1
|
El Tayeb NS, Younis NA, Mouneir SM, Ahmed KA, Al-Karmalawy AA, Alnajjar R, Abdel-Monem AR, Fayek NM. LC-MS/MS profiling of Zanthoxylum piperitum (L.) DC. leaves cultivated in Egypt, isolation of its bioactive components, and interrelationships with anti-ulcerative activities: in vitro and in vivo approaches, molecular docking, and dynamics studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:119984. [PMID: 40381818 DOI: 10.1016/j.jep.2025.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/23/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum piperitum (L.) DC. cultivated in Egypt is a new cultivar of the known anti-inflammatory food spice Zanthoxylum piperitum (L.) DC. AIM OF THE STUDY This study aimed to investigate the new cultivar leaves phytochemically and biologically. MATERIALS AND METHODS UPLC-Triple TOF-MS/MS analysis examined the ethanolic extract's composition, and FRAP and ORAC assays evaluated its antioxidant activity. Major flavonoids were isolated and identified by spectroscopic techniques. The anti-inflammatory properties of the extract and isolated compounds were investigated in vitro. Then, by in vivo acetic acid-induced UC model on Sixty-three male Wistar rats at high and low doses compared to standard prednisolone. Evaluation involved macroscopic and microscopic assessment of rectal damage, cytokine measurement, molecular docking, and dynamic simulations to support the findings. RESULTS Extract of Zanthoxylum piperitum (L.) DC. Cultivated in Egypt demonstrated rich phenolic content and antioxidant action. Isoquercitrin and quercitrin were isolated and identified via spectroscopy. The in vitro anti-inflammatory tests showed that the extract inhibited COX1 and LOX significantly (p < 0.05). In the in vivo UC model, all treatments ameliorated the macroscopic and microscopic damage in the intestine of UC rats' and improved the biochemical markers in a dose-dependent manner, especially isoquercitrin at a high dose (40 mg/kg) showed the most significant results (p < 0.05) compared to the standard group. Molecular docking and dynamics studies supported these findings. CONCLUSIONS This indicates the potential of the extract of Zanthoxylum piperitum (L.) DC. cultivated in Egypt and its main constituents for the treatment of UC.
Collapse
Affiliation(s)
- Nermin S El Tayeb
- Pharmacognosy Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12451, Egypt
| | - Nermin A Younis
- Pharmacognosy Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12451, Egypt
| | - Samar M Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University, 16063, Benghazi, Libya; Department of Chemistry, Faculty of Science, University of Benghazi, 16063, Benghazi, Libya
| | - Azza R Abdel-Monem
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt
| | - Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
2
|
Ji J, Yan H, Ye Y, Huang Z, Wang Y, Sun J, Sheng L, Zhang Y, Sun X. Plant polysaccharides with anti-aging effects and mechanism in evaluation model Caenorhabditis elegans. Int J Biol Macromol 2025; 308:142268. [PMID: 40112976 DOI: 10.1016/j.ijbiomac.2025.142268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Aging in human evolution leads to function decline and immune weakening, causing severe problems. Plant polysaccharides, as a key source of dietary fiber, play vital roles in enhancing intestinal health, regulating blood glucose, lowering cholesterol, and offer promising strategies for aging prevention. This review begins by examining the characteristics and applications of polysaccharides and elucidates the mechanisms of anti-aging effect of plant polysaccharides. It focuses on nematodes as an ideal anti - aging model, expounding their aging indicator evaluation methods, highlighting key pathways and molecules for aging inhibition, and elaborating on related plant polysaccharides. As polysaccharide anti - aging research mainly focuses on plants, this study aims to support their use against aging. C. elegans provides new anti - aging insights, but limited understanding of plant polysaccharide structure challenges structure - activity analysis. The review presents C. elegans - based strategies and plant polysaccharide challenges for further research. In summary, this review proposes novel strategies developed by Caenorhabditis elegans in anti-aging research as well as the challenges facing plant polysaccharides, providing insights for further research on anti-aging plant polysaccharides.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi, China
| | - Honglin Yan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongjia Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi, China.
