1
|
Qu G, Liu K, Xu W, Li D. Integrated analysis and experimental validation reveal the prognostic and immunological features associated with coagulation in hepatocellular carcinoma. Sci Rep 2025; 15:8626. [PMID: 40074769 PMCID: PMC11904193 DOI: 10.1038/s41598-025-85491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025] Open
Abstract
Coagulation is intensively related to various tumors, which affects their progression and prognosis. However, research on the impact of coagulation-associated genes (CAGs) on hepatocellular carcinoma (HCC) occurrence, prognosis, and immune microenvironment is limited. Consequently, our research aims to uncover how CAGs affect the prognosis and immune microenvironments of HCC. We integrated gene expression data and clinical information from three datasets (GSE14520, GSE76427, and TCGA-LIHC). 281 CAGs were obtained from the coagulation-related pathway (hsa04610). We obtained three CAG patterns through a consensus clustering algorithm. Afterward, differential analyses of prognosis, biological processes, immune infiltration, and functional and pathway enrichment were conducted on the three CAG patterns. We intersected CAGs with differentially expressed genes in GSE76427 and then conducted Cox regression analysis to obtain the prognostic genes in HCC. Glycerol-3-phosphate dehydrogenase 2 (GPD2) was selected for further analyses. TCGA-LIHC samples with different GPD2 expression levels were analyzed for prognosis, DNA methylation, immune infiltration, and drug sensitivity. The expression level of GPD2 was verified through quantitative real-time PCR (qPCR) and immunohistochemistry. The wound-healing and Transwell assays were used to analyze the tumor cell migration and the Matrigel invasion and apoptosis assays were performed to determine cell invasion and apoptosis. Three CAG patterns were obtained through an unsupervised consensus clustering algorithm. CAGclusterA held the best prognosis compared to the other two clusters. The CAGclusterC was characterized by poor prognosis and abundant immune cell infiltration. The TCGA-LIHC dataset, as an internal validation, also yielded similar subtype classifications. Afterward, we identified the GPD2 gene, which significantly affected the prognosis of HCC and was positively correlated with the tumor progression. The upregulation of GPD2 expression was closely related to tumorigenic signatures and immune escape. The qPCR confirmed the upregulation of GPD2 expression in HCC tumor cell lines, compared to normal liver cell lines. Immunohistochemical staining confirmed the high expression of GPD2 in HCC tumor tissues compared to normal tissues. Regulating the expression level of GPD2 can inhibit the proliferation, migration, invasion, and induce apoptosis of HCC cells. Our study comprehensively elucidated the coagulation characteristics in HCC and identified a promising oncogenic gene GPD2. Exploring targeted strategies based on coagulation-related characteristics and biomarkers may shed light on HCC treatment.
Collapse
Affiliation(s)
- Guangzhen Qu
- Department of Interventional Radiology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, 100020, China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Bogomolova EA, Murashko MM, Stasevich EM, Uvarova AN, Zheremyan EA, Korneev KV, Kuprash DV, Demin DE. Thioridazine Induces Increase in Expression of the Pyruvate Transporter MPC1 Associated with Immune Infiltration in Malignant Tumors. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2025; 520:64-68. [PMID: 39920561 PMCID: PMC12050224 DOI: 10.1134/s001249662460060x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 02/09/2025]
Abstract
The MPC1 gene is involved in the transport of pyruvate into mitochondria, playing an important role in metabolic processes. Recently, it has been reported that higher MPC1 expression correlates with an increased number of immune cells in human cervical and lung cancers, indicating an enhanced antitumor immune response. Reduced MPC1 levels in gastric tumors are associated with a more severe disease course. Correlational analysis of the MPC1 gene in human lung, hippocampus and frontal cortex tissue samples based on data from the GTEx database revealed associations of this gene with schizophrenia, non-small cell lung cancer, and immune diseases. Our experiments showed that the mRNA level of the MPC1 gene in the non-small cell lung cancer cell line A549 increases 5-fold under the influence of the schizophrenia neuroleptic thioridazine. The observed elevation of MPC1 level may cause tumor infiltration by immune cells, complementing the previously reported data indicating the ability of thioridazine to slow cell growth, induce apoptosis and reduce the ability of cells to migrate.
Collapse
Affiliation(s)
- E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, Russia
| | - E M Stasevich
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, Russia
| | - A N Uvarova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - E A Zheremyan
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - K V Korneev
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - D V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - D E Demin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
3
|
Hu B, Yin G, Zhu J, Bai Y, Sun X. Continuous prediction for tumor mutation burden based on transcriptional data in gastrointestinal cancers. BMC Med Inform Decis Mak 2024; 24:384. [PMID: 39695561 DOI: 10.1186/s12911-024-02794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tumor mutation burden (TMB) has been considered a biomarker for utilization of immune checkpoint inhibitors(ICIs), but whole exome sequencing(WES) and cancer gene panel(CGP) based on next generation sequencing for TMB detection are costly. Here, we use transcriptome data of TCGA to construct a model for TMB prediction in gastrointestinal tumors. METHODS Transcriptome data, somatic mutation data and clinical data of four gastrointestinal tumors from TCGA, including esophageal cancer (ESCA), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). Using R, we performed visual analysis of somatic mutation data, differentially expressed genes (DEGs) function enrichment analysis, gene set enrichment analysis (GSEA), and estimated TMB value in clinic. Finally, a deep neural network (DNN) model was constructed for TMB prediction. RESULTS Visualization of somatic mutation data summarized the classification of mutation, frequency of each mutation type, and top-mutated genes. GSEA showed the enrichment of CD4+/CD8+ T cells in the high TMB group and the activation of tumor suppressing pathways. Single-sample GSEA (ssGSEA) manifested that the high-TMB group had higher level of multiple immune cells infiltration. In addition, distribution of TMB was related to clinical parameters. Like age, M stage, N stage, AJCC stage, and overall survival(OS). After model optimization using genetic algorithm, in the training set, validation set, and testing set, the Pearson relevance coefficient r between predicted values and actual values reaches 0.98, 0.82, and 0.92, respectively; the coefficient of determination R2 is 0.95, 0.82, and 0.7, respectively. CONCLUSION TMB correlates with clinicopathological parameters in gastrointestinal carcinoma, and patients with high TMB have higher levels of immune infiltration. In addition, the DNN model based on 31 genes predicts TMB of gastrointestinal tumors in a high accuracy.
Collapse
Affiliation(s)
- Beibei Hu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guohui Yin
- Key Laboratory of Traffic Safety On Track (Central South University), Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Jialin Zhu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Bai
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Torland LA, Lai X, Kumar S, Riis MH, Geisler J, Lüders T, Tekpli X, Kristensen V, Sahlberg K, Tahiri A. Benign breast tumors may arise on different immunological backgrounds. Mol Oncol 2024; 18:2495-2509. [PMID: 38757377 PMCID: PMC11459044 DOI: 10.1002/1878-0261.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Benign breast tumors are a nonthreatening condition defined as abnormal cell growth within the breast without the ability to invade nearby tissue. However, benign lesions hold valuable biological information that can lead us toward better understanding of tumor biology. In this study, we have used two pathway analysis algorithms, Pathifier and gene set variation analysis (GSVA), to identify biological differences between normal breast tissue, benign tumors and malignant tumors in our clinical dataset. Our results revealed that one-third of all pathways that were significantly different between benign and malignant tumors were immune-related pathways, and 227 of them were validated by both methods and in the METABRIC dataset. Furthermore, five of these pathways (all including genes involved in cytokine and interferon signaling) were related to overall survival in cancer patients in both datasets. The cellular moieties that contribute to immune differences in malignant and benign tumors were analyzed using the deconvolution tool, CIBERSORT. The results showed that levels of some immune cells were specifically higher in benign than in malignant tumors, and this was especially the case for resting dendritic cells and follicular T-helper cells. Understanding the distinct immune profiles of benign and malignant breast tumors may aid in developing noninvasive diagnostic methods to differentiate between them in the future.
