiobarbituric acid method, superoxide dismutase (SOD) activity was measured with xanthine oxidase method, and the water content in the spinal cord was measured using dry-wet weight method. At 48 h after the operation, the ultrastructure of the spinal cord was observed with transmission electron microscopy and scored using Kaptanoglu scoring method. The motor function of the rats was assessed using BBB scoring at 7, 14, 21 and 28 days after the operation. RESULTS At 24 h after the operation, MDA content was significantly higher in the control group and icariin group than in the sham-operated group, and was significantly lower in icariin group than in the control group (P<0.05); SOD activity was significantly higher in icariin group than in the control group, and was both significantly lower than that in the sham-operated group (P<0.05). At 48 h after operation, the water content and ultrastructure score of the spinal cord were the highest in sham-operated group (P<0.05), and were significantly lower in icariin group than in the control group (P<0.05). At all the time points of measurement, the BBB scores were significantly lower in the control and icariin groups than in the sham-operated group (P<0.05), and were significantly higher in icariin group than in the control group (P<0.05). CONCLUSION Icariin can significantly reduce MDA content, increase SOD activity, and ameliorate lipid peroxidation, spinal cord edema, and histopathological damage of the spinal cord to improve motor function of rats with spinal cord injury.
Collapse
Affiliation(s)
- Xian-Sheng Ren
- Department of Orthopedics, Second Hospital of Jilin University, Changchun 130041, China. E-mail:
| | | | | |
Collapse
|
29
|
The Role of Flavonoids in Inhibiting Th17 Responses in Inflammatory Arthritis. J Immunol Res 2018; 2018:9324357. [PMID: 29693024 PMCID: PMC5859886 DOI: 10.1155/2018/9324357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Flavonoids have been considered powerful anti-inflammatory agents, and their exact immunomodulatory action as therapeutic agents in autoimmune diseases has started to emerge. Their role in the manipulation of immunoregulation is less understood. Several studies attempted to investigate the role of various flavonoids mainly in experimental models of autoimmune diseases, especially in the context of their potential effect on the increase of regulatory T cells (Tregs) and their ability to stimulate an overexpression of anti-inflammatory cytokines, in particular that of IL-10. The emergence of IL-17, a cytokine largely produced by Th17 cells, as a powerful proinflammatory stimulus which attenuates the induction of Tregs has prompted a series of studies investigating the role of flavonoids on Th17 cells in experimental models as well as human autoimmune diseases. This review thoroughly discusses accumulated data on the role of flavonoids on Th17 in rheumatoid arthritis and experimental autoimmune arthritis.
Collapse
|
30
|
Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 2018; 29:535-544. [PMID: 29110063 DOI: 10.1007/s00198-017-4255-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Osteoporosis is a bone disease characterized by reduced bone mass, which leads to increased risk of bone fractures, and poses a significant risk to public health, especially in the elderly population. The traditional Chinese medicinal herb Epimedii has been utilized for centuries to treat bone fracture and bone loss. Icariin is a prenylated flavonol glycoside isolated from Epimedium herb, and has been shown to be the main bioactive component. This review provides a comprehensive survey of previous studies on icariin, including its structure and function, effect on bone metabolism, and potential for clinical application. These studies show that icariin promotes bone formation by stimulating osteogenic differentiation of BMSCs (bone marrow-derived mesenchymal stem cells), while inhibiting osteoclastogenic differentiation and the bone resorption activity of osteoclasts. Furthermore, icariin has been shown to be more potent than other flavonoid compounds in promoting osteogenic differentiation and maturation of osteoblasts. A 24-month randomized double-blind placebo-controlled clinical trial reported that icariin was effective in preventing postmenopausal osteoporosis with relatively low side effects. In conclusion, icariin may represent a class of flavonoids with bone-promoting activity, which could be used as potential treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Z Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Yang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - W Zhen
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - J Zhang
- Department of Outpatient Clinics, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| | - S Peng
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| |
Collapse
|
31
|
Qureshi M, Al-Suhaimi EA, Wahid F, Shehzad O, Shehzad A. Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci 2018; 39:207-214. [PMID: 29079885 DOI: 10.1007/s10072-017-3149-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/07/2017] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS), characterized by demyelination, neuronal injury, and breaching of the blood-brain barrier (BBB). Epidemiological studies have shown that immunological, genetic, and environmental factors contribute to the progression and development of MS. T helper 17 (Th17) cells are crucial immunological participant in the pathophysiology of MS. The aberrant production of IL-17 and IL-22 by Th17 cells crosses BBB promotes its disruption and interferes with transmission of nerve signals through activation of neuroinflammation in the CNS. These inflammatory responses promote demyelination through transcriptional activation of signal transducers and activators of transcription-1 (STAT-1), nuclear factor kappa-B (NF-κB), matrix metalloproteinases (MMPs), interferon ϒ (IFNϒ), and Src homology region 2 domain-containing phosphatase-1 (SHP-1). B cells also contribute to disease progression through abnormal regulation of antibodies, cytokines, and antigen presentation. Additionally, oxidative stress has been known as a causative agent for the MS. Curcumin is a hydrophobic yellowish diphenolic component of turmeric, which can interact and modulate multiple cell signaling pathways and prevent the development of various autoimmune neurological diseases including MS. Studies have reported curcumin as a potent anti-inflammatory, antioxidant agent that could modulate cell cycle regulatory proteins, enzymes, cytokines, and transcription factors in CNS-related disorders including MS. The current study summarizes the reported knowledge on therapeutic potential of curcumin against MS, with future indication as neuroprotective and neuropharmacological drug.