| |
Collapse
|
3
|
Wang L, Long S, Zeng Q, Dong W, Li Y, Su J, Chen Y, Zhou G. Staphylea bumalda Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Cytokines, Oxidative Stress, and Maintaining Gut Homeostasis. Molecules 2024; 29:5030. [PMID: 39519671 PMCID: PMC11547842 DOI: 10.3390/molecules29215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylea bumalda is a rare medicine and edible shrub native to the temperate regions of Asia, possessing significant medicinal potential. In this study, the components of S. bumalda tender leaves and buds extract (SBE) were analyzed and identified by HPLC and LC/MS method, and the safety of SBE was evaluated through mouse acute toxicity models. The protective effects of SBE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated in terms of inflammatory factor levels, oxidative stress, and gut microorganisms. Results showed that hyperoside, kaempferol-3-O-rutinoside, isorhoifolin, and rutin were the main components of the extract, and SBE demonstrated good safety in experimental mice. SBE could alleviate weight losing, disease activity index (DAI) raising, and colon shortening in mice. Pathological section results showed that the inflammatory cell infiltration decreased significantly, and the number of goblet cells increased significantly in the SBE group. After SBE treatment, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in serum were significantly decreased, and the levels of myeloperoxidase (MPO) and nitric oxide (NO) in colon tissues were significantly decreased. SBE inhibited gut inflammation by increasing Lactobacillus. In summary, SBE played a therapeutic role in UC mice by relieving colon injury, reducing inflammatory factor levels, and maintaining gut flora homeostasis. SBE is expected to become an auxiliary means to participate in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Wanrong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yaoyao Li
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Jiangtao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yuxin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
4
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
5
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
6
|
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A. Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC PLANT BIOLOGY 2024; 24:565. [PMID: 38879490 PMCID: PMC11179286 DOI: 10.1186/s12870-024-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Collapse
Affiliation(s)
- Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Qin Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
7
|
Jin JJ, Ko IG, Hwang L, Kim SH, Jee YS, Jeon H, Park SB, Jeon JW. Simultaneous Treatment of 5-Aminosalicylic Acid and Treadmill Exercise More Effectively Improves Ulcerative Colitis in Mice. Int J Mol Sci 2024; 25:5076. [PMID: 38791116 PMCID: PMC11120947 DOI: 10.3390/ijms25105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 μL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.
Collapse
Affiliation(s)
- Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Yong-Seok Jee
- Research Institute of Sports and Industry Science, Hanseo University, Seosan 31962, Republic of Korea;
| | - Hyeon Jeon
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Su Bee Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| |
Collapse
|
8
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
9
|
Qi J, Pan Z, Wang X, Zhang N, He G, Jiang X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front Immunol 2024; 15:1305886. [PMID: 38343532 PMCID: PMC10853423 DOI: 10.3389/fimmu.2024.1305886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Miyashita A, Xia Y, Kuda T, Yamamoto M, Nakamura A, Takahashi H. Effects of Sichuan pepper (huājiāo) powder on disease activity and caecal microbiota of dextran sodium sulphate-induced inflammatory bowel disease mouse model. Mol Biol Rep 2024; 51:126. [PMID: 38236446 DOI: 10.1007/s11033-023-09103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Sichuan pepper [Zanthoxylum bungeanum; huājiāo (HJ)] is a widely used spice in China and has better antioxidative, anti-glycation, and bile acid-lowering properties than cumin and coriander seeds. HJ affects inflammation-related cytokines and caecal microbiota in mice fed a low-fibre and high-sucrose diet. METHODS AND RESULTS To determine the ameliorative effect of HJ on inflammatory bowel disease, C57BL/6 mice were divided into three groups and fed distilled water (control) or 3% (w/v) dextran sodium sulphate (DSS) in drinking water with normal chow containing 0% or 5% (w/w) HJ powder for seven days. After 6 days of feeding, diarrhoea, decreased body weight, and blood in faeces were observed in the DSS group. DSS treatment increased the spleen weight and damaged the colon tissue. These inflammatory indices were inhibited by HJ treatment. Amplicon sequencing of the 16S rDNA (V4) gene of the caecal content revealed a decrease in the alpha diversity (Simpson index D) in the DSS treatment group compared to the control group. The abundance of caecal Desulfovibrio, an inflammation-related genus, was higher and the caecal Lachnospiraceae and Bacteroides levels were lower in the DSS-treated mice than those in the control mice. However, HJ suppressed the DSS-induced changes in the caecal microbiota. CONCLUSION HJ intake contributes to the reduction in inflammation and maintenance of the gut microbiota. However, the strong antioxidant properties of phenolic compounds and fermentability of water-soluble dietary fibres in HJ and their relationship with other functional properties warrant further investigation.