Collapse
Affiliation(s)
- Lilly Anne Torland
- Department of Clinical Molecular Biology (EpiGen)Akershus University HospitalLørenskogNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Research and InnovationVestre Viken HF, Drammen HospitalNorway
| | - Xiaoran Lai
- Oslo Centre for Biostatistics and Epidemiology, Faculty of MedicineUniversity of OsloNorway
| | - Surendra Kumar
- Department of Ocean SciencesMemorial University of NewfoundlandSt. John'sCanada
| | - Margit H. Riis
- Department of Breast and Endocrine Surgery, Clinic of CancerOslo University HospitalNorway
| | - Jürgen Geisler
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of OncologyAkershus University HospitalLørenskogNorway
| | - Torben Lüders
- Department of Clinical Molecular Biology (EpiGen)Akershus University HospitalLørenskogNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Xavier Tekpli
- Department of Medical GeneticsOslo University HospitalOsloNorway
| | - Vessela Kristensen
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
| | - Kristine Sahlberg
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Research and InnovationVestre Viken HF, Drammen HospitalNorway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EpiGen)Akershus University HospitalLørenskogNorway
- Department of Research and InnovationVestre Viken HF, Drammen HospitalNorway
| |
Collapse
|
6
|
Liu TC, Zheng MH, Zeng XY, Kang R, Bahabayi A, Tuerhanbayi B, Lu SS, Liu C. Imbalance of Circulating Follicular Regulatory and Follicular Helper T Cell Subpopulations Is Associated with Disease Progression and Serum CYFRA 21-1 Levels in Patients with Non-small Cell Lung Cancer. Curr Med Sci 2024; 44:102-109. [PMID: 38079054 DOI: 10.1007/s11596-023-2810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVE This study aimed to investigate the changes of follicular helper T (TFH) and follicular regulatory T (TFR) cell subpopulations in patients with non-small cell lung cancer (NSCLC) and their significance. METHODS Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls. Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1 (PD-1) and inducible co-stimulator (ICOS), and TFR cell subpopulation based on cluster determinant 45RA (CD45RA) and forkhead box protein P3 (FoxP3). The levels of interleukin-10 (IL-10), interleukin-17a (IL-17a), interleukin-21 (IL-21), and transforming growth factor-β (TGF-β) in the plasma were measured, and changes in circulating B cell subsets and plasma IgG levels were also analyzed. The correlation between serum cytokeratin fragment antigen 21-1 (CYFRA 21-1) levels and TFH, TFR, or B cell subpopulations was further explored. RESULTS The TFR/TFH ratio increased significantly in NSCLC patients. The CD45RA+FoxP3int TFR subsets were increased, with their proportions increasing in stages II to III and decreasing in stage IV. PD-1+ICOS+TFH cells showed a downward trend with increasing stages. Plasma IL-21 and TGF-β concentrations were increased in NSCLC patients compared with healthy controls. Plasmablasts, plasma IgG levels, and CD45RA+FoxP3int TFR cells showed similar trends. TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages I-III and negatively correlated with CYFRA 21-1 in stage IV. CONCLUSION Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC, which is associated with serum CYFRA 21-1 levels and reflects disease progression.
Collapse
Affiliation(s)
- Tian-Ci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Mo-Han Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xing-Yue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Bulidierxin Tuerhanbayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Song-Song Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
7
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
8
|
Li Z, Zhang Y, Hao H, Chen L, Lv T, Zhang X, Qi Y, Wang Z. Esophageal cancer cell-derived small extracellular vesicles decrease circulating Tfh/Tfr via sEV-PDL1 to promote immunosuppression. Cancer Immunol Immunother 2023; 72:4249-4259. [PMID: 37943341 PMCID: PMC10992026 DOI: 10.1007/s00262-023-03561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.
Collapse
Affiliation(s)
- Zijie Li
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yuehua Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, Hebei, China
| | - He Hao
- Department of Internal Medicine, Henan Cancer Hospital Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Lu Chen
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, Hebei, China
| | - Tingting Lv
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Xiaokuan Zhang
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yuying Qi
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Zhiyu Wang
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
9
|
Zhang Z, Mao M, Wang F, Zhang Y, Shi J, Chang L, Wu X, Zhang Z, Xu P, Lu S. Comprehensive analysis and immune landscape of chemokines- and chemokine receptors-based signature in hepatocellular carcinoma. Front Immunol 2023; 14:1164669. [PMID: 37545521 PMCID: PMC10399597 DOI: 10.3389/fimmu.2023.1164669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Background Despite encouraging results from immunotherapy combined with targeted therapy for hepatocellular carcinoma (HCC), the prognosis remains poor. Chemokines and their receptors are an essential component in the development of HCC, but their significance in HCC have not yet been fully elucidated. We aimed to establish chemokine-related prognostic signature and investigate the association between the genes and tumor immune microenvironment (TIME). Methods 342 HCC patients have screened from the TCGA cohort. A prognostic signature was developed using least absolute shrinkage and selection operator regression and Cox proportional risk regression analysis. External validation was performed using the LIHC-JP cohort deployed from the ICGC database. Single-cell RNA sequencing (scRNA-seq) data from the GEO database. Two nomograms were developed to estimate the outcome of HCC patients. RT-qPCR was used to validate the differences in the expression of genes contained in the signature. Results The prognostic signature containing two chemokines-(CCL14, CCL20) and one chemokine receptor-(CCR3) was successfully established. The HCC patients were stratified into high- and low-risk groups according to their median risk scores. We found that patients in the low-risk group had better outcomes than those in the high-risk group. The results of univariate and multivariate Cox regression analyses suggested that this prognostic signature could be considered an independent risk factor for the outcome of HCC patients. We discovered significant differences in the infiltration of various immune cell subtypes, tumor mutation burden, biological pathways, the expression of immune activation or suppression genes, and the sensitivity of different groups to chemotherapy agents and small molecule-targeted drugs in the high- and low-risk groups. Subsequently, single-cell analysis results showed that the higher expression of CCL20 was associated with HCC metastasis. The RT-qPCR results demonstrated remarkable discrepancies in the expression of CCL14, CCL20, and CCR3 between HCC and its paired adjacent non-tumor tissues. Conclusion In this study, a novel prognostic biomarker explored in depth the association between the prognostic model and TIME was developed and verified. These results may be applied in the future to improve the efficacy of immunotherapy or targeted therapy for HCC.
Collapse
Affiliation(s)
- Ze Zhang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Mingsong Mao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fangzhou Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, China
| | - Jihang Shi
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, China
| | - Xiaolin Wu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, China
| | - Ping Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, China
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| |
Collapse
|
10
|
Li Y, Xiong C, Wu LL, Zhang BY, Wu S, Chen YF, Xu QH, Liao HF. Tumor subtypes and signature model construction based on chromatin regulators for better prediction of prognosis in uveal melanoma. Pathol Oncol Res 2023; 29:1610980. [PMID: 37362244 PMCID: PMC10287976 DOI: 10.3389/pore.2023.1610980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Background: Uveal Melanoma (UM) is the most prevalent primary intraocular malignancy in adults. This study assessed the importance of chromatin regulators (CRs) in UM and developed a model to predict UM prognosis. Methods: Gene expression data and clinical information for UM were obtained from public databases. Samples were typed according to the gene expression of CRs associated with UM prognosis. The prognostic key genes were further screened by the protein interaction network, and the risk model was to predict UM prognosis using the least absolute shrinkage and selection operator (LASSO) regression analysis and performed a test of the risk mode. In addition, we performed gene set variation analysis, tumor microenvironment, and tumor immune analysis between subtypes and risk groups to explore the mechanisms influencing the development of UM. Results: We constructed a signature model consisting of three CRs (RUVBL1, SIRT3, and SMARCD3), which was shown to be accurate, and valid for predicting prognostic outcomes in UM. Higher immune cell infiltration in poor prognostic subtypes and risk groups. The Tumor immune analysis and Tumor Immune Dysfunction and Exclusion (TIDE) score provided a basis for clinical immunotherapy in UM. Conclusion: The risk model has prognostic value for UM survival and provides new insights into the treatment of UM.
