1
|
Wang H, Huang Z, Chen G, Li Y, Liu Y, Gu H, Cao Y. Astragaloside IV alleviated bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and fecal metabolism. Front Pharmacol 2025; 16:1548491. [PMID: 40248089 PMCID: PMC12003300 DOI: 10.3389/fphar.2025.1548491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Background Astragaloside IV (AS-IV) is one of the most potent components of Astragalus. It has been reported to promote bone formation and inhibit osteoclastogenesis, suggesting its potential as a candidate for the prevention and treatment of postmenopausal osteoporosis (PMOP). The gut microbiota may play a crucial role in mediating the effects of AS-IV. Objective To investigate the impact of gut microbiota on the efficacy of AS-IV in treating PMOP. Methods Mice were randomly divided into three groups: Sham, ovariectomy (OVX), and AS-IV-treated OVX group (80 mg/kg). Bone loss was evaluated using Micro-CT and histopathology. Immunohistochemistry assessed specific bone markers. Inflammatory levels were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal barrier function was examined via colonic histopathology and immunohistochemistry. Gut microbiota composition was analyzed by 16S rDNA sequencing, while metabolomic profiling identified key metabolites. Correlation analysis was performed to explore relationships between differential bacteria, key metabolites, and bone loss. Results AS-IV improved the femur microarchitecture and modulated bone turnover in OVX mice. AS-IV treatment strengthened the intestinal barrier function and decreased gut permeability. This compound reduced colonic oxidative stress and serum and bone marrow inflammatory cytokine production. 16S rDNA sequencing revealed that AS-IV modulated the gut microbiota composition, while metabolomic analysis showed its effects on pathways related to hormone biosynthesis, D-amino acid metabolism, and galactose metabolism. Conclusion This study provides new insights into the use of AS-IV for treating PMOP, highlighting the gut microbiota and its metabolites as key regulatory factors in AS-IV's therapeutic effects.
Collapse
Affiliation(s)
- Huichao Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yang Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Youwen Liu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yujing Cao
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Tian B, Ye P, Zhou X, Hu J, Wang P, Cai M, Yang K, Sun P, Zou X. Gallic Acid Ameliorated Chronic DSS-Induced Colitis Through Gut Microbiota Modulation, Intestinal Barrier Improvement, and Inflammation. Mol Nutr Food Res 2025:e70024. [PMID: 40123223 DOI: 10.1002/mnfr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
SCOPE Gallic acid (GA) is recognized for its purported antiinflammatory properties. GA has been demonstrated to prevent and alleviate the symptoms of chronic colitis through the modulation of the gut microbiota, improvement of the intestinal barrier, and reduction of inflammation. METHODS AND RESULTS In order to determine the mechanism by which GA exerts its protective effect against chronic colitis, mice were induced by dextran sulfate sodium (DSS). The reduction in the disease activity index by 25% and the decrease in colon tissue damage indicated that 36 days of GA intervention alleviated chronic DSS-induced colitis symptoms. GA was observed to mitigate weight loss by 2.5% and the shortening of colon by 17.3%, and to diminish the expression of pivotal proteins within the TLR4/nuclear factor κB (NF-κB) signaling cascades, consequently lowering the generation of inflammatory cytokines. Furthermore, GA effectively corrected the gut microbiota imbalance, increased the content of short-chain fatty acids (SCFAs), which in turn suppressed inflammation, and enhanced tight junction protein expression, thereby strengthening the intestinal barrier. CONCLUSION GA has the capacity to enhance the efficacy of chronic colitis through a multifaceted mechanism, influencing the gut microbiota, intestinal barrier function, and inflammatory processes. The findings highlight the potential of GA as a preventative strategy for chronic colitis.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Peng Ye
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Jiangning Hu
- Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd, Hangzhou, PR China
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| |
Collapse
|
4
|
Xiong T, Chen Z, Hassan M, Zhu C, Wang J, Tan S, Ding F, Cheng Z, Ye J, Fan Q, Xu D, Jiang S, Ruan D. Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide. Animals (Basel) 2024; 14:3670. [PMID: 39765574 PMCID: PMC11727612 DOI: 10.3390/ani14243670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450). On days 14, 17, and 20, chickens in the LPS, GA150, GA300, and GA450 groups received intramuscular injections of LPS, while chickens in the CON group received saline. The results showed that the addition of GA to the diet could effectively increase the average daily gain (ADG) of broilers from 1 to 50 days of age, and had a trend (p = 0.078) of increasing the average daily feed intake (ADFI). Adding 450 mg/kg GA to the diet significantly reduced (p < 0.05) the drip loss and pH value of pectoral muscles 45 min after slaughter, and significantly increased (p < 0.05) the lightness value of pectoral muscles 45 min post-slaughter. With an increase in GA level, the content of total volatile basic nitrogen (TVB-N) in pectoral muscles decreased linearly (p < 0.05), and the concentration of C22:6n-3 increased linearly (p < 0.05). GA effectively improved (p < 0.05) the antioxidant capacity of muscles and significantly increased (p < 0.05) the activity of total superoxide dismutase (T-SOD) in pectoral muscles after LPS stimulation, exhibiting linear and quadratic changes (p < 0.05). It also significantly increased (p < 0.05) the activity of hydrogen peroxide and decreased the activity of glutathione peroxidase (GSH-Px), while it linearly decreased (p < 0.05) the content of malondialdehyde (MDA). In addition, the dietary supplementation of GA significantly increased (p < 0.05) the expression levels of myosin heavy chain (MyHC) I and MyHC IIa in pectoral muscles and significantly decreased (p < 0.05) the expression level of MyHC IIx. In summary, the dietary addition of GA can alleviate the effect of the stress response on the growth performance of broiler chickens and improve antioxidant capacity and meat quality. The appropriate amount of dietary GA at each stage was 300 mg/kg.