Collapse
Affiliation(s)
- Ayumi Miyashita
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| | - Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
11
|
Gandhi GR, Mohana T, Athesh K, Hillary VE, Vasconcelos ABS, Farias de Franca MN, Montalvão MM, Ceasar SA, Jothi G, Sridharan G, Gurgel RQ, Xu B. Anti-inflammatory natural products modulate interleukins and their related signaling markers in inflammatory bowel disease: A systematic review. J Pharm Anal 2023; 13:1408-1428. [PMID: 38223446 PMCID: PMC10785269 DOI: 10.1016/j.jpha.2023.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2024] Open
Abstract
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κβ-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Meenakshi Ammal Dental College and Hospital (MAHER), Maduravoyal, 600095, Chennai, Tamil Nadu, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China
| |
Collapse
|
12
|
Han N, Sun L, Zhang J, Yuan W, Wang C, Zhao A, Wang D. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. PHYSIOLOGIA PLANTARUM 2023; 175:e14031. [PMID: 37882301 DOI: 10.1111/ppl.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
Zanthoxylum bungeanum is an important condiment with high economic value and its peel color is one of the main quality indexes. However, the key pigment compounds and related genes are still unclear affecting the quality control of the plants. In this study, the contents of four types of pigments were measured in Z. bungeanum and flavonoids were identified as the most important pigments. Based on the targeted flavonoid metabolomics of Z. bungeanum peels, 14 key pigment compounds were screened out from 152 flavonoids, among which cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside were the most critical compounds for peel color. They were further verified to be present in nine varieties of Z. bungeanum by HPLC fingerprints. The 14 compounds were all associated with flavonoid and anthocyanin biosynthesis pathways and the 39 differentially expressed genes related to these pathways were annotated and screened based on transcriptomics. The genes ZbDFR, ZbANS, and ZbUFGT were identified as three key genes for anthocyanin synthesis in Z. bungeanum peels. Further qRT-PCR results confirmed the reliability of transcriptomics and the accuracy of gene screening. Subsequent protein induced expression demonstrated that ZbANS and ZbUFGT were expressed after 12 h induced by IPTG while ZbDFR was expressed after 15 h. Further transient and stable transformation analysis confirmed that both anthocyanin content and the expression of ZbDFR were significantly increased in overexpression Z. bungeanum leaves and Nicotiana benthamiana. The functional effect of stable transformation of ZbDFR was more significant than that of transient transformation with a 7.67-fold/1.49-fold difference in total anthocyanin content and a 42.37-fold/12.32-fold difference in the expression of ZbDFR. This study provides new insights into the chemical composition and the molecular mechanisms of Z. bungeanum peel color and lays an effective foundation for the color quality control, multi-purpose utilization of Z. bungeanum and the creation of new germplasm.