Collapse
Affiliation(s)
- Yue Li
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Chao Xiong
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Li Li Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Bo Yuan Zhang
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Sha Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Yu Fen Chen
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Qi Hua Xu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Hong Fei Liao
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Tang HT, Zhang YP, Zhao S, Song C. Common mechanisms involved in lung cancer and depression: The dominant role of interleukin-6-IDO pathway in the lung-brain axis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
13
|
Han S, Jiang D, Zhang F, Li K, Jiao K, Hu J, Song H, Ma QY, Wang J. A new immune signature for survival prediction and immune checkpoint molecules in non-small cell lung cancer. Front Oncol 2023; 13:1095313. [PMID: 36793597 PMCID: PMC9924230 DOI: 10.3389/fonc.2023.1095313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Background Immune checkpoint blockade (ICB) therapy has brought remarkable clinical benefits to patients with advanced non-small cell lung carcinoma (NSCLC). However, the prognosis remains largely variable. Methods The profiles of immune-related genes for patients with NSCLC were extracted from TCGA database, ImmPort dataset, and IMGT/GENE-DB database. Coexpression modules were constructed using WGCNA and 4 modules were identified. The hub genes of the module with the highest correlations with tumor samples were identified. Then integrative bioinformatics analyses were performed to unveil the hub genes participating in tumor progression and cancer-associated immunology of NSCLC. Cox regression and Lasso regression analyses were conducted to screen prognostic signature and to develop a risk model. Results Functional analysis showed that immune-related hub genes were involved in the migration, activation, response, and cytokine-cytokine receptor interaction of immune cells. Most of the hub genes had a high frequency of gene amplifications. MASP1 and SEMA5A presented the highest mutation rate. The ratio of M2 macrophages and naïve B cells revealed a strong negative association while the ratio of CD8 T cells and activated CD4 memory T cells showed a strong positive association. Resting mast cells predicted superior overall survival. Interactions including protein-protein, lncRNA and transcription factor interactions were analyzed and 9 genes were selected by LASSO regression analysis to construct and verify a prognostic signature. Unsupervised hub genes clustering resulted in 2 distinct NSCLC subgroups. The TIDE score and the drug sensitivity of gemcitabine, cisplatin, docetaxel, erlotinib and paclitaxel were significantly different between the 2 immune-related hub gene subgroups. Conclusions These findings suggested that our immune-related genes can provide clinical guidance for the diagnosis and prognosis of different immunophenotypes and facilitate the management of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Li
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qin-Yun Ma
- Department of Thoracic Surgery, North Branch of Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
15
|
Zou R, Liu Y, Qiu S, Lu Y, Chen Y, Yu H, Zhu H, Zhu W, Zhu L, Feng J, Han J. The identification of N6-methyladenosine-related miRNAs predictive of hepatocellular carcinoma prognosis and immunotherapy efficacy. Cancer Biomark 2023; 38:551-566. [PMID: 38007640 DOI: 10.3233/cbm-230263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A) modifications and microRNAs (miRNAs) play pivotal roles in tumorigenesis and development. However, the role of m6A-related miRNAs in HCC has not been clarified yet. This study aimed to identify the role of m6A-miRNAs in HCC prognosis through bioinformatics analysis. METHODS The clinicopathological information and RNA sequencing data of 369 HCC tumor tissues and 49 tumor-adjacent tissues were downloaded from the TCGA database. A total of 23 m6A regulators were extracted to evaluated the m6A-related miRNAs using Pearson's correlation analysis. Then, we selected prognosis-related m6A-miRNAs using a univariate Cox regression model and used the consensus cluster analysis to explore the characteristics of the m6A-miRNAs. The coefficient of the least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct a prognostic risk score model. The receiver operated characteristic (ROC) analysis was applied to evaluate the prognostic value of the signature. The biological functions of targeted genes were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, to validate the potential predictive value for prognosis, the miRNA expression profiles from the GSE76903 and GSE6857 were used. Single sample Gene Set Enrichment Analysis (ssGSEA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) were applied to assess the immune microenvironment of HCC. Additionally, a meta-analysis was used to verify the prognostic value of the m6A-microRNAs. RT-PCR was applied to validated the expression of miRNAs in HCC tissues. Cell viability, transwell assay and RNA m6A dot blot assays of HCC cells was applied to access the function of miR-17-5p. RESULTS The expression of 48 m6A-related miRNAs was identified and 17 prognostic m6A-miRNAs was discovered. The expression profile of those 17 miRNAs was divided into three clusters, and these clusters were associated with the tumor microenvironment (TME) and prognosis. The nine m6A-related miRNA signature was associated with the prognosis of HCC, the AUC of the ROC was 0.771(TCGA dataset), 0.788(GSE76903) and 0.646(GSE6857). The TME and the expression of immune checkpoint molecules were associated with the risk score. The meta-analysis also validated the prognostic value of the m6A-related miRNAs (miR182-5p (HR:1.58, 95%CI:1.04-2.40) and miR-17-5p (HR:1.58, 95%CI: 1.04-2.40)). The expression of miR-17-5p was upregulated in HCC tissues and miR-17-5p showed an oncogenic role in HCC cells. CONCLUSION The clinical innovation is the use of m6A-miRNAs as biomarkers for predicting prognosis regarding immunotherapy response in HCC patients.
Collapse
Affiliation(s)
- Renrui Zou
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaqian Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sangsang Qiu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ya Lu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hangju Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbiao Zhu
- Department of The Sixth Dental Division, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Jifeng Feng
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Han
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Li Q, Tang Y, Wang T, Zhu J, Zhou Y, Shi J. Novel immunogenic cell death-related risk signature to predict prognosis and immune microenvironment in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:307-323. [PMID: 36575346 DOI: 10.1007/s00432-022-04555-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Immunogenic cell death (ICD) is a type of regulated cell death (RCD) which was discovered to activate adaptive immunity. To date, the effect of ICD on lung adenocarcinoma (LUAD) remains unclear. In this research, we will study the role of ICD-related genes (ICDG) in LUAD. METHODS RNA sequencing and clinical data were gathered from TCGA-LUAD cohorts and GEO database. Using unsupervised cluster analysis, three clusters were identified with distinctive immune characteristics and significant overall survival based on 18 ICDG. Using LASSO Cox regression, three genes were identified and used to construct the prognosis signature. The association between the 3-ICDG risk signature and immune microenvironment analysis, somatic mutation, and enriched molecular pathways was investigated. RESULTS Consensus clustering separated the LUAD samples into three clusters (ICDcluster A, B and C), and ICDcluster B had the best prognosis. Different TME cell infiltration characteristics and biological behavior were found in three ICD clusters. Prognostic risk model was contrasted based on the 3 best prognostic ICD-related genes. Subsequently, vitro experiments verified the above analysis results. The high-risk group showed a poor prognosis and enrichment of cancer promoting signal pathway. Multivariate analysis indicated that this 3-ICDG prognostic model might be an accurate prediction parameter for LUAD. Moreover, conducting immune related analysis, we found that the 3-ICDG risk signature was characterized by an immune-active subtype on account of the high infiltration of immune-active cells. CONCLUSION This study expands our cognition of ICD in LUAD microenvironment, excavated prognostic biomarkers, and provided potential value for guiding immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Qixuan Li
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yijie Tang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiaqi Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
Zhang J, Lu M, Xu H, Ren F, Zhu L. Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characterization in ovarian cancer. Cancer Cell Int 2022; 22:328. [PMID: 36307842 PMCID: PMC9617300 DOI: 10.1186/s12935-022-02756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Cuproptosis (copper death) is a recently found cell death type produced by copper iron; nonetheless, the properties of cuproptosis molecular subtypes and possible involvement of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) in ovarian cancer (OC) remain unknown. Methods CRG changes were characterized at the genomic and transcriptional levels in 656 OC samples, and their expression patterns were investigated using three different datasets. Results We identified three distinct molecular subtypes, and discovered that variations in molecular subtypes were linked to patient prognosis, TME cell infiltration characteristics, malignancy, and immune-related pathways. Then, in order to predict overall survival (OS), we created a risk score and tested its predictive potential in OC patients. As a result, we created a very accurate nomogram to increase risk score clinical applicability. Better OS, younger age, early stage, and immune activity were all associated with a low risk score. The hallmarks of a high-risk score are older age, advanced stage, immunosuppression, and a bad prognosis. Furthermore, risk score was linked to immune checkpoint expression (including PD-L1, CTLA4), targeted therapy gene expression (PARP, PDGFRA), cancer stem cell (CSC), chemotherapy and targeted medication sensitivity. Conclusions Our comprehensive analysis of CRGs in OC showed their potential role in TME, clinicopathological characteristics, chemotherapy and targeted drug screening and prognosis. These discoveries could help us better understand CRGs in OC, as well as pave the path for novel ways to assess prognosis and design more effective immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02756-y.