Collapse
Affiliation(s)
- Taidi Xiong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China;
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Mubashar Hassan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Cui Zhu
- School of Animal Science and Technology, Foshan University, Foshan 528225, China;
| | - Junyan Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
- Binhai Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China
| | - Shujun Tan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Fayuan Ding
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Zhonggang Cheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Jinling Ye
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Danlei Xu
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (T.X.); (Z.C.); (M.H.); (J.W.); (S.T.); (F.D.); (Z.C.); (J.Y.); (Q.F.)
| |
Collapse
|
5
|
Abdul Kari Z, Sukri SAM, Téllez-Isaías G, Bottje WG, Khoo MI, Guru A, Tayyeb JZ, Kabir MA, Eissa ESH, Tahiluddin AB, Wei LS. Effects of dietary powdered Ficus deltoidea on the growth and health performance of African catfish, Clarias gariepinus production. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2563-2582. [PMID: 39298109 DOI: 10.1007/s10695-024-01403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Intensive aquaculture causes a decline in the health status of fish, resulting in an increased disease incidence. To counteract this, feed additives have been utilized to improve the growth performance and health of aquaculture species. This work specifically investigates the impact of powdered Ficus deltoidea (FD) on various parameters related to growth, blood parameters, liver and intestine morphology, body proximate analysis, digestive enzymes, antioxidant capacity, and disease resistance to motile Aeromonad Septicemia (MAS) caused by Aeromonas hydrophila infection in African catfish, Clarias gariepinus. Four formulated diets were prepared: T1 (0% FD), T2 (0.5% FD), T3 (0.75% FD), and T4 (1% FD). After 8 weeks, the African catfish's growth performance fed with the T2 diet exhibited a substantial improvement (p < 0.05), along with a remarkably lower (p < 0.05) feed conversion ratio (FCR) when compared to the other treatment groups. Blood parameter analysis revealed notably higher (p < 0.05) levels of white blood cell (WBC), lymphocytosis (LYM), hemoglobin (HGB), albumin (ALB), globulin (GLOB), as well as total protein (TP) in the T2 diet group. While all treatment groups displayed normal intestinal morphology, liver deterioration was observed in groups supplemented with higher FD. The T2 diet group recorded the highest villus length, width, and crypt depth. Protease and lipase levels were also notably improved in the T2 diet group compared to other treatment groups. Additionally, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were remarkably elevated in all FD diet groups than in the control group. The expression of immune-related genes, including transforming growth factor beta 1, heat shock protein 90, nuclear factor kappa-B gene, and lysozyme G, was upregulated in all treatments. Overall, the results of this study indicate that incorporating dietary FD at 0.5% concentration in the diet of African catfish may enhance their productivity in intensive farming.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | | | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Malaysia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Jehad Zuhair Tayyeb
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Muhammad Anamul Kabir
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45516, Egypt
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, 7500, Bongao, Tawi-Tawi, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Türkiye
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
6
|
Esmaealzadeh N, Abdolghaffari A, Baeeri M, Hasanpour M, Iranshahi M, Santarcangelo C, Gholami M, Bahramsoltani R. Protective effect of freeze-dried extract of Persicaria bistorta Samp. on acetic acid-induced colitis model in rats: Involvement of nitric oxide and opioid system. Inflammopharmacology 2024; 32:3845-3861. [PMID: 39044067 DOI: 10.1007/s10787-024-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Inflammatory bowel disease is a chronic inflammatory disorder accompanied by occasional flare-ups, abdominal pain, and rectal bleeding. Persicaria bistorta Samp. is a medicinal plant repeatedly mentioned in traditional Persian medicine for the treatment of bleeding and tissue damage in different organs, including the intestines. The current study aimed to evaluate the effect of bistort root in an animal model of colitis. Freeze-dried aqueous extract of the plant (PB) was prepared and analyzed using liquid chromatography-mass spectrometry and high-performance liquid chromatography. The anti-inflammatory effect of oral PB (300, 500, and 700 mg/kg) was evaluated in acetic acid-induced colitis in Wistar rats compared with negative control and positive control (dexamethasone). The role of nitric oxide (NO), opioid receptors, Toll-like receptors (TLR-4), interleukin (IL)-1β, IL-6, TNF-α, NF-κB, myeloperoxidase, and intestinal tissue damage using immunohistochemistry staining for cyclooxygenase-2 (COX-2) were also assessed. A total of 29 compounds were identified in the extract. The gallic acid content of the extract was 4.973 ± 1.102 mg/g. PB significantly ameliorated the gross morphological damage from 4.66 ± 0.577 in negative control to 1.33 ± 0.56 in PB 700 (p < 0.001). Also, PB 700 lowered the levels of TNF-α (p < 0.01), TLR-4 (p < 0.001), NF-κB (p < 0.0001), IL-1β (p < 0.0001), and IL-6 (p < 0.0001) compared to the negative control. Additionally, while blocking NO and opioid pathways, the therapeutic effect of the extract was not significant, compared to the negative control, suggesting that PB 700 has exerted its therapeutic effect via these two pathways. However, further mechanistic and clinical studies are recommended to confirm PB as a natural treatment for colitis.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq, PO Box 1417653761, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 11369, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq, PO Box 1417653761, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
8
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
9
|
Sadeghi‐Dehsahraei H, Babajafari S, Ashrafi M, Mohammadi‐Sartang M. Comparison of the effect of consuming the prepared cakes with acorn flour and wheat flour following a hypocaloric diet on serum levels of leptin, endothelin, inflammatory factors, and oxidative stress parameters in obese and overweight patients with metabolic syndrome: A double-blind clinical trial. Food Sci Nutr 2024; 12:8043-8052. [PMID: 39479683 PMCID: PMC11521704 DOI: 10.1002/fsn3.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Metabolic syndrome (MetS), which is a major consequence of obesity, increases mortality risks. Evidence shows favorable effects of nutritional approaches in the management of MetS. Accordingly, the use of functional foods has increased to enhance weight loss and reduce the risk factors associated with MetS. So, we aimed to investigate the effects of daily consumption of a functional acorn-based cake in conjunction with energy-restricted diet on some complications of patients with MetS. The study included 66 participants who were randomly assigned to either (A) a calorie-restricted diet + functional cake (FC) (n = 33) or (B) a calorie-restricted diet + a placebo cake (PC) (n = 33). Sociodemographic information, anthropometric measurements, dietary intakes, and serum biochemical parameters (inflammatory and oxidative stress markers, leptin, and endothelin) were measured before and after 8 weeks of intervention. Sixty-three participants completed this trial. After adjustment for baseline levels, consumption of FC compared to the PC resulted in a significant decrease in IL-6 (p = .03) and high-sensitivity C-reactive protein (p = .04) levels. No differences were observed between groups with regard to serum malondialdehyde, total antioxidant capacity, endothelin, and leptin levels (p > .05). Acorn-based cake could improve inflammation as an adjunct to an energy-restricted diet in overweight and obese patients with MetS. However, it is not clear whether acorn-based cake can be used to prevent or treat MetS because of indecisive findings regarding its ability to manage oxidative stress and serum hormones.