Collapse
Affiliation(s)
- Nuan Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Leiwen Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Yuan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Hu Y, Guan X, He Z, Xie Y, Niu Z, Zhang W, Wang A, Zhang J, Si C, Li F, Hu W. Apigenin-7-O-glucoside alleviates DSS-induced colitis by improving intestinal barrier function and modulating gut microbiota. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
14
|
Zhang C, Hu Y, Yuan Y, Guo J, Li H, Li Q, Liu S. Liposome-embedded SOD attenuated DSS-induced ulcerative colitis in mice by ameliorating oxidative stress and intestinal barrier dysfunction. Food Funct 2023; 14:4392-4405. [PMID: 37092895 DOI: 10.1039/d2fo03312g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Oxidative stress is generally considered inseparable from the development and exacerbation of ulcerative colitis (UC). Therefore, reducing oxidative stress has become a possible way to alleviate UC. In this study, the therapeutic effects of different doses of liposome-embedded superoxide dismutase (L-SOD) on mice with DSS-induced UC were systematically investigated. The results showed that L-SOD significantly attenuated the signs of colitis in mice, including colonic shortening, diarrhoea, bloody stools, and histopathological changes. L-SOD ameliorated DSS-induced oxidative damage, increased SOD, catalase (CAT), and glutathione (GSH) activities, and decreased malondialdehyde (MDA) levels. In addition, L-SOD ameliorated the inflammatory response by inhibiting the expression of myeloperoxidase (MPO) and pro-inflammatory cytokines and protected barrier function by promoting the expression of the tight junction proteins occludin and ZO-1 in the colon. Importantly, the results demonstrated a bell-shaped distribution of therapeutic effects relative to the administered dose, with an optimal dose of 150 000 U kg-1. These results indicate that L-SOD has great potential as an ingredient in functional foods for the prevention and mitigation of UC.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Yujia Hu
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Yi Yuan
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Jingke Guo
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
- Department of Food and Biological Engineering, Zhicheng College, Fuzhou University, Fuzhou 350002, China
| | - Henian Li
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Qiaoling Li
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Shutao Liu
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
- Department of Food and Biological Engineering, Zhicheng College, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
15
|
Ren Y, Sun Q, Gao R, Sheng Y, Guan T, Li W, Zhou L, Liu C, Li H, Lu Z, Yu L, Shi J, Xu Z, Xue Y, Geng Y. Low Weight Polysaccharide of Hericium erinaceus Ameliorates Colitis via Inhibiting the NLRP3 Inflammasome Activation in Association with Gut Microbiota Modulation. Nutrients 2023; 15:nu15030739. [PMID: 36771444 PMCID: PMC9920828 DOI: 10.3390/nu15030739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC), one of the typical inflammatory bowel diseases caused by dysregulated immunity, still requires novel therapeutic medicine with high efficacy and low toxicity. Hericium erinaceus has been widely used to treat different health problems especially gastrointestinal sickness in China for thousands of years. Here, we isolated, purified, and characterized a novel low weight polysaccharide (HEP10, Mw: 9.9 kDa) from the mycelia of H. erinaceus in submerged culture. We explored the therapeutic effect of HEP10 on UC and explored its underlying mechanisms. On one hand, HEP10 suppressed the production of TNF-α, IL-1β, IL-6, inducible iNOS, and COX-2 in LPS challenged murine macrophage RAW264.7 cells, as well as in colons from DSS-induced colitis mice. On the other hand, HEP10 treatment markedly suppressed the activation of NLRP3 inflammasome, NF-κB, AKT, and MAPK pathways. Moreover, HEP10 reversed DSS-induced alternation of the gut community composition and structure by significantly increasing Akkermansia muciniphila and also promoting functional shifts in gut microbiota. Structural equation modeling also highlighted that HEP10 can change widely through gut microbiota. In conclusion, HEP10 has a better prebiotic effect than the crude polysaccharides of H. erinaceus, which can be used as a novel dietary supplement and prebiotic to ameliorate colitis.
Collapse
Affiliation(s)
- Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Qige Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruonan Gao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yinyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wang Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lingxi Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| |
Collapse
|
16
|
Cayratia japonica Prevents Ulcerative Colitis by Promoting M2 Macrophage Polarization through Blocking the TLR4/MAPK/NF- κB Pathway. Mediators Inflamm 2022; 2022:1108569. [PMID: 36619207 PMCID: PMC9822765 DOI: 10.1155/2022/1108569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Several components of Cayratia japonica (CJ) such as rutin and quercetin have shown anti-inflammatory effect, yet its function in ulcerative colitis (UC) remains to be clarified. This study focuses on the modulatory effect of CJ on UC as well as molecular mechanism by which CJ regulates macrophage polarization in UC. Methods The targets related to CJ components and UC were, respectively, obtained through in silico analysis, and their intersection targets were selected for pathway enrichment analysis. RAW264.7 cells were stimulated with lipopolysaccharide (LPS) to induce M1 macrophages. Expression of the macrophage polarization M1 marker CD11b and M2 marker CD206 was measured to determine the phenotype of macrophages. The mouse model was treated with dextran sodium sulfate (DSS) to induce UC to observe the effects of CJ on UC in vivo. Results The in silico analysis suggested the crucial significance of TLR4 and its downstream MAPK/NF-κB pathways in the modulatory effect of CJ on UC. Furthermore, experimental data revealed that CJ could promote M2 macrophage polarization but alleviate immune inflammation and reduce colon damage in DSS-evoked UC model. Additionally, CJ can inhibit the expression of TLR4/MAPK/NF-κB signaling pathway to enhance the M2-like polarization. Conclusion Hence, CJ may exert anti-inflammatory effects and an inhibitory role in UC by inhibiting the TLR4/MAPK/NF-κB pathway and subsequent M1-like macrophage polarization.