Collapse
|
18
|
Tu P, Li X, Cao L, Zhong M, Xie Z, Wu Z. Machine learning and BP neural network revealed abnormal B cell infiltration predicts the survival of lung cancer patients. Front Oncol 2022; 12:882018. [PMID: 36303835 PMCID: PMC9592816 DOI: 10.3389/fonc.2022.882018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
FAM83A gene is related to the invasion and metastasis of various tumors. However, the abnormal immune cell infiltration associated with the gene is poorly understood in the pathogenesis and prognosis of NSCLC. Based on the TCGA and GEO databases, we used COX regression and machine learning algorithms (CIBERSORT, random forest, and back propagation neural network) to study the prognostic value of FAM83A and immune infiltration characteristics in NSCLC. High FAM83A expression was significantly associated with poor prognosis of NSCLC patients (p = 0.00016), and had excellent prognostic independence. At the same time, the expression level of FAM83A is significantly related to the T, N, and Stage. Subsequently, based on machine learing strategies, we found that the infiltration level of naive B cells was negatively correlated with the expression of FAM83A. The low infiltration of naive B cells was significantly related to the poor overall survival rate of NSCLC (p = 0.0072). In addition, Cox regression confirmed that FAM83A and naive B cells are risk factors for the prognosis of NSCLC patients. The nomogram combining FAM83A and naive B cells (C-index = 0.748) has a more accurate prognostic ability than the Stage (C-index = 0.651) system. Our analysis shows that abnormal infiltration of naive B cells associated with FAM83A is a key factor in the prognostic prediction of NSCLC patients.
Collapse
Affiliation(s)
- Pinghua Tu
- *Correspondence: Pinghua Tu, ; Zhanling Wu,
| | | | | | | | | | | |
Collapse
|
19
|
Shen Y, Zhou C, Cao Y, Li Q, Deng H, Gu S, Wu Y, Shen Z. Expression profile and prognostic value of CXCR family members in head and neck squamous cell carcinoma. World J Surg Oncol 2022; 20:259. [PMID: 35978426 PMCID: PMC9382762 DOI: 10.1186/s12957-022-02713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background CXC chemokine receptor gene family consists of seven well-established members which are broadly involved in biological functions of various cancers. Currently, limited studies have shed light on the expression profile of CXCR family members (CXCRs), as well as their prognostic value, in head and neck squamous cells carcinoma (HNSCC). Methods The data for this study were retrieved from the Cancer Genome Atlas database and other publicly available databases, including gene expression, methylation profiles, clinical information, immunological features, and prognoses. The expression pattern and prognostic values of CXCRs were identified, and the potential mechanism underlying CXCRs function in HNSCC was investigated by gene set enrichment analysis (GSEA). Results CXCRs were differentially expressed in HNSCC. As shown by Kaplan–Meier analysis, high CXCR3-6 expression was significantly associated with better prognostic outcomes of HNSCC patients, including overall survival and progression-free survival. According to the results of univariate and multivariate Cox proportional risk regression analysis, it was demonstrated that upregulation of CXCR3-6 was an independent factor for better prognosis, while the two other clinical features, age and stage, were factors for worse prognosis. A significant positive correlation between CXCR3-6 and tumor-infiltrated immune cells was revealed by results from Tumor Immune Estimation Resource and CIBERSORT analysis database. The main involvement of CXCRs in immune and inflammatory responses was further confirmed by GSEA. Conclusions Overall, this study provided a rationale for targeting CXCRs as a promising therapeutic strategy of HNSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02713-z.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Medical School of Ningbo University, Ningbo, 315000, China
| | - Chongchang Zhou
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yujie Cao
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Medical School of Ningbo University, Ningbo, 315000, China
| | - Qun Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongxia Deng
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shanshan Gu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yidong Wu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China. .,Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China. .,Medical School of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
20
|
Cao L, Cao Z, Liu H, Liang N, Bing Z, Tian C, Li S. Detection of Potential Mutated Genes Associated with Common Immunotherapy Biomarkers in Non-Small-Cell Lung Cancer Patients. Curr Oncol 2022; 29:5715-5730. [PMID: 36005189 PMCID: PMC9406727 DOI: 10.3390/curroncol29080451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microsatellite instability (MSI), high tumor mutation burden (TMB-H) and programmed cell death 1 ligand 1 (PD-L1) expression are hot biomarkers related to the improvement of immunotherapy response. Two cohorts of non-small-cell lung cancer (NSCLC) were collected and sequenced via targeted next-generation sequencing. Drug analysis was then performed on the shared genes using three different databases: Drugbank, DEPO and DRUGSURV. A total of 27 common genes were mutated in at least two groups of TMB-H-, MSI- and PD-L1-positive groups. AKT1, SMAD4, SCRIB and AXIN2 were severally involved in PI3K-activated, transforming growth factor beta (TGF-β)-activated, Hippo-repressed and Wnt-repressed pathways. This study provides an understanding of the mutated genes related to the immunotherapy biomarkers of NSCLC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhili Cao
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin 300381, China
| | - Shanqing Li
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
- Correspondence: ; Tel./Fax: +86-010-6915-2630
| |
Collapse
|
21
|
He Q, Yang J, Jin Y. Immune infiltration and clinical significance analyses of the coagulation-related genes in hepatocellular carcinoma. Brief Bioinform 2022; 23:6645203. [PMID: 35849048 DOI: 10.1093/bib/bbac291] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancers and a global health challenge with a low early diagnosis rate and high mortality. The coagulation cascade plays an important role in the tumor immune microenvironment (TME) of HCC. In this study, based on the coagulation pathways collected from the KEGG database, two coagulation-related subtypes were distinguished in HCC patients. We demonstrated the distinct differences in immune characteristics and prognostic stratification between two coagulation-related subtypes. A coagulation-related risk score prognostic model was developed in the Cancer Genome Atlas (TCGA) cohort for risk stratification and prognosis prediction. The predictive values of the coagulation-related risk score in prognosis and immunotherapy were also verified in the TCGA and International Cancer Genome Consortium cohorts. A nomogram was also established to facilitate the clinical use of this risk score and verified its effectiveness using different approaches. Based on these results, we can conclude that there is an obvious correlation between the coagulation and the TME in HCC, and the risk score could serve as a robust prognostic biomarker, provide therapeutic benefits for chemotherapy and immunotherapy and may be helpful for clinical decision making in HCC patients.