Collapse
Affiliation(s)
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food ScienceShiraz University of Medical SciencesShirazIran
| | - Mahboobeh Ashrafi
- Department of Basic Sciences, Faculty of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohsen Mohammadi‐Sartang
- Nutrition Research Center, School of Nutrition and Food ScienceShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
11
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
12
|
Lim HJ, Park IS, Seo JW, Ha G, Yang HJ, Jeong DY, Kim SY, Jung CH. Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis. J Microbiol Biotechnol 2024; 34:1501-1510. [PMID: 38960873 PMCID: PMC11294641 DOI: 10.4014/jmb.2404.04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.
Collapse
Affiliation(s)
- Hyeon-Ji Lim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| |
Collapse
|
13
|
Chu C, Ru H, Chen Y, Xu J, Wang C, Jin Y. Gallic acid attenuates LPS-induced inflammation in Caco-2 cells by suppressing the activation of the NF-κB/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:905-915. [PMID: 38516705 PMCID: PMC11214974 DOI: 10.3724/abbs.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by intestinal barrier dysfunction, inflammatory synergistic effects and excessive tissue injury. Gallic acid (GA) is renowned for its remarkable biological activity, encompassing anti-inflammatory and antioxidant properties. However, the underlying mechanisms by which GA protects against intestinal inflammation have not been fully elucidated. The aim of this study is to investigate the effect of GA on the inflammation of a lipopolysaccharide (LPS)-stimulated human colon carcinoma cell line (Caco-2) and on the intestinal barrier dysfunction, and explore the underlying molecular mechanism involved. Our findings demonstrate that 5 μg/mL GA restores the downregulation of the mRNA and protein levels of Claudin-1, Occludin, and ZO-1 and decreases the expressions of inflammatory factors such as IL-6, IL-1β and TNF-α induced by LPS. In addition, GA exhibits a protective effect by reducing the LPS-enhanced early and late apoptotic ratios, downregulating the mRNA levels of pro-apoptotic factors ( Bax, Bad, Caspase-3, Caspase-8, and Caspase-9), and upregulating the mRNA levels of anti-apoptotic factor Bcl-2 in Caco-2 cells. GA also reduces the levels of reactive oxygen species increased by LPS and restores the activity of antioxidant enzymes, namely, superoxide dismutase and catalase, as well as the level of glutathione. More importantly, GA exerts its anti-inflammatory effects by inhibiting the LPS-induced phosphorylation of key signaling molecules in the NF-κB/MAPK pathway, including p65, IκB-α, p38, JNK, and ERK, in Caco-2 cells. Overall, our findings show that GA increases the expressions of tight junction proteins, reduces cell apoptosis, relieves oxidative stress and suppresses the activation of the NF-κB/MAPK pathway to reduce LPS-induced intestinal inflammation in Caco-2 cells, indicating that GA has potential as a therapeutic agent for intestinal inflammation.
Collapse
Affiliation(s)
- Chu Chu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Huan Ru
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuyan Chen
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Jinhua Xu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Caihong Wang
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuanxiang Jin
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| |
Collapse
|
14
|
Libero ML, Lucarini E, Recinella L, Ciampi C, Veschi S, Piro A, Chiavaroli A, Acquaviva A, Nilofar N, Orlando G, Generali D, Ghelardini C, di Cesare Mannelli L, Montero-Hidalgo AJ, Luque RM, Ferrante C, Menghini L, di Simone SC, Brunetti L, Leone S. Anti-inflammatory and anti-hyperalgesic effects induced by an aqueous aged black garlic extract in rodent models of ulcerative colitis and colitis-associated visceral pain. Phytother Res 2024. [PMID: 38923108 DOI: 10.1002/ptr.8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory bowel disease (IBD) is a morbid condition characterized by relapsing-remitting inflammation of the colon, accompanied by persistent gut dysmotility and abdominal pain. Different reports demonstrated biological activities of aged black garlic (ABG), including anti-inflammatory and antioxidant effects. We aimed to investigate beneficial effects exerted by ABGE on colon inflammation by using ex vivo and in vivo experimental models. We investigated the anti-inflammatory effects of an ABG water extract (ABGE) on rat colon specimens exposed to E. coli lipopolysaccharide (LPS), a known ex vivo experimental model of ulcerative colitis. We determined gene expression of various biomarkers involved in inflammation, including interleukin (IL)-1β, IL-6, nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α. Moreover, we studied the acute effects of ABGE on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) injection in rats. ABGE suppressed LPS-induced gene expression of IL-1β, IL-6, NF-kB, and TNF-α. In addition, the acute administration of ABGE (0.03-1 g kg-1) dose-dependently relieved post-inflammatory visceral pain, with the higher dose (1 g kg-1) able to significantly reduce both the behavioral nociceptive response and the entity of abdominal contraction (assessed by electromyography) in response to colorectal distension after the acute administration in DNBS-treated rats. Present findings showed that ABGE could represent a potential strategy for treatment of colitis-associated inflammatory process and visceral pain. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Anna Piro
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
15
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
16
|
Lu Y, Han X. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease. Nutrients 2024; 16:1347. [PMID: 38732594 PMCID: PMC11085699 DOI: 10.3390/nu16091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder, and its complex etiology makes prevention and treatment challenging. Research on new drugs and treatment strategies is currently a focal point. Phenolic acids are widely present in plant-based diets and have demonstrated the potential to alleviate colitis due to their powerful antioxidant and anti-inflammatory properties. In this review, we provide an overview of the structures and main dietary sources of phenolic acids, encompassing benzoic acid and cinnamic acid. Additionally, we explore the potential of phenolic acids as a nutritional therapy for preventing and treating IBD. In animal and cell experiments, phenolic acids effectively alleviate IBD induced by drug exposure or genetic defects. The mechanisms include improving intestinal mucosal barrier function, reducing oxidative stress, inhibiting excessive activation of the immune response, and regulating the balance of the intestinal microbiota. Our observation points towards the need for additional basic and clinical investigations on phenolic acids and their derivatives as potential novel therapeutic agents for IBD.
Collapse
Affiliation(s)
- Yanan Lu
- School of Biomedicine, Beijing City University, Huanghoudian Village, Yongfeng Town, Haidian District, Beijing 100094, China;
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
18
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Peng J, Liu T, Meng P, Luo Y, Zhu S, Wang Y, Ma M, Han J, Zhou J, Su X, Li S, Ho CT, Lu C. Gallic acid ameliorates colitis by trapping deleterious metabolite ammonia and improving gut microbiota dysbiosis. mBio 2024; 15:e0275223. [PMID: 38126747 PMCID: PMC10865988 DOI: 10.1128/mbio.02752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.