Collapse
Affiliation(s)
- Munibah Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ebtesam A Al-Suhaimi
- Department of Biology, Sciences College, University of Dammam, Dammam, Saudi Arabia
| | - Fazli Wahid
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Omer Shehzad
- Department of pharmacy, Abdul Wali Khan University , Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
32
|
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018; 15:109-125. [PMID: 29204955 PMCID: PMC5794701 DOI: 10.1007/s13311-017-0588-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.
Collapse
Affiliation(s)
- Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
33
|
Xu N, Meng H, Liu T, Feng Y, Qi Y, Zhang D, Wang H. Blueberry Phenolics Reduce Gastrointestinal Infection of Patients with Cerebral Venous Thrombosis by Improving Depressant-Induced Autoimmune Disorder via miR-155-Mediated Brain-Derived Neurotrophic Factor. Front Pharmacol 2017; 8:853. [PMID: 29230173 PMCID: PMC5712003 DOI: 10.3389/fphar.2017.00853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Cerebral venous thrombosis (CVT) often causes human depression, whereas depression-induced low immunity makes the patients susceptible to gastrointestinal infection. Blueberry possesses antidepressant properties which may improve autoimmunity and reduce gastrointestinal infection. Brain-derived neurotrophic factor (BDNF) performs antidepressant function and can be regulated by miR-155, which may be affected by blueberry. To explore the possible molecular mechanism, blueberry compounds were analyzed by high-performance liquid chromatography. Activity of compounds was tested by using HT22 cells. The present study tested 124 patients with CVT-induced mild-to-moderate depressive symptoms (Center for Epidemiologic Studies—Depression Scale [CES-D] ≥16) and gastrointestinal infection. Patients were randomly assigned to blueberry extract group (BG, received 10 mg blueberry extract daily) and placebo group (PG, received 10 mg placebo daily). After 3 months, depression, gastrointestinal infection and lipid profiles were investigated. Serum miR-155 and BDNF were measured using real-time quantitative polymerase chain reaction and or Western Blot. Blueberry treatment improved depressive symptoms and lipid profiles, and also reduced gastrointestinal infection in the BG group (P < 0.05) but those of the PG group (P = 1). These changes were paralleled by increase in serum levels of BDNF and miR-155 (P < 0.05). HPLC analysis showed that blueberry extracts were the main phenolic acids with 0.18, 0.85, 0.26, 0.72, 0.66, 0.4,1, and 1.92 mg/g of gentisic acid, chlorogenic acid, [2]-epicatechin, p-coumaric acid, benzoic acid, p-anisic acid, and quercetin in blueberry extracts, respectively. Phenolics in blueberry are possible causal agents in improving antidepressant activity and reducing gastrointestinal infection. Administration of blueberry increased BDNF expression and miR-155. Blueberry cannot affect BDNF level when miR-155 is overexpressed or inhibited. Phenolics from blueberry reduced gastrointestinal infection of patients with CVT by improving antidepressant activity via upregulation of miR-155-mediated BDNF.
Collapse
Affiliation(s)
- Ning Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hao Meng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Tianyi Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yingli Feng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yuan Qi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Donghuan Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Honglei Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Evaluation of Osteogenesis and Angiogenesis of Icariin in Local Controlled Release and Systemic Delivery for Calvarial Defect in Ovariectomized Rats. Sci Rep 2017; 7:5077. [PMID: 28698566 PMCID: PMC5505963 DOI: 10.1038/s41598-017-05392-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/30/2017] [Indexed: 12/11/2022] Open
Abstract
Typically, bone regenerative medicine is applied to repair bone defects in patients with osteoporosis. Meanwhile, there is an urgent need to develop safe and cheap drugs that induce bone formation. Icariin, which is reported to promote the osteogenesis of stem cells in vitro, is the main active component of Herba Epimedii. However, whether icariin could repair bone defects caused by osteoporosis remains unknown. In this study, an osteoporosis model in rats was established by an ovariectomy first, and then, the osteogenic and angiogenic differentiation of bone mesenchymal stem cells (BMSCs) treated with icariin was evaluated. Furthermore, calcium phosphate cement (CPC) scaffolds loaded with icariin were constructed and then implanted into nude mice to determine the optimal construction. To evaluate its osteogenic and angiogenic ability in vivo, this construction was applied to calvarial defect of the ovariectomized (OVX) rats accompanied with an icariin gavage. This demonstrated that icariin could up-regulate the expression of osteogenic and angiogenic genes in BMSCs. Meanwhile, osteoclast formation was inhibited. Moreover, CPC could act as a suitable icariin delivery system for repairing bone defects by enhancing osteogenesis and angiogenesis, while the systemic administration of icariin has an antiosteoporotic effect that promotes bone defect repair.