Collapse
Affiliation(s)
- Qifan He
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Yang
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yonghai Jin
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| |
Collapse
|
22
|
Choi J, Sarker A, Choi H, Lee DS, Im HJ. Prognostic impact of an integrative analysis of [ 18F]FDG PET parameters and infiltrating immune cell scores in lung adenocarcinoma. EJNMMI Res 2022; 12:38. [PMID: 35759068 PMCID: PMC9237200 DOI: 10.1186/s13550-022-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/15/2022] [Indexed: 09/28/2023] Open
Abstract
Background High levels of 18F-fluorodeoxyglucose (18F-FDG) tumor uptake are associated with worse prognosis in patients with non-small cell lung cancer (NSCLC). Meanwhile, high levels of immune cell infiltration in primary tumor have been linked to better prognosis in NSCLC. We conducted this study for precisely stratified prognosis of the lung adenocarcinoma patients using the integration of 18F-FDG positron emission tomography (PET) parameters and infiltrating immune cell scores as assessed by a genomic analysis. Results Using an RNA sequencing dataset, the patients were divided into three subtype groups. Additionally, 24 different immune cell scores and cytolytic scores (CYT) were obtained. In 18F-FDG PET scans, PET parameters of the primary tumors were obtained. An ANOVA test, a Chi-square test and a correlation analysis were also conducted. A Kaplan–Meier survival analysis with the log-rank test and multivariable Cox regression test was performed to evaluate prognostic values of the parameters. The terminal respiratory unit (TRU) group demonstrated lower 18F-FDG PET parameters, more females, and lower stages than the other groups. Meanwhile, the proximal inflammatory (PI) group showed a significantly higher CYT score compared to the other groups (P = .001). Also, CYT showed a positive correlation with tumor-to-liver maximum standardized uptake value ratio (TLR) in the PI group (P = .027). A high TLR (P = .01) score of 18F-FDG PET parameters and a high T follicular helper cell (TFH) score (P = .005) of immune cell scores were associated with prognosis with opposite tendencies. Furthermore, TLR and TFH were predictive of overall survival even after adjusting for clinicopathologic features and others (P = .024 and .047). Conclusions A high TLR score was found to be associated with worse prognosis, while high CD8 T cell and TFH scores predicted better prognosis in lung adenocarcinoma. Furthermore, TLR and TFH can be used to predict prognosis independently in patients with lung adenocarcinoma.
Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00908-9.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Azmal Sarker
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea. .,Cancer Research Institute, Seoul National University, 03080, Seoul, Republic of Korea. .,Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Mary R, Chalmin F, Accogli T, Bruchard M, Hibos C, Melin J, Truntzer C, Limagne E, Derangère V, Thibaudin M, Humblin E, Boidot R, Chevrier S, Arnould L, Richard C, Klopfenstein Q, Bernard A, Urade Y, Harker JA, Apetoh L, Ghiringhelli F, Végran F. Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunol Res 2022; 10:900-916. [PMID: 35612500 DOI: 10.1158/2326-6066.cir-21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.
Collapse
Affiliation(s)
- Romain Mary
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Fanny Chalmin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Christophe Hibos
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Joséphine Melin
- LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Valentin Derangère
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Etienne Humblin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,Precision Immunology Institute, New York, New York
| | - Romain Boidot
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Corentin Richard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Antoine Bernard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Yoshihiro Urade
- Intemational Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lionel Apetoh
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - François Ghiringhelli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
24
|
Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: Role of immune cells and immune proteins. Clin Transl Allergy 2022; 12:e12133. [PMID: 35344301 PMCID: PMC8967267 DOI: 10.1002/clt2.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immune cells and immune proteins play a pivotal role in host responses to pathogens, allergens and cancer. Understanding the crosstalk between allergic response and cancer, immune surveillance, immunomodulation, role of immunoglobulin E (IgE)‐mediated functions and help to develop novel therapeutic strategies. Allergy and oncology show two opposite scenarios: whereas immune tolerance is desired in allergy, it is detrimental in cancer. Aim The current review provides an update on the role of immune cells and immune proteins in allergy and cancer fields. Methods Authors investigated the role of relevant immunological markers and the correlation with cancer progression or cancer suppression. Results Activated immune cells such as macrophages ‘M1’, dendritic cells (DCs), innate lymphoid cells (ILC2), NK cells, Th1, follicular T helper cells (TFH), TCD8+, B lymphocytes and eosinophils have inhibitory effects on tumourigenesis, while tolerogenic cells such as macrophages ‘M2,’ tolerogenic DCs, ILC3, T and B regulatory lymphocytes appear to favour carcinogenesis. Mastocytes and alarmins can have both effects. RIgE antibodies and CCCL5 chemokine have an anticancer role, whereas IgG4, free light chains, Il‐10, TGF‐β, lipocalin‐2, CCL1 chemokine promote cancer progression. Fundamental is also the contribution of epigenetic changes regulated by the microRNA in cancer progression. Conclusion This knowledge represents the key to developing new anticancer therapies.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Loredana Della Valle
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, and Operative Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Han J, Yang Y, Li X, Wu J, Sheng Y, Qiu J, Wang Q, Li J, He Y, Cheng L, Zhang Y. Pan-cancer analysis reveals sex-specific signatures in the tumor microenvironment. Mol Oncol 2022; 16:2153-2173. [PMID: 35229456 PMCID: PMC9168759 DOI: 10.1002/1878-0261.13203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
The processes of cancer initiation, progression, and response to therapy are affected by the sex of cancer patients. Immunotherapy responses largely depend on the tumor microenvironment (TME), but how sex may shape some TME features, remains unknown. Here, we analyzed immune infiltration signatures across 19 cancer types from 1771 male and 1137 female patients in The Cancer Genome Atlas to evaluate how sex may affect the tumor mutational burden (TMB), immune scores, stromal scores, tumor purity, immune cells, immune checkpoint genes, and functional pathways in the TME. Pan‐cancer analyses showed higher TMB and tumor purity scores, as well as lower immune and stromal scores in male patients as compared to female patients. Lung adenocarcinoma, lung squamous carcinoma, kidney papillary carcinoma, and head and neck squamous carcinoma showed the most significant sex biases in terms of infiltrating immune cells, immune checkpoint gene expression, and functional pathways. We further focused on lung adenocarcinoma samples in order to identify and validate sex‐specific immune cell biomarkers with prognostic potential. Overall, sex may affect the tumor microenvironment, and sex‐specific TME biomarkers may help tailor cancer immunotherapy in certain cancer types.
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
26
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|
27
|
Zhang W, Yao S, Huang H, Zhou H, Zhou H, Wei Q, Bian T, Sun H, Li X, Zhang J, Liu Y. Molecular subtypes based on ferroptosis-related genes and tumor microenvironment infiltration characterization in lung adenocarcinoma. Oncoimmunology 2021; 10:1959977. [PMID: 34527427 PMCID: PMC8437492 DOI: 10.1080/2162402x.2021.1959977] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recently, several molecular subtypes with different prognosis have been found in lung adenocarcinoma (LUAD). However, the characteristics of the ferroptosis molecular subtypes and the associated tumor microenvironment (TME) cell infiltration have not been fully studied in LUAD. Using 1160 lung adenocarcinoma samples, we explored the molecular subtypes mediated by ferroptosis-related genes, along with the associated TME cell infiltration. The ferroptosis score was constructed using the least absolute shrinkage and selection operator regression (LASSO) method to quantify the ferroptosis characteristics of a single tumor. Three different molecular subtypes related to ferroptosis, with different prognoses, were identified in LUAD. Analysis of TME cell infiltration revealed immune heterogeneity among the three subtypes. Cluster A was characterized by immunosuppression and was associated with stromal activation. Cluster C was characterized by a large number of immune cells infiltrating the TME, promoting tumor immune response, and it was significantly enriched in immune activation-related signaling pathways. Relatively less infiltration of immune cells was a feature of cluster B. The ferroptosis score can predict tumor subtype, immunity and prognosis. A low ferroptosis score was characterized by immune activation and good prognosis, as seen in the cluster C subtype. Relative immunosuppression and poor prognosis were the characteristics of a high ferroptosis score, as seen in cluster A and B subtypes. At the same time, the anti-PD-1/L1 immunotherapy cohort demonstrated that a low ferroptosis score was associated with higher efficacy of immunotherapy. The ferroptosis score is a promising biomarker that could be of great significance to determine the prognosis, molecular subtypes, TME cell infiltration characteristics and immunotherapy effects in patients with LUAD.