Collapse
Affiliation(s)
- Jie Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Siyue Zhu
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huangang, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
20
|
Muchtaridi M, Az-Zahra F, Wongso H, Setyawati LU, Novitasari D, Ikram EHK. Molecular Mechanism of Natural Food Antioxidants to Regulate ROS in Treating Cancer: A Review. Antioxidants (Basel) 2024; 13:207. [PMID: 38397805 PMCID: PMC10885946 DOI: 10.3390/antiox13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is the second-highest mortality rate disease worldwide, and it has been estimated that cancer will increase by up to 20 million cases yearly by 2030. There are various options of treatment for cancer, including surgery, radiotherapy, and chemotherapy. All of these options have damaging adverse effects that can reduce the patient's quality of life. Cancer itself arises from a series of mutations in normal cells that generate the ability to divide uncontrollably. This cell mutation can happen as a result of DNA damage induced by the high concentration of ROS in normal cells. High levels of reactive oxygen species (ROS) can cause oxidative stress, which can initiate cancer cell proliferation. On the other hand, the cytotoxic effect from elevated ROS levels can be utilized as anticancer therapy. Some bioactive compounds from natural foods such as fruit, vegetables, herbs, honey, and many more have been identified as a promising source of natural antioxidants that can prevent oxidative stress by regulating the level of ROS in the body. In this review, we have highlighted and discussed the benefits of various natural antioxidant compounds from natural foods that can regulate reactive oxygen species through various pathways.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Farhah Az-Zahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Hendris Wongso
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Jl. Puspiptek, Kota Tangerang 15314, Indonesia
| | - Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Emmy Hainida Khairul Ikram
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
| |
Collapse
|
21
|
Encarnação S, Lima K, Malú Q, Caldeira GI, Duarte MP, Rocha J, Lima BS, Silva O. An Integrated Approach to the Anti-Inflammatory, Antioxidant, and Genotoxic Potential of Portuguese Traditional Preparations from the Bark of Anacardium occidentale L. PLANTS (BASEL, SWITZERLAND) 2024; 13:420. [PMID: 38337956 PMCID: PMC10857173 DOI: 10.3390/plants13030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Anacardium occidentale L. stem bark Traditional Herbal Preparations (AoBTHPs) are widely used in traditional medicine to treat inflammatory conditions, such as diabetes. The present study aims to evaluate the anti-inflammatory, antioxidant, and genotoxic potential of red and white Portuguese AoBTHPs. Using a carrageenan-induced rat paw edema model, a significant anti-edema effect was observed for all tested doses of white AoBTHP (40.2, 71.5, and 127.0 mg/kg) and the two highest doses of red AoB THP (71.5 and 127.0 mg/kg). The anti-edema effect of red AoBTHP's highest dose was much more effective than indomethacin 10 mg/kg, Trolox 30 mg/kg, and Tempol 30 mg/kg. In DPPH, FRAP, and TAC using the phosphomolybdenum method, both types of AoBTHPs showed similar antioxidant activity and no genotoxicity up to 5000 µg/plate in the Ames test. The LC-UV/DAD-ESI/MS fingerprint allowed the identification of gallic and protocatechuic acids as the two main marker compounds and the presence of catechin, epicatechin, epigallocatechin gallate, and ellagic acid in both AoBTHPs. The obtained results support the validation of red and white AoB and their THPs as anti-inflammatory agents and contribute to the possible development of promising new therapeutic options to treat inflammatory conditions.
Collapse
Affiliation(s)
- Sofia Encarnação
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Gonçalo I. Caldeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Maria Paula Duarte
- MEtRICs/NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Almada, Portugal;
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| |
Collapse
|
22
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
23
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
24
|
Zhang P, Gong Y, Pan Q, Fan Z, Li G, Pei M, Zhang J, Wang T, Zhou G, Wang X, Ren W. Multifunctional calcium polyphenol networks reverse the hostile microenvironment of trauma for preventing postoperative peritoneal adhesions. Biomater Sci 2023; 11:6848-6861. [PMID: 37646188 DOI: 10.1039/d3bm01091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Pei Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Genke Li
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Guangdong Zhou
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
25
|
Bandick R, Busmann LV, Mousavi S, Shayya NW, Piwowarski JP, Granica S, Melzig MF, Bereswill S, Heimesaat MM. Therapeutic Effects of Oral Application of Menthol and Extracts from Tormentil ( Potentilla erecta), Raspberry Leaves ( Rubus idaeus), and Loosestrife ( Lythrum salicaria) during Acute Murine Campylobacteriosis. Pharmaceutics 2023; 15:2410. [PMID: 37896170 PMCID: PMC10610364 DOI: 10.3390/pharmaceutics15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Human food-borne infections with the enteropathogen Campylobacter jejuni are becoming increasingly prevalent worldwide. Since antibiotics are usually not indicated in campylobacteriosis, alternative treatment regimens are important. We here investigated potential disease-alleviating effects of menthol and of extracts from tormentil, raspberry leaves, and loosestrife in acute murine campylobacteriosis. Therefore, C. jejuni-infected microbiota-depleted IL-10-/- mice were orally treated with the compounds alone or all in combination from day 2 until day 6 post-infection. Whereas neither treatment regimen affected gastrointestinal pathogen loads, the combination of compounds alleviated C. jejuni-induced diarrheal symptoms in diseased mice on day 6 post-infection. Furthermore, the therapeutic application of tormentil and menthol alone and the combination of the four compounds resulted in lower colonic T cell numbers in infected mice when compared to placebo counterparts. Notably, pro-inflammatory cytokines measured in mesenteric lymph nodes taken from C. jejuni-infected mice following tormentil, menthol, and combination treatment did not differ from basal concentrations. However, neither treatment regimen could dampen extra-intestinal immune responses, including systemic pro-inflammatory cytokine secretion on day 6 post-infection. In conclusion, the combination of menthol and of extracts from tormentil, raspberry leaves, and loosestrife constitutes an antibiotic-independent approach to alleviate campylobacteriosis symptoms.