Collapse
|
17
|
Napitupulu FI, Sulistyani S, Prangdimurti E, Wijaya CH. Inhibition of Colon Cancer Cells Via Apoptosis Pathway by Ethanolic Extract of Andaliman (Zanthoxylum Acanthopodium Dc.) Fruits. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Andaliman (Zanthoxylum acanthopodium DC.) is an exotic spice from North Sumatra (Indonesia) commonly added to enrich the flavor of Bataknese ethnic food because of its unique aroma and trigeminal sensation. Traditionally, it is also known to have health benefits in the gastrointestinal tract; however no studies have reported it. Therefore, this study aimed to investigate the potency of Andaliman fruit to inhibit the proliferation of HCT-116 and WiDr colon cancer cells and its underlying mechanism of inhibition. Andaliman fruits were extracted using ethanol. The anti-proliferative effect was evaluated using the MTT test, and the underlying mechanism of inhibition was examined using the Real-Time Polymerase Chain Reaction (RT-PCR) and Hoechst staining. Bax and Bcl-2 proteins were used as the markers for the pro-apoptotic and anti-apoptotic gene expression analysis, respectively. Andaliman ethanolic extract showed potential bioactivity to inhibit the growth of WiDr and HCT-116 cells in vitro with IC50 of 95.61 μg.mL-1 and 94.64 μg.mL-1, respectively. The cytotoxicity effect of andaliman was rationalized by the gene expression of Bax and Bcl-2 in a non-dose-dependent manner. In addition, Andaliman extract could increase the apoptotic gene marker expression in both cells at half of their IC50, i.e. 47.81 μg.mL-1 and 47.32 μg.mL-1 for WiDr and HCT-116 cells, respectively. This study demonstrated that Andaliman fruit could be potentially developed as a functional food ingredient to prevent colon cancer by inducing the apoptosis mechanism.
Collapse
Affiliation(s)
- Florensia Irena Napitupulu
- 1Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University (Bogor Agricultural University), Bogor, West Java, Indonesia
| | - Sulistiyani Sulistyani
- 3Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor (Bogor Agricultural University), Bogor, West Java, Indonesia
| | - Endang Prangdimurti
- 1Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University (Bogor Agricultural University), Bogor, West Java, Indonesia
| | - Christofora Hanny Wijaya
- 4Tropical Biopharmaca Research Center of Excellence, IPB University (Bogor Agricultural University), Bogor, West Java, Indonesia
| |
Collapse
|
18
|
The Discrimination and Characterization of Volatile Organic Compounds in Different Areas of Zanthoxylum bungeanum Pericarps and Leaves by HS-GC-IMS and HS-SPME-GC-MS. Foods 2022; 11:foods11223745. [PMID: 36429337 PMCID: PMC9689319 DOI: 10.3390/foods11223745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The pericarps of Zanthoxylum bungeanum (ZBP) and leaves of Zanthoxylum bungeanum (ZBL) are popular spices in China, and they have pharmacological activities as well. In this experiment, the volatile organic compounds (VOCs) of the pericarps of Zanthoxylum bungeanum in Sichuan (SJ) and its leaves (SJY) and the pericarps of Zanthoxylum bungeanum in Shaanxi (SHJ) and its leaves (SHJY) were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The fingerprint of HS-GC-IMS and the heat maps of HS-SPME-GC-MS were established. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed. The results showed that a total of 95 components were identified, 62 components identified by HS-SPME-GC-MS and 40 components identified by HS-GC-IMS, of which 7 were the same. The analysis found that SJ and SHJ were obviously distinguished, while SJY and SHJY were not. There were considerably fewer VOCs in the leaves than in the pericarps. In the characterization of the VOCs of ZBL and ZBP, the flavor of ZBP was more acrid and stronger, while the flavor of ZBL was lighter and slightly acrid. Thirteen and eleven differential markers were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. This is helpful in distinguishing between SHJ and SJ, which contributes to their quality evaluation.