Collapse
Affiliation(s)
- Weiju Zhang
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Sumei Yao
- Department Of Respiratory, Nantong First People ' s Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Zhou
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Haomiao Zhou
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Qishuang Wei
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| |
Collapse
|
28
|
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. JOURNAL OF RADIATION RESEARCH 2021; 62:782-792. [PMID: 34265852 PMCID: PMC8438247 DOI: 10.1093/jrr/rrab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a sensor of nutrient status and plays an important role in cell growth and metabolism. Although inhibition of mTOR signaling promotes tumor cell death and several mTOR inhibitors have been used clinically, recent reports have shown that co-treatment with MHY1485, an mTOR activator, enhances the anti-cancer effects of anti-PD-1 antibody and 5-fluorouracil. However, it remains unclear whether MHY1485 treatment alters the effects of radiation on tumor cells. In this study, the radiosensitizing effects of MHY1485 were investigated using murine CT26 and LLC cell lines. We examined mTOR signaling, tumor cell growth, colony formation, apoptosis, senescence, oxidative stress, p21 accumulation and endoplasmic reticulum (ER) stress levels in cells treated with MHY1485 and radiation, either alone or together. We found that MHY1485 treatment inhibited growth and colony formation in both cell lines under irradiation and no-irradiation conditions, results that were not fully consistent with MHY1485's known role in activating mTOR signaling. Furthermore, we found that combined treatment with MHY1485 and radiation significantly increased apoptosis and senescence in tumor cells in association with oxidative stress, ER stress and p21 stabilization, compared to radiation treatment alone. Our results suggested that MHY1485 enhances the radiosensitivity of tumor cells by a mechanism that may differ from MHY1485's role in mTOR activation.
Collapse
Affiliation(s)
- Lue Sun
- Corresponding author. Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Tel: +81-29-849-1564; Fax: +81-29-861-6149; E-mail:
| | - Kumi Morikawa
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Sugiura
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa 761-0895, Japan
| |
Collapse
|
29
|
Wang L, Wang H, Xu K, Xu Y, Wang Y, Wei S, Zhang Z. Exploration of immune-related cells and ceRNA in squamous cell lung cancer. Medicine (Baltimore) 2021; 100:e27058. [PMID: 34477137 PMCID: PMC8415993 DOI: 10.1097/md.0000000000027058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
The treatment for squamous cell lung cancer (SqCLC) is limited, and the prognosis of SqCLC is poor. In this article, we aimed to analyze and identify immune-related cells and competition endogenous RNA (ceRNA) that influence the prognosis of SqCLC. SqCLC and lung adenocarcinoma data were downloaded from TCGA-GDC. A total of 22 types of immune cell fractions were estimated using CIBERSORT. R software was used to identify any significantly different transcriptome data, including mRNA, LncRNA, and miRNA. The univariate cox regression method was applied to screen for prognosis-related lncRNA, miRNA, mRNA and tumor-infiltrating immune cells. There were 504 patients included in this study. There was a higher proportion of memory activated CD4+ T cells and CD8+ T cells in younger women. Follicular helper T (Tfh) cells were predictive of a good prognosis and reflected immune activation in SqCLC. The SFTA1P/NKX2-1-AS1, hsa-mir-503, GREM2 ceRNA axes and NKX2-1-AS1, hsa-mir-96, PROK2 ceRNA axes were found to be important for the immune function, pathogenesis, and prognosis of SqCLC. Collectively, the immune-related ceRNA and tumor-infiltrating immune cells in SqCLC are likely important determinants of SqCLC pathogenesis, prognosis, and immune status.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Respiratory Disease, Building 8 of Tongling People's Hospital, Tongling
| | - Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei
| | - Yehong Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei
| | - Yong Wang
- Department of Respiratory Disease, The Fifth People's Hospital of Fuyang City, Fuyang, Anhui, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei
| |
Collapse
|
30
|
Lin X, Ye L, Wang X, Liao Z, Dong J, Yang Y, Zhang R, Li H, Li P, Ding L, Li T, Zhang W, Xu S, Han X, Xu H, Wang W, Gao H, Yu X, Liu L. Follicular Helper T Cells Remodel the Immune Microenvironment of Pancreatic Cancer via Secreting CXCL13 and IL-21. Cancers (Basel) 2021; 13:3678. [PMID: 34359579 PMCID: PMC8345153 DOI: 10.3390/cancers13153678] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Immunosuppression is an important factor for the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Follicular helper T cells (Tfh cells) play an anti-tumor role in various malignant solid tumors and predict better patient prognosis. In the present study, we aimed to determine the immunosuppressive mechanism associated with Tfh cells and explore a new strategy to improve the tumor microenvironment of PDAC. Flow cytometry was used to detect the infiltration and proportion of Tfh cells in tumor tissues and peripheral blood from patients with PDAC. The spatial correlations of Tfh cells with related immune cells were evaluated using immunofluorescence. The function of Tfh cells was examined using in vitro and in vivo model systems. The high infiltration of Tfh cells predicted better prognosis in patients with PDAC. Tfh cells recruited CD8+ T cells and B cells by secreting C-X-C motif chemokine ligand 13 (CXCL13), and promoted the maturation of B cells into antibody-producing plasma cells by secreting interleukin 21 (IL-21), thereby promoting the formation of an immunoactive tumor microenvironment. The function of Tfh cells was inhibited by the programmed cell death 1 ligand 1 (PD-L1)/programmed cell death 1 (PD-1) signaling pathway in PDAC, which could be reversed using neoadjuvant chemotherapy. Treatment with recombinant CXCL13, IL-21 and Tfh cells alleviated tumor growth and enhanced the infiltration of CD8+ T cells and B cells, as well as B cell maturation in a PDAC mouse model. Our results revealed the important role of Tfh cells in mediating anti-tumor cellular immunity and humoral immunity in PDAC via secreting CXCL13 and IL-21 and determined a novel mechanism of immunosuppression in PDAC.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhenyu Liao
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Ying Yang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai 200080, China;
| | - Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Lei Ding
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shuaishuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xuan Han
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (L.L.); Tel./Fax: +86-21-6403-1446 (X.Y.); +86-21-6403-1446 (L.L.)
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (L.L.); Tel./Fax: +86-21-6403-1446 (X.Y.); +86-21-6403-1446 (L.L.)
| |
Collapse
|
31
|
Niogret J, Berger H, Rebe C, Mary R, Ballot E, Truntzer C, Thibaudin M, Derangère V, Hibos C, Hampe L, Rageot D, Accogli T, Joubert P, Routy B, Harker J, Vegran F, Ghiringhelli F, Chalmin F. Follicular helper-T cells restore CD8 +-dependent antitumor immunity and anti-PD-L1/PD-1 efficacy. J Immunother Cancer 2021; 9:jitc-2020-002157. [PMID: 34103351 PMCID: PMC8190041 DOI: 10.1136/jitc-2020-002157] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background T follicular helper cells (Tfh) are essential to shape B cell response during germinal center formation. Tfh accumulation has been reported in various human cancers, with positive or negative prognostic roles. However, the mechanisms explaining the accumulation of Tfh and their role in cancer remain obscure. Methods In vitro differentiated and mouse cell sorted Tfh phenotype was evaluated by flow cytometry and quantitative PCR (qPCR). Antitumor effect of Tfh was evaluated by adoptive transfer in different tumor-bearing mice models. The involvement of immune cells, cytokines and chemokines was evaluated, using depleting antibodies. Chemokines and cytokines expression and production were evaluated by qPCR and ELISA. In human, the impact of immune cells and chemokines on survival was evaluated by analyzing transcriptomic data from public databases and from our own patient cohorts. Results In this study, we show that Tfh exert an antitumor immune effect in a CD8+-dependent manner. Tfh produce interleukin-21, which sustains proliferation, viability, cytokine production and cytotoxic functions of exhausted T cells. The presence of Tfh is required for efficacy of antiprogrammed cell death ligand-1 therapy. Tfh accumulate in the tumor bed and draining lymph nodes in different mouse cancer models. This recruitment is due to the capacity of transforming growth factor β to drive Chemokine (C-X-C motif) Ligand 13 expression, a chemoattractant of Tfh, by intratumor CD8+ T cells. Accumulation of Tfh and exhausted CD8+ T cells predicts cancer outcome in various cancer types. In patients treated with anti-programmed cell death-1 mAb, accumulation of Tfh and CD8+ at the tumor site is associated with outcome. Conclusion This study provides evidence that CD8+/Tfh crosstalk is important in shaping antitumor immune response generated by immunotherapy.