Collapse
Affiliation(s)
- Rasmus Bandick
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Lia V Busmann
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Nizar W Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| |
Collapse
|
26
|
Huang HB, Gong W, Hou YY, He WY, Wang R, Wang XC, Hu JN. Mucoadhesive Hydrogel with Anti-gastric Acid and Sustained-Release Functions for Amelioration of DSS-Induced Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4016-4028. [PMID: 36812066 DOI: 10.1021/acs.jafc.2c07777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mucoadhesive hydrogels with multifunctional properties such as gastric acid resistance and sustained drug release in the intestinal tract are highly desirable for the oral treatment of inflammatory bowel diseases (IBDs). Polyphenols are proven to have great efficacies compared with the first-line drugs for IBD treatments. We recently reported that gallic acid (GA) was capable of forming a hydrogel. However, this hydrogel is prone to easy degradation and poor adhesion in vivo. To tackle this problem, the current study introduced sodium alginate (SA) to form a gallic acid/sodium alginate hybrid hydrogel (GAS). As expected, the GAS hydrogel showed excellent antiacid, mucoadhesive, and sustained degradation properties in the intestinal tract. In vitro studies demonstrated that the GAS hydrogel significantly alleviated ulcerative colitis (UC) in mice. The colonic length of the GAS group (7.75 ± 0.38 cm) was significantly longer than that of the UC group (6.12 ± 0.25 cm). The disease activity index (DAI) value of the UC group was (5.5 ± 0.57), which was markedly higher than that of the GAS group (2.5 ± 0.65). The GAS hydrogel also could inhibit the expression of inflammatory cytokines, regulating macrophage polarization and improving the intestinal mucosal barrier functions. All these results indicated that the GAS hydrogel was an ideal candidate for oral treatment of UC.
Collapse
Affiliation(s)
- Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Gong
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Yang Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
27
|
Fan Z, Bian Z, Huang H, Liu T, Ren R, Chen X, Zhang X, Wang Y, Deng B, Zhang L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants (Basel) 2023; 12:545. [PMID: 36978793 PMCID: PMC10045725 DOI: 10.3390/antiox12030545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
A variety of physical, emotional, and mental factors can induce a stress response in pet dogs and cats. During this process, hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics) on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future studies in the field of pet food and nutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baichuan Deng
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingna Zhang
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
29
|
Yu TY, Feng YM, Kong WS, Li SN, Sun XJ, Zhou G, Xie RF, Zhou X. Gallic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via inhibiting NLRP3 inflammasome. Front Pharmacol 2023; 14:1095721. [PMID: 36762118 PMCID: PMC9905138 DOI: 10.3389/fphar.2023.1095721] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease (IBD). The conventional drugs for UC may induce severe side effects. Herbal medicine is considered as a complementary and alternative choice for UC. Purpose: This study aims to estimate the effect of natural polyphenol gallic acid (GA) on the NLRP3 inflammasome with dextran sulfate sodium (DSS)-induced colitis in mice. Study design: The body weights and symptoms of BALB/c mice were recorded. Histological evaluation, ELISA, q-PCR, immunohistochemistry, and western blotting were carried out to observe the morphology, cytokine contents, mRNA expressions, and protein expressions, respectively. Lipopolysaccharide (LPS)-induced RAW264.7 macrophage was used to probe GA's effect on relative protein expression. Results: GA attenuated weight loss (p < 0.05), relieved symptoms, and ameliorated colonic morphological injury (p < 0.05) in mice with colitis induced by DSS. GA also lowered the contents of TNF-α, IL-1β, IL-18, IL-33, and IFN-γ in the serum and colon of mice, which were elevated by DSS, downregulated protein, and mRNA expressions of the NLRP3 pathway in the colon tissue. Furthermore, GA downregulated the expressions of NLRP3 (p < 0.05), iNOS (p < 0.01), COX2 (p < 0.01), and P-p65 (p < 0.05), and suppressed NO release (p < 0.001) in LPS-induced RAW264.7 cells. Conclusion: GA ameliorated DSS-induced UC in mice via inhibiting the NLRP3 inflammasome. These findings furnish evidence for the anti-inflammatory effect of herbal medicines containing GA on UC.
Collapse
Affiliation(s)
- Tian-Yuan Yu
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan-Ni Li
- Shanghai Nanyang Model Private High School, Shanghai, China
| | - Xue-Jiao Sun
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Fengdu County People’s Hospital of Chongqing, Chongqing, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Zhou,
| |
Collapse
|
30
|
Wu K, Liu X, Meng X, Cao L, Li H, Bi Y, Wang M, Wang M, Jiang Y. Sauchinone alleviates dextran sulfate sodium-induced ulcerative colitis via NAD(P)H dehydrogenase [quinone] 1/NF-kB pathway and gut microbiota. Front Microbiol 2023; 13:1084257. [PMID: 36699607 PMCID: PMC9868758 DOI: 10.3389/fmicb.2022.1084257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study evaluated the effects of sauchinone on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model and investigated the underlying mechanisms of the downstream pathway and gut microbiota. METHODS The UC mice model was induced by DSS. The disease phenotypes were determined through pathological symptoms (body weight and disease activity index score), inflammation markers (histological and inflammatory factor detections), and colonic mucosal barrier damage (detection of tight junction proteins). The level of the NF-κB pathway was detected through marker proteins. Database and bioinformatics analyses were used to predict sauchinone-mediated downstream molecules that were previously identified by expression analysis. Mouse feces were collected to detect the V3-V4 region of the 16S rRNA gene. RESULTS In DSS-induced UC mice, sauchinone alleviated pathological symptoms, inhibited inflammation, and prevented mucosal barrier damage. Sauchinone further inhibited the NF-κB pathway by upregulating NAD (P) H dehydrogenase [quinone] 1 (NQO1) in DSS-induced UC mice. Moreover, sauchinone regulated the diversity and composition of the gut microbiota in mice, stimulating the growth of Firmicutes and inhibiting the growth of Proteobacteria and Bacteroidetes. CONCLUSION Therefore, sauchinone exerted therapeutic effects on UC in mice by regulating the NQO1/NF-κB pathway and altering the gut microbiota. This provides a theoretical basis for developing sauchinone as a therapeutic agent and extends our understanding of its bioactivity.