Collapse
|
35
|
Rapamycin Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing the mTOR-STAT3 Pathway. Neurochem Res 2017; 42:2831-2840. [DOI: 10.1007/s11064-017-2296-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/15/2016] [Indexed: 10/19/2022]
|
36
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
37
|
Yang L, Ma S, Han Y, Wang Y, Guo Y, Weng Q, Xu M. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte. Nutrients 2016; 8:E287. [PMID: 27187455 PMCID: PMC4882700 DOI: 10.3390/nu8050287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Lubing Yang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Sihui Ma
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yu Han
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yuhan Wang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yan Guo
- College of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China.
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Chao Wei C, Qi Ping D, Tian You F, Yong Qiang C, Tao C. Icariin Prevents Cartilage and Bone Degradation in Experimental Models of Arthritis. Mediators Inflamm 2016; 2016:9529630. [PMID: 27199510 PMCID: PMC4854995 DOI: 10.1155/2016/9529630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 04/03/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Icariin (ICA) is an active compound extracted from Epimedium brevicornum Maxim. Previous reports have shown that icariin has a clinically significant therapeutic effect on rheumatoid arthritis. However, little is known about the mechanism by which icariin inhibits cartilage and bone degradation. METHODS New Zealand rabbits were immunized with antigen-induced arthritis (AIA) and treated with icariin. Joint tissues from rabbits were studied by histological analysis, transmission electron microscopy (TEM), and micro-CT. The expression levels of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) in joint tissues were determined using immunohistochemistry and real-time PCR analysis. RESULTS Histological analysis and TEM sections of cartilage in the ICA treated group showed a low level of chondrocyte destruction. Micro-CT analysis showed that the bone mineral density value and bone structural level in ICA treated rabbits were significantly higher compared with those in the AIA group. Immunohistochemistry and real-time PCR analysis showed that icariin treatment reduced RANKL expression and enhanced OPG expression levels, as compared to the AIA group. CONCLUSION These data indicate that ICA suppresses articular bone loss and prevents joint destruction. This study also determined that ICA regulated articular bone loss in part by regulating RANKL and OPG expression.
Collapse
Affiliation(s)
- Chen Chao Wei
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, China
| | - Dai Qi Ping
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, China
| | - Fan Tian You
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, China
| | - Chen Yong Qiang
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, China
| | - Che Tao
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, China
| |
Collapse
|
39
|
Yu CH, Yu WY, Fang J, Zhang HH, Ma Y, Yu B, Wu F, Wu XN. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:146-155. [PMID: 26719287 DOI: 10.1016/j.jep.2015.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACROLOGICAL RELEVANCE Mosla scabra (Thunb.) C.Y. Wu and H.W. Li has been used as a traditional medicinal herb for centuries in East Asian countries. It has antibacterial, antiviral, antioxidant, anti-inflammatory and immunomodulatory effects. In folk medicine, it is used as a remedy for the treatment of pulmonary diseases, such as fever, cold, cough, pulmonary edema and emphysema. AIM OF THE STUDY This study was to investigate the protective mechanism of total flavonoids from M. scabra (MF) in influenza A virus (IAV)-infected mice. MATERIALS AND METHODS The mice were infected with IAV and then were treated daily with MF for five days. At the end of the experiment, the levels of inflammatory-related cytokines (IFN-α, IL-6, TNF-α and IL-1β) were determined by ELISA. Pathological changes of lung tissue were examined by H&E staining. The protein expressions of AQP5, p-p38, caspase-3 and NF-κB p65 were detected by western blot analysis while the gene expressions of key effectors in AQP5 and PRRs signaling pathways were detected by real-time Fluorescence Quantitative Polymerase Chain Reaction (RFQ-PCR) analysis. RESULTS The results showed that treatment with MF at doses of 120-360mg/kg for five days to IAV-infected mice significantly attenuated IAV-induced pulmonary injury and decreased the serum levels of IL-6, TNF-α and IL-1β, but increased IFN-α levels. MF treatment could up-regulate the mRNA expressions of TLR-7, RIG-1, TRAF6, Bcl-2, Bax, VIPR1, PKCα and AQP5 and down-regulate caspase-3 and NF-κB p65 protein expression. CONCLUSION Treatment with MF could significantly alleviate IAV-induced pulmonary inflammation, apoptosis and water transport abnormality, which was probably through the regulation of TLR7, RIG-1 and AQP5 signaling pathway.