Collapse
Affiliation(s)
- Julie Niogret
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Hélène Berger
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Cédric Rebe
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Romain Mary
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Elise Ballot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Caroline Truntzer
- Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Marion Thibaudin
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Valentin Derangère
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Christophe Hibos
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Léa Hampe
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | | | - Théo Accogli
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - James Harker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Frederique Vegran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Francois Ghiringhelli
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France .,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Fanny Chalmin
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
32
|
Yang Z, Wei X, Pan Y, Xu J, Si Y, Min Z, Yu B. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis 2021; 12:51. [PMID: 33414407 PMCID: PMC7791058 DOI: 10.1038/s41419-020-03294-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Increasing evidence has indicated a close association between immune infiltration in cancer and clinical outcomes. However, related research in thyroid cancer is still deficient. Our research comprehensively investigated the immune infiltration of thyroid cancer. Data derived from TCGA and GEO databases were analyzed by the CIBERSORT, ESTIMATE, and EPIC algorithms. The CIBERSORT algorithm calculates the proportions of 22 types of immune cells. ESTIMATE algorithm calculates a stromal score to represent all stromal cells in cancer. The EPIC algorithm calculates the proportions of cancer-associated fibroblasts (CAFs) and endothelial cells (ECs), which are the main components of stromal cells. We analyzed the correlation of immune infiltration with clinical characteristics and outcomes of patients. We determined that the infiltration of CD8+ T cells improved the survival of thyroid cancer patients. Overexpression of immune checkpoints was closely related to the development of thyroid cancer. In general, stromal cells were associated with the progression of thyroid cancer. Interestingly, CAFs and ECs had opposite roles in this process. In addition, the BRAFV600E mutation was related to the upregulation of immune checkpoints and CAFs and the downregulation of CD8+ T cells and ECs. Finally, we constructed an immune risk score model to predict the prognosis and development of thyroid cancer. Our research demonstrated a comprehensive panorama of immune infiltration in thyroid cancer, which may provide potential value for immunotherapy.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China
| | - Xiyi Wei
- First Clinical Medical College of Nanjing Medical University, 210009, Nanjing, Jiangsu, China
| | - Yitong Pan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 211116, Nanjing, Jiangsu, China
| | - Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Yan Si
- First Clinical Medical College of Nanjing Medical University, 210009, Nanjing, Jiangsu, China.
| | - Zhijun Min
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China.
| | - Bo Yu
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China. .,Department of Vascular Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
33
|
Jiang A, Liu N, Bai S, Wang J, Gao H, Zheng X, Fu X, Ren M, Zhang X, Tian T, Ruan Z, Yao Y, Liang X. The Construction and Analysis of Tumor-Infiltrating Immune Cells and ceRNA Networks in Bladder Cancer. Front Genet 2021; 11:605767. [PMID: 33391354 PMCID: PMC7775311 DOI: 10.3389/fgene.2020.605767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bladder cancer (BLCA) is the 11th most common malignancy worldwide. Although significant improvements have been made in screening, diagnosis, and precise management in recent years, the prognosis of BLCA remains bleak. Objectives This study aimed to investigate the prognostic significance of tumor-infiltrating immune cells and construct ceRNA networks in BLCA patients. Methods The expression data of BLCA patients were obtained from The Cancer Genome Atlas (TCGA) database. A competing endogenous RNA (ceRNA) network was constructed to identify the hub genes involved in the prognosis of BLCA. The CIBERSORT algorithm was utilized to investigate the infiltration levels of 22 subsets of immune cells. Ultimately, the nomogram was generated to visualize the survival probability of each patient, with the calibration curve being performed to assess its performance. Furthermore, the Pearson correlation test was used to explore the correlation between the identified hub genes in the ceRNA network and the prognostic-related immune cells. Results A total of eight elements in the ceRNA network were considered as key members and correlated with the prognosis of BLCA, including ELN, SREBF1, DSC2, TTLL7, DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p. T cells CD8, T cells follicular helper (Tfh), and neutrophils were identified as independent prognostic factors in BLCA. The co-expression analysis showed that there was a significant correlation between the identified hub genes and immune cells. Conclusion Our results suggest that the mechanism of hsa-miR-29c-3p regulates the expression of ELN and DSC2, and the infiltration of Tfh and neutrophils might play pivotal roles in the progression of BLCA.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuheng Bai
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoni Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Wang Y, Guo J. Immune cell landscape analysis reveals prognostic immune cells and its potential mechanism in squamous cell lung carcinoma. PeerJ 2020; 8:e9996. [PMID: 33083119 PMCID: PMC7543728 DOI: 10.7717/peerj.9996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Squamous cell lung carcinoma (LUSC) was closely associated with smoking which was known to have a distant immunosuppression effect. In this study, we aimed to explore the relationship between immune cells and clinical outcomes of LUSC patients with smoking history. Methods The immune cell infiltration and RNA expression profiles of LUSC patients were collected from The Cancer Genome Atlas (TCGA). Then, the correlation between immune cell infiltration and clinical characteristics was explored. According to the level of immune cell infiltration, LUSC patients with smoking history were divided into high or low group to screen the differentially expressed lncRNAs and mRNAs. The prediction of target genes was performed by miRanda. Finally, the prognostic value of a certain signature was confirmed in an independent dataset. Results Higher abundance of tumor-infiltrating T follicular helper (Tfh) cells together with a lower abundance of resting memory CD4 T cells had been found in LUSC current reformed smokers for ≤15 years and current smoking patients. Moreover, Tfh cell infiltration was not only associated with better overall survival (OS) but also varied from different degrees of TNM stage. Low expression of lncRNA PWRN1 and its potential regulating genes DMRTB1, PIRT, APOBEC1, and ZPBP2 were associated with better OS. Combining PWRN1 and four regulating genes as a signature, patients with higher-level expression of the signature had shorter survival time in not only the TCGA but also in the GEO dataset. Conclusions It was found that Tfh cells presented higher infiltration in LUSC current reformed smokers for ≤15 years and current smokers, while resting memory CD4 T cells had lower infiltration. The signature consisting of PWRN1 as well as its predicted targeted mRNAs was dysregulated in different levels of Tfh cell infiltration and might indicate patients' OS.
Collapse
Affiliation(s)
- Yongyong Wang
- Cardio-Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianji Guo
- Cardio-Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Zhong R, Chen D, Cao S, Li J, Han B, Zhong H. Immune cell infiltration features and related marker genes in lung cancer based on single-cell RNA-seq. Clin Transl Oncol 2020; 23:405-417. [PMID: 32656582 DOI: 10.1007/s12094-020-02435-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Immune cells in the immune microenvironment of lung cancer have a great impact on the development of lung cancer. Our purpose was to analyze the immune cell infiltration features and related marker genes for lung cancer. METHODS Single cell RNA sequencing data of 11,485 lung cancer cells were retrieved from the Gene Expression Omnibus. After quality control and data normalization, cell clustering was performed using the Seurat package. Based on the marker genes of each cell type from the CellMarker database, each cell was divided into G1, G2M, and S phases. Then, differential expression and functional enrichment analyses were performed. CIBERSORT was used to reconstruct immune cell types. RESULTS Following cell filtering, highly variable genes were identified for all cells. 14 cell types were clustered. Among them, CD4 + T cell, B cell, plasma cell, natural killer cell and cancer stem cell were the top five cell types. Up-regulated genes were mainly enriched in immune-related biological processes and pathways. Using CIBERSORT, we identified the significantly higher fractions of naïve B cell, memory CD4 + T cell, T follicular helper cell, T regulatory helper cell and M1 macrophage in lung cancer tissues compared to normal tissues. Furthermore, the fractions of resting NK cell, monocyte, M0 macrophage, resting mast cell, eosinophil and neutrophil were significantly lower in tumor tissues than normal tissues. CONCLUSION Our findings dissected the immune cell infiltration features and related marker genes for lung cancer, which might provide novel insights for the immunotherapy of lung cancer.