Collapse
Affiliation(s)
- Kun Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lingling Cao
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yingxin Bi
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Mengyuan Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
32
|
Gadekar GJ, Bhandare PA, Bandawane DD. Amelioration of 5-Fluorouracil Induced Nephrotoxicity by Acacia catechu through Overcoming Oxidative Damage and Inflammation in Wistar Rats. Cardiovasc Hematol Disord Drug Targets 2023; 23:189-201. [PMID: 37946347 DOI: 10.2174/011871529x274030231102065433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
AIM The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats. BACKGROUND While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation. OBJECTIVE The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes. METHODOLOGY Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured. RESULTS 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction. CONCLUSION The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gayatri Jaising Gadekar
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| | | | - Deepti Dinesh Bandawane
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| |
Collapse
|
33
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
34
|
Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals (Basel) 2022; 16:ph16010063. [PMID: 36678560 PMCID: PMC9862254 DOI: 10.3390/ph16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that affects the patients' colorectal area culminating in an inflamed 'leaky gut.' The majority of UC treatments only provide temporary respite leading to its relapse. Therefore, this study investigated the efficacy of the enteric-coated 'Cologrit' (EC) tablet in alleviating UC-like inflammation. Cologrit is formulated using polyherbal extracts that have anti-inflammatory qualities according to ancient Ayurveda scriptures. Phytochemical profiling revealed the presence of gallic acid, rutin, ellagic acid, and imperatorin in Cologrit formulation. Cologrit treatment decreased inflammation in LPS-induced transformed THP-1 macrophages, and TNF-α-stimulated human colorectal (HT-29) cells through the modulation of NFκB activity, IL-6 production, and NFκB, IL-1β, IL-8, and CXCL5 mRNA expression levels. Cologrit also lessened human monocytic (U937) cell adhesion to HT29 cells. Methacrylic acid-ethylacrylate copolymer-coating of the enteric Cologrit tablets (EC) supported their dissolution, and the release of phytochemicals in the small intestine pH 7.0 environment in a simulated gastrointestinal digestion model. Small intestine EC digestae effectively abridged dextran sodium sulfate (2.5% w/v)-induced cell viability loss and oxidative stress in human colon epithelial Caco-2 cells. In conclusion, the enteric-coated Cologrit tablets demonstrated good small intestine-specific phytochemical delivery capability, and decreased UC-like inflammation, and oxidative stress through the regulation of TNF-α/NFκB/IL6 signaling axis.
Collapse
|
35
|
Han X, Li M, Sun L, Liu X, Yin Y, Hao J, Zhang W. p-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner. Nutrients 2022; 14:nu14245383. [PMID: 36558542 PMCID: PMC9784546 DOI: 10.3390/nu14245383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (J.H.); (W.Z.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.H.); (W.Z.)
| |
Collapse
|
36
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
37
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, Zhang D, Han L, Lin J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022; 27:7377. [PMID: 36364203 PMCID: PMC9653952 DOI: 10.3390/molecules27217377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.
Collapse
Affiliation(s)
- Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xichuan Wei
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Xu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haozhou Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanhu Fan
- Sichuan Huamei Pharmaceutical Co., Ltd., Sanajon Pharmaceutical Group, Chengdu 610045, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
39
|
Fecal microbiota and metabolomics revealed the effect of long-term consumption of gallic acid on canine lipid metabolism and gut health. Food Chem X 2022; 15:100377. [PMID: 36211749 PMCID: PMC9532725 DOI: 10.1016/j.fochx.2022.100377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Long-term consumption of 0.02%∼0.08% GA had no negative effect on canine body condition. GA intervention improved anti-oxidative and anti-inflammatory capacities. 0.08% GA regulated lipid metabolism in serum. 0.08% GA increased the relative abundance of SCFAs-producing bacteria. 0.08% GA regulated carbohydrate metabolism in fece.
Gallic acid (GA) is a natural polyphenolic compound with many health benefits. To assess the potential risk of long-term consumption of GA to gut health, healthy dogs were fed a basal diet supplemented with GA (0%, 0.02%, 0.04%, and 0.08%) for 45 d, and fecal microbiota and metabolomics were evaluated. This study demonstrated that GA supplementation regulated serum lipid metabolism by reducing serum triglyceride, fat digestibility, and Bacteroidetes/Firmicutes ratio. In addition, the relative abundance of Parasutterella was significantly lower, and the SCFAs-producing bacteria were increased along with fecal acetate and total SCFAs contents accumulation in the 0.08% GA group. Metabolomics data further elucidated that 0.08% GA significantly affected carbohydrate metabolism by downregulating succinic acid in fece, thereby alleviating inflammation and oxidative stress. Overall, this study confirmed the beneficial effects of long-term consumption of GA on lipid metabolism and gut health, and the optimal level of GA supplementation was 0.08%.
Collapse
|
40
|
Carregosa D, Pinto C, Ávila-Gálvez MÁ, Bastos P, Berry D, Santos CN. A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf 2022; 21:3931-3962. [PMID: 36037277 DOI: 10.1111/1541-4337.13006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.
Collapse
Affiliation(s)
- Diogo Carregosa
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Catarina Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Paulo Bastos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Cláudia Nunes Santos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
41
|
Ezaouine A, Salam MR, Nouadi B, Anachad O, Messal ME, Chegdani F, Bennis F. In Silico Prediction of the Bioactive Profile and Metabolites of Satureja nepeta in Diseases Related to the Excessive Production of Interleukin-6. Bioinform Biol Insights 2022; 16:11779322221115665. [PMID: 35958296 PMCID: PMC9358202 DOI: 10.1177/11779322221115665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases are caused by an abnormal reaction of the immune system, which becomes hyperactive because the mechanisms responsible for regulating it get out of control. For an effective immune response, many proinflammatory cytokines are secreted, particularly interleukin-6 (IL-6) keystone cytokine inflammation. Many synthetic and natural compounds targeting IL-6 have been studied. The genus Satureja of the Lamiaceae family is generally known for its many virtues, in particular anti-inflammatory properties. However, the mechanism of action is unclear. This study aims to predict the impact of characterized bioactive molecules of Moroccan Satureja nepeta in the potential control of inflammatory response mediated by IL-6 cytokine. A list of 9 previously characterized natural compounds of S. nepeta was compiled, and a list of 6 potential protein targets involved in intestinal inflammation was made. The 2 lists of natural compound-target proteins were analyzed by the STITCH software (http://stitch.embl.de/) to develop protein-compound and protein-protein interaction networks (PPINs). An ontological enrichment (GO) analysis was performed by the Clue GO plugin to evaluate the PPIN generated by STITCH; finally, the molecular docking to predict the mode underlying the anti-inflammatory effects. STITCH results revealed direct and indirect interactions of S. nepeta chemical compounds with a key protein target IL-6. The array results by ClueGO showed that most compounds involved in the regulation of several biological processes related to IL-6 such as inflammation apoptosis, cell differentiation, and metabolic regulation. The targets directly related to IL-6 have been used for molecular docking. Quercetin, catechin, and gallic acid have a strong affinity with the IL-6 receptor (respectively −7.1; −6.1; −5.3). This study strongly suggests that the bioactive compounds of S. nepeta could constitute a new therapeutic alternative in the treatment of diseases related to IL-6. However, to validate the results obtained in this work, it is necessary to explore the mechanism of action of potential bioactive molecules by experimentation.