Collapse
|
19
|
Yu H, Zhang F, Wen Y, Zheng Z, Chen G, Pan Y, Wu P, Ye Q, Han J, Chen X, Liu C, Shen T. Mechanism of interventional effect and targets of Zhuyu pill in regulating and suppressing colitis and cholestasis. Front Pharmacol 2022; 13:1038188. [PMID: 36408242 PMCID: PMC9666482 DOI: 10.3389/fphar.2022.1038188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Zhuyu pill (ZYP) is a traditional Chinese medicine prescription composed of two drugs, Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley, and is commonly used in the clinical treatment of diseases of the digestive system. However, the mechanism underlying the effect of ZYP on colitis remains unclear. In this study, a colitis rat model was induced with 2,4,6-trinitro-benzenesulfonic acid (TNBS, 100 mg/kg) and treated with ZYP (low dose: 0.6 g/kg, high dose: 1.2 g/kg). Disease activity index, colonic weight index, and weight change ratio were used to evaluate the model and efficacy. LC-MS and 16S rRNA gene sequencing were used to measure differences in fecal metabolism and microorganism population among the control, model, low-dose ZYP, and high-dose ZYP groups. To elucidate the mechanism of interventional effect of ZYP, Spearman correlation analysis was used to analyze the correlation between fecal metabolism and fecal microbial number. High-dose and low-dose ZYP both exhibited significant interventional effects on colitis rat models, and high-dose ZYP produced a better interventional effect compared with low-dose ZYP. Based on a metabolomics test of fecal samples, significantly altered metabolites in the model and high-dose ZYP treatment groups were identified. In total, 492 metabolites were differentially expressed. Additionally, sequencing of the 16S rRNA gene in fecal samples revealed that the high-dose ZYP could improve TNBS-induced fecal microbiota dysbiosis. Ultimately, changes in tryptophan metabolism and Firmicutes and Gammaproteobacteria populations were detected after ZYP treatment in both colitis and cholestasis. Therefore, we conclude that tryptophan metabolism and Firmicutes and Gammaproteobacteria populations are the core targets of the anti-inflammatory effect of ZYP. These findings provide a scientific basis for further investigation of the anti-inflammatory mechanism of ZYP in the future.
Collapse
Affiliation(s)
- Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pediatrics, Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Zhili Zheng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| |
Collapse
|
20
|
Ma Y, Guo X, Wang Q, Liu T, Liu Q, Yang M, Jia A, Yang J, Liu G. Anti-inflammatory effects of β-ionone-curcumin hybrid derivatives against ulcerative colitis. Chem Biol Interact 2022; 367:110189. [PMID: 36156276 DOI: 10.1016/j.cbi.2022.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
A series of β-ionone-curcumin hybrid derivatives were designed and chosen to merge the biological characteristics of two parent molecules and to obtain a leading compound with higher biological activity. Through the initial screening, the structure activity relationship of their hybrid derivatives as inhibitors of nitric oxide (NO) production showed that meta-substituted derivatives exhibited the best inhibitory activity, among which 1h was the best one. In lipopolysaccharide-induced Raw264.7 macrophage cells, 1h showed anti-inflammatory activity by inhibiting the productions of NO and reactive oxygen species, the expressions of Interleukin-1β and tumor necrosis factor-α, and the translocation of nuclear factor (NF)-κB from the cytosol to the nucleus. Furthermore, molecular docking simulation displayed that 1h could interact with cluster of differentiation 14 to inhibit the toll-like receptor 4/NF-κB signaling. In dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) of mice, 100 mg/kg of 1h could significantly reduce the colon length shortening and protect against colon injury, liver injury and oxidative stress in DSS-induced UC of mice. Besides, 1h was safety in vivo. In conclusion, 1h was the potential anti-inflammatory agent, and further investigations were underway in our laboratory.