Collapse
Affiliation(s)
- R Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - D Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - S Cao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - J Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - H Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China.
| |
Collapse
|
36
|
Tamminga M, Hiltermann TJN, Schuuring E, Timens W, Fehrmann RS, Groen HJ. Immune microenvironment composition in non-small cell lung cancer and its association with survival. Clin Transl Immunology 2020; 9:e1142. [PMID: 32547744 PMCID: PMC7291326 DOI: 10.1002/cti2.1142] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives In non-small cell lung cancer (NSCLC), the immune system and possibly its composition affect survival. In this in silico study, the immune infiltrate composition in NSCLC patients was evaluated. Methods Gene expression data of tumors from early NSCLC patients were obtained from Gene Expression Omnibus (GEO). With CIBERSORT, 22 immune cell fractions were estimated. Results The immune infiltrate of 1430 pretreatment NSCLC patients contained mostly plasma cells, macrophages and CD8 T cells. Higher fractions of resting mast and CD4 T-helper cells were associated with longer overall survival (OS) (HR = 0.95, P < 0.01; HR = 0.98, = 0.04, respectively) and higher fractions of M2 macrophages and active dendritic cells with shorter survival (HR = 1.02, P = 0.03; HR = 1.03, P = 0.05, respectively). Adenocarcinoma patients with survival data (n = 587) showed higher fractions of resting mast and resting CD4 T cells, and lower M0 macrophages than squamous cell carcinoma (n = 254), which were associated with OS (HR = 0.95, P = 0.04; HR = 0.97, P = 0.01; HR = 1.03, P = 0.01, respectively). Fractions of memory B cells, naïve CD4 T cells and neutrophils had different associations with survival depending on the subtype. Smokers had had higher fractions of regulatory T cell, follicular helper T cell, neutrophil and M2 macrophage, which were associated with shorter survival (HR = 1.3, P < 0.01; HR = 1.13, P = 0.02; HR = 1.09, P = 0.03; HR = 1.04, P = 0.02, respectively). Conclusion Pretreatment differences in immune cell composition in NSCLC are associated with survival and depend on smoking status and histological subtype. Smokers' immune composition is associated with lower survival.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Thijo Jeroen N Hiltermann
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Rudolf Sn Fehrmann
- Department of Medical Oncology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Harry Jm Groen
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
37
|
Couillault C, Germain C, Dubois B, Kaplon H. Identification of Tertiary Lymphoid Structure-Associated Follicular Helper T Cells in Human Tumors and Tissues. Methods Mol Biol 2019; 1845:205-222. [PMID: 30141015 DOI: 10.1007/978-1-4939-8709-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Follicular helper T (Tfh) cells are major components of the humoral immune response due to their pivotal role in germinal center formation and antibody affinity maturation following B-cell isotype switching. This CD4+ T-cell subtype is mainly found in the B-cell zone of secondary lymphoid organs as well as in tertiary lymphoid structures (TLS), which are highly organized structures composed of T and B cells, occasionally found at the invasive margin in the tumor microenvironment.We describe here how to perform immunofluorescence staining of tumor tissue sections and multicolor flow cytometry on tumor cell suspensions to identify and visualize these TLS-associated Tfh cells within the tumor microenvironment of various human cancers. These assays take advantage of combinations of markers and molecules involved in Tfh differentiation and function.
Collapse
Affiliation(s)
- Coline Couillault
- Laboratory "Targeting of the Tumor and Its Immune Microenvironment", Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, University Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052, CNRS 5286, Lyon, France
| | - Claire Germain
- Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", INSERM, UMRS 1138, Paris, France.,Cordeliers Research Center, Paris Descartes University, Sorbonne Paris Cité, UMRS 1138, Paris, France.,Cordeliers Research Center, Sorbonne University, UMRS 1138, Paris, France.,Laboratory "Immune Intervention and Biotherapies", UPMC UMRS CR7-Inserm U1135-CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Bertrand Dubois
- Laboratory "Targeting of the Tumor and Its Immune Microenvironment", Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, University Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1052, CNRS 5286, Lyon, France.
| | - Hélène Kaplon
- Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", INSERM, UMRS 1138, Paris, France.,Cordeliers Research Center, Paris Descartes University, Sorbonne Paris Cité, UMRS 1138, Paris, France.,Cordeliers Research Center, Sorbonne University, UMRS 1138, Paris, France
| |
Collapse
|
38
|
Qiu L, Yu Q, Zhou Y, Zheng S, Tao J, Jiang Q, Yuan G. Functionally impaired follicular helper T cells induce regulatory B cells and CD14 + human leukocyte antigen-DR - cell differentiation in non-small cell lung cancer. Cancer Sci 2018; 109:3751-3761. [PMID: 30325558 PMCID: PMC6272090 DOI: 10.1111/cas.13836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC) represents one of the most common and aggressive cancers worldwide, as it typically displays irreversible progression and poor prognosis. Interaction between programmed death 1 (PD‐1) and its ligand, PD‐L1, plays important roles in tumor immunology. Follicular helper T (Tfh) cells have characteristically high PD‐1 expression; thus, in the present study, we investigated the role of circulating Tfh cells and their correlation with disease‐free survival after tumor resection in NSCLC. We found significantly higher number of Tfh cells but lower serum interleukin (IL)‐21 levels in NSCLC patients, especially in those with advanced stage (III and IV), indicating that the function of Tfh cells to produce IL‐21 was impaired. Further analysis showed that the increase in Tfh cells was attributable to an expansion of the PD‐1+‐Tfh2 and PD‐1+‐Tfh17 subtypes. Functional analysis showed that Tfh cells from NSCLC patients induced the differentiation of regulatory B cells and CD14+ human leukocyte antigen (HLA)‐DR− cells. Interestingly, the number of Tfh1 subtypes in NSCLC patients was negatively correlated with disease‐free survival after tumor resection. In short, the high number and abnormal function of Tfh cells could cause further immunosuppression and lead to tumor development in NSCLC. Rescuing Tfh functions therefore represents a potential therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Liannv Qiu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qinhua Yu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sujie Zheng
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiaojiao Tao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qian Jiang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guorong Yuan
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
39
|
Poultsidi A, Dimopoulos Y, He TF, Chavakis T, Saloustros E, Lee PP, Petrovas C. Lymph Node Cellular Dynamics in Cancer and HIV: What Can We Learn for the Follicular CD4 (Tfh) Cells? Front Immunol 2018; 9:2233. [PMID: 30319664 PMCID: PMC6170630 DOI: 10.3389/fimmu.2018.02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular helper CD4 T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the development of antigen-specific B cell responses within the germinal center. Throughout the past decade, numerous studies have revealed the important role of Tfh cells in Human Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing antibodies post-infection and post-vaccination. It has also been established that tumors influence various immune cell subsets not only in their proximity, but also in draining lymph nodes. The role of local or tumor associated lymph node Tfh cells in disease progression is emerging. Comparative studies of Tfh cells in chronic infections and cancer could therefore provide novel information with regards to their differentiation plasticity and to the mechanisms regulating their development.
Collapse
Affiliation(s)
- Antigoni Poultsidi
- Department of Surgery, Medical School, University of Thessaly, Larissa, Greece
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Emmanouil Saloustros
- Department of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
40
|
|