Collapse
Affiliation(s)
- Adbelkarim Ezaouine
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Rida Salam
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Badreddine Nouadi
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oumaima Anachad
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame El Messal
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faïza Bennis
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
42
|
Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
44
|
Deng B, Yang B, Chen J, Wang S, Zhang W, Guo Y, Han Y, Li H, Dang Y, Yuan Y, Dai X, Zang Y, Li Y, Li B. Gallic acid induces T-helper-1-like T reg cells and strengthens immune checkpoint blockade efficacy. J Immunother Cancer 2022; 10:jitc-2021-004037. [PMID: 35817479 PMCID: PMC9274539 DOI: 10.1136/jitc-2021-004037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background Foxp3+ regulatory T (Treg) cells facilitate tumor immune evasion by forming a suppressive tumor microenvironment. Therefore, immune therapies promoting Treg fragility may greatly enhance immune checkpoint blockade (ICB) efficacy in cancers. Methods We have screened 2640 compounds and identified the gut microbial metabolite gallic acid, which promotes Foxp3 degradation and Treg instability by repressing Usp21 gene transcription. In vivo and in vitro experiments have been performed to explore the roles of Usp21 in Treg cells. Importantly, we treated tumor-bearing mice with gallic acid and anti-PD-1 antibody to explore the potential therapeutic value of gallic acid in clinical cancer immunotherapy. Results Mechanistically, gallic acid prevents STAT3 phosphorylation and the binding of phosphorylated STAT3 to Usp21 gene promoter. The deubiquitinated Usp21 and stabilized PD-L1 proteins boost the function of Treg cells. Combination of gallic acid and anti-PD-1 antibody, in colorectal cancer (CRC) treatment, not only significantly dampen Treg cell function by impairing PD-L1/PD-1 signaling and downregulating Foxp3 stability, but also promote CD8+ T cells’ production of IFN-γ and limited tumor growth. Conclusion Our findings have implications for improving the efficacy of ICB therapy in CRC by inducing T-helper-1-like Foxp3lo Treg cells.
Collapse
Affiliation(s)
- Biaolong Deng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biaolong Yang
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jieqiong Chen
- Shanghai Affinity Biopharmaceutical Co., Ltd, Shanghai, China
| | - Shuaiwei Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqi Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixian Guo
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yichao Han
- Department of Thoracic Surgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Dang
- Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Yaqin Yuan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuansheng Zang
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yangyang Li
- Unit of Immune and Metabolic Regulation, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Shanghai, China.,Department of Integrated TCM and Western Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Cornejo-Campos J, Gómez-Aguirre YA, Velázquez-Martínez JR, Ramos-Herrera OJ, Chávez-Murillo CE, Cruz-Sosa F, Areche C, Cabañas-García E. Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123707. [PMID: 35744833 PMCID: PMC9229054 DOI: 10.3390/molecules27123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Acanthocereus tetragonus (L.) Hummelinck is used as an alternative food source in some Mexican communities. It has been shown that the young stems of A. tetragonus provide crude protein, fiber, and essential minerals for humans. In this work, we analyzed the phytochemical profile, the total phenolic content (TPC), and the antioxidant activity of cooked and crude samples of A. tetragonus to assess its functional metabolite contribution to humans. The phytochemical profile was analyzed using Ultra-High-Performance Liquid Chromatography coupled to High-Resolution Mass Spectrometry (UHPLC-PDA-HESI-Orbitrap-MS/MS). Under the proposed conditions, 35 metabolites were separated and tentatively identified. Of the separated metabolites, 16 occurred exclusively in cooked samples, 6 in crude samples, and 9 in both crude and cooked samples. Among the detected compounds, carboxylic acids, such as threonic, citric, and malic acids, phenolic acids, and glycosylated flavonoids (luteolin-O-rutinoside) were detected. The TPC and antioxidant activity were analyzed using the Folin–Ciocalteu method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical inhibition method, respectively. The TPC and antioxidant activity were significantly reduced in the cooked samples. We found that some metabolites remained intact after the cooking process, suggesting that A. tetragonus represents a source of functional metabolites for people who consume this plant species.
Collapse
Affiliation(s)
- Jaqueline Cornejo-Campos
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico;
| | - Yenny Adriana Gómez-Aguirre
- CONACyT Research Fellow-Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico
- Correspondence: or (Y.A.G.-A.); or (E.C.-G.)
| | - José Rodolfo Velázquez-Martínez
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, Villahermosa 86280, Mexico;
| | - Oscar Javier Ramos-Herrera
- Unidad Profesional lnterdisciplinaria de Ingeniería, Campus Zacatecas, lnstituto Politécnico Nacional (UPllZ-lPN), Calle Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (O.J.R.-H.); (C.E.C.-M.)
| | - Carolina Estefanía Chávez-Murillo
- Unidad Profesional lnterdisciplinaria de Ingeniería, Campus Zacatecas, lnstituto Politécnico Nacional (UPllZ-lPN), Calle Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (O.J.R.-H.); (C.E.C.-M.)
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Campus Iztapalapa, San Rafael Atlixco 186, Vicentina, Ciudad de México 09340, Mexico;
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Emmanuel Cabañas-García
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, Calle Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico
- Correspondence: or (Y.A.G.-A.); or (E.C.-G.)