Collapse
Affiliation(s)
- Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Yue Ma
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Bing Yu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China; College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao-Ning Wu
- Pharmaceutical Department, Zhejiang Medical College, Hangzhou 310053, China.
| |
Collapse
|
40
|
Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y, Yu Q, Peng Z. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 2016; 8:1910-8. [PMID: 27186315 PMCID: PMC4859920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 12/08/2022]
Abstract
BACKGROUND Estrogen exerts neuroprotective and anti-inflammatory effects in EAE and multiple sclerosis (MS), but its clinical application is hindered due to side effects and risk of tumor. Phytoestrogen structurally or functionally mimics estrogen with fewer side effects than endogenous estrogen. Icariin (ICA), an active component of Epimedium extracts, demonstrates estrogen-like neuroprotective effects. However, it is unclear whether ICA is effective in EAE and what are the underlying mechanisms. OBJECTIVE To determine the therapeutic effects of ICA in EAE and explore the possible mechanisms. METHODS C57BL/6 EAE mice were treated with Diethylstilbestrol, different dose of ICA and mid-dose ICA combined with ICI 182780. The clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT) concentrations were then analyzed. Western blot were performed to investigate the expressions of glucocorticoid receptor (GR), estrogen receptor alpha (ERα) and ERβ in the cerebral white matter of EAE mice. RESULTS High dose ICA is equally effective in ameliorating neurological signs of EAE as estrogen. Estrogen and ICA has no effects on serum concentrations of IL-17 in EAE. While the CORT levels were decreased by ICA at mid or high doses, the expressions of GR, ERα and ERβ were up-regulated by estrogen or different doses of ICA in a dosedependent manner. Estrogen induced the elevation of ERα more markedly than ICA. In contrast, ICA at mid and high doses promoted ERβ more significantly than estrogen. CONCLUSION ICA exerts estrogen-like activity in ameliorating EAE via mediating ERβ, modulating HPA function and up-regulating the expression of GR in cerebral white matter. ICA may be a promising therapeutic option for MS.
Collapse
Affiliation(s)
- Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People’s HospitalGuangzhou 510317, People’s Republic of China
| | - Mingfan Hong
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Shengpeng Diao
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Yeqing Huang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Qingyun Yu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| |
Collapse
|
41
|
Wei Z, Deng X, Hong M, Su Q, Liu A, Huang Y, Yu Q, Peng Z. Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int J Clin Exp Med 2015; 8:20188-97. [PMID: 26884931 PMCID: PMC4723776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/12/2015] [Indexed: 12/08/2022]
Abstract
BACKGROUND High-dose methylprednisolone (MP) is a clinically recommended therapeutic regimen for Multiple Sclerosis (MS), whereas some dreadful complications induced by it remain inevitable. Studies implied that estrogens might play neuroprotective and anti-inflammatory roles in EAE and MS and promote glucocorticoid efficacy. Icariin (ICA), a primary active component of Epimedium extracts, also possesses neuroprotective and estrogen-like effects with less adverse complication than estrogen. However, rare study focuses ICA's effects on MS or EAE. OBJECTIVE Our purpose is to determine whether ICA has synergistic effects with MP in treating EAE and explore the possible mechanisms. METHODS C57BL/6 EAE mice were received different dose of ICA combined with MP and single MP treatment. Then, the clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT), Adrenocorticotropic Hormone (ACTH) concentrations were analyzed. Western blot and Flow Cytometry were used to investigate the expression of glucocorticoid receptor (GR) and cell apoptosis. RESULTS ICA has cooperative effects with MP in decreasing serum IL-17 and CORT concentrations, up-regulating the expression of GR in cerebral white matter and attenuating the cell apoptosis in spinal cord, especially high-dose ICA combined with MP. CONCLUSION ICA has synergistic effects with MP to ameliorate EAE via modulating hypothalamic-pituitary-adrenal (HPA) function, promoting anti-inflammatory and anti-apoptotic effects. ICA could be considered as a promising therapeutic option for MS.
Collapse
Affiliation(s)
- Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Xuemei Deng
- Department of Neurology, The Third Hospital of WuhanNo. 241 Peng Liuyang Road, Wuhan 430060, People’s Republic of China
| | - Mingfan Hong
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Quanxi Su
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Yeqing Huang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Qingyun Yu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| |
Collapse
|