| |
Collapse
|
46
|
Chemical Characterization and Metabolic Profiling of the Compounds in the Chinese Herbal Formula Li Chang Decoction by UPLC-QTOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322751. [PMID: 35463075 PMCID: PMC9020952 DOI: 10.1155/2022/1322751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Background Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
Collapse
|
47
|
Lucena Périco L, de Cássia Dos Santos R, Peixoto Rodrigues V, Vasti Alfieri Nunes V, Vilegas W, Machado da Rocha LR, Dos Santos C, Hiruma-Lima CA. Role of the antioxidant pathway in the healing of peptic ulcers induced by ischemia-reperfusion in male and female rats treated with Eugenia punicifolia. Inflammopharmacology 2022; 30:1383-1394. [PMID: 35445989 DOI: 10.1007/s10787-022-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Ischaemia and reperfusion (I/R)-induced gastrointestinal disorders are caused by free radicals, resulting in organ damage and functional disarrangement. This study aimed to investigate the healing effects of hydroalcoholic extracts from the leaves of Eugenia punicifolia (Kunth) DC. (HEEP) in male and female Wistar rats with I/R-induced peptic injuries, and the role of antioxidants in improving this response. After I/R-induced gastric and duodenal injuries, male and female [intact (INT) and ovariectomized (OVZ)] rats were orally treated with HEEP for 6 days. Biochemical analysis was used to determine the catalase (CAT), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities, as well as malondialdehyde and reduced glutathione levels, to measure the gastric and duodenal healing process. Six days of HEEP treatment significantly decreased the I/R-induced gastric [male (73.68%), INT (52.83%), and OVZ (43.13%)] and duodenal damage [male (57.03%), INT (56.04%), and OVZ (54.83%)] in all groups. In OVZ rats, the healing effect of HEEP occurred because of the increased activity of SOD (2x) and CAT (1.16x) in the gastric mucosa. In the duodenal mucosa of INT rats, the extract reduced MPO (20.83%) activity. The 6-day HEEP treatment improved the healing of I/R-induced peptic ulcer injury, with the system acting differently in males and females. The antioxidant system is an important component of the HEEP activity during post-I/R mucosal recovery. This result revealed the importance of antioxidant compounds in minimizing the severity of I/R-related events.
Collapse
Affiliation(s)
- Larissa Lucena Périco
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Raquel de Cássia Dos Santos
- Laboratory of Pharmacology and Molecular Biology, São Francisco University, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Vinícius Peixoto Rodrigues
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Vânia Vasti Alfieri Nunes
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Wagner Vilegas
- Biosciences Institute, UNESP-São Paulo State University, São Vicente, São Paulo, CEP 11330-900, Brazil
| | - Lúcia Regina Machado da Rocha
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Catarina Dos Santos
- Department of Biological Science, Faculty of Sciences and Languages, UNESP-São Paulo State University, Assis, São Paulo, CEP 19806-900, Brazil
| | - Clélia Akiko Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
48
|
Wu Y, Li K, Zeng M, Qiao B, Zhou B. Serum Metabolomics Analysis of the Anti-Inflammatory Effects of Gallic Acid on Rats With Acute Inflammation. Front Pharmacol 2022; 13:830439. [PMID: 35392557 PMCID: PMC8981033 DOI: 10.3389/fphar.2022.830439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Gallic acid (GA) is a natural small-molecule polyphenol having a wide range of pharmacological activities. Until now, some works have studied the effect and the mechanisms of GA against inflammation. However, whether or how gallic acid regulates the downstream metabolic disorder against acute inflammation remains unclear. The present study explored the protective effect and the potential mechanism of GA on acute inflammation through the metabolomics approach. Methods: An acute inflammation rat model was induced by local injection of carrageenin. Local swelling on paw and serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were assessed in Control, Model and Gallic acid groups, respectively. Serum metabolomics based on high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) was also established to collect rats’ metabolic profiles and explore the metabolic changes related to GA pretreatment. Results: Compared to the Modal group, local pain, redness, and swelling induced by carrageenin were significantly alleviated in GA groups in addition to the dose-dependent decreases of TNF-α and IL-6. Metabolomics analysis found significant alterations in metabolic signatures between the carrageenin-induced inflammation and control groups. Twelve potential biomarkers were further identified in acute inflammation by principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA). In addition, when rats were pretreated with gallic acid, serum levels of eleven biomarkers were observed to restore partially. Metabolic pathway and networks analysis revealed that GA might invert the pathological process of acute inflammation by regulating the key biomarkers involved in linoleic acid metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and arachidonic acid (AA) metabolism pathways. Conclusion: The study elucidates the protective effect of gallic acid against acute inflammation and its possible regulating mechanism from a metabolomic perspective. These results could provide a theoretical basis for clarifying gallic acid’s mechanism and potential medicinal value in curing inflammation disorder in the clinic.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Kuangyu Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Maolin Zeng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China
| | - Boyang Qiao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Zou Q, Feng J, Li T, Cheng G, Wang W, Rao G, He H, Li Y. Antioxidation and anti-inflammatory actions of the extract of Nitraria Tangutorum Bobr. fruits reduce the severity of ulcerative colitis in a dextran sulphate sodium-induced mice model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Zeng S, Tan L, Sun Q, Chen L, Zhao H, Liu M, Yang H, Ren S, Ming T, Tang S, Tao Q, Meng X, Xu H. Suppression of colitis-associated colorectal cancer by scutellarin through inhibiting Hedgehog signaling pathway activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153972. [PMID: 35151214 DOI: 10.1016/j.phymed.2022.153972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) and mainly develops from long-term intestinal inflammation. Mounting evidence reveals that activated Hedgehog signaling pathway plays a vital role in the pathogenesis of CRC. Scutellarin is a type of phytochemical flavonoid with a powerful efficacy on various malignancies, including CRC. AIM Here, we studied the therapeutic effect of scutellarin on CRC and its direct regulating targets. METHODS The CAC model in mice was established by azomethane oxide (AOM) and sodium dextran sulfate (DSS), followed by detection of the efficacies of scutellarin on the carcinogenesis, apoptosis, inflammation, Hedgehog signaling cascade and complicated inflammatory networks in CAC tissues of mice. In CRC SW480 cells, the effects of scutellarin on malignant phenotype, apoptosis and Hedgehog signaling were examined. In TNF-α-stimulated IEC-6 intestinal epithelial cells, the actions of scutellarin on inflammatory response and Hedgehog signals were assessed as well. RESULTS Scutellarin significantly ameliorated AOM/DSS-caused CAC in mice and induced apoptosis in CAC tissues of mice, by inhibiting NF-κB (nuclear factor kappa B) -mediated inflammation and Hedgehog signaling axis. RNA-seq and transcriptome analysis indicated that scutellarin regulated complicated inflammatory networks in mouse CAC. Also, scutellarin suppressed the proliferation, migration, colony formation, and induced apoptosis of SW480 cells by down-regulation of Hedgehog signaling pathway activity. Additionally, scutellarin lessened NF-κB-mediated inflammatory response in TNF-α-stimulated IEC-6 cells, by attenuating Hedgehog signaling cascade. CONCLUSION Scutellarin potently ameliorates CAC by suppressing Hedgehog signaling pathway activity, underpinning the promising application of scutellarin to CRC in clinical settings.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chongqing Medical and Health School, Chongqing 408000, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|