Collapse
Affiliation(s)
- Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Xiaoyuan Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Qi Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Qing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Mengna Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Aixi Jia
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China.
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
21
|
Zhang Z, Cui Y, Liu S, Huang J, Liu Y, Zhou Y, Zhu Z. Short-term treatment with zingerone ameliorates dextran sulfate sodium-induced mouse experimental colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4873-4882. [PMID: 35246845 DOI: 10.1002/jsfa.11850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a relapsing and chronic inflammatory disease of the gastrointestinal tract, which seriously threatens human health. Zingerone (ZO) has been proven to be effective for many diseases. The purpose of this study is to investigate the protective effects and potential mechanisms of ZO extracted from ginger on dextran sulfate sodium (DSS)-induced mouse ulcerative colitis (UC). RESULTS The results showed that ZO alleviated the weight loss of UC model mice, reduced the disease activity index scores, and inhibited the shortening of colon length. ZO also improved DSS-induced pathological changes in colon tissue and inhibited the secretion of pro-inflammatory cytokines in colon and mesenteric lymph nodes. Further mechanism analysis found that ZO inhibited DSS-induced nuclear factor-κB pathway activation, and regulated peroxisome proliferator-activated receptor γ (PPARγ) expression. To further explore whether PPARγ was involved in the anti-UC effect of ZO, PPARγ inhibitor GW9662 was used. Although ZO also showed a protective effect on GW9662-treated colitis mice, the protective role was significantly weakened. Importantly, the administration of GW9662 significantly aggravated UC compared with the ZO + DSS group. In addition, we preliminarily found that ZO had the effects of inhibiting DSS-induced oxidative stress, maintaining intestinal barrier, and inhibiting the content of LPS and the population of Escherichia coli. CONCLUSIONS These results indicated that supplementation with ZO might be a new dietary strategy for the treatment of UC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Siyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
22
|
Cheng X, Du J, Zhou Q, Wu B, Wang H, Xu Z, Zhen S, Jiang J, Wang X, He Z. Huangkui lianchang decoction attenuates experimental colitis by inhibiting the NF-κB pathway and autophagy. Front Pharmacol 2022; 13:951558. [PMID: 36081930 PMCID: PMC9446438 DOI: 10.3389/fphar.2022.951558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory colorectal disease characterized by excessive mucosal immune response activation and dysfunction of autophagy in intestinal epithelial cells. Traditional herbal preparations, including the Huangkui lianchang decoction (HLD), are effective in UC clinical treatment in East Asia, but the underlying mechanism is unclear. This study evaluated the therapeutic effects and associated molecular mechanisms of HLD in UC in vivo and in vitro. A C57BL/6 UC mouse model was established using 2.5% dextran sulfate sodium. The effects of HLD on the colonic structure and inflammation in mice were evaluated using mesalazine as the control. The anti-inflammatory effects of HLD were assessed using disease activity index (DAI) scores, histological scores, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and western blotting. HLD displayed a protective effect in UC mice by reducing the DAI and colonic histological scores, as well as levels of inflammatory cytokines and NF-κB p65 in colonic tissues. NCM460 lipopolysaccharide-induced cells were administered drug serum-containing HLD (HLD-DS) to evaluate the protective effect against UC and the effect on autophagy. HLD-DS exhibited anti-inflammatory effects in NCM460 cells by reducing the levels of inflammatory cytokines and increasing interleukin 10 levels. HLD-DS reduced p-NF-κB p65, LC3II/I, and Beclin 1 expression, which suggested that HLD alleviated colitis by inhibiting the NF-κB pathway and autophagy. However, there was no crosstalk between the NF-κB pathway and autophagy. These findings confirmed that HLD was an effective herbal preparation for the treatment of UC.
Collapse
Affiliation(s)
- Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | | | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuguang Zhen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jieyu Jiang
- Suzhou Foreign Language School, Suzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| | - Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| |
Collapse
|
23
|
Ma Y, Wang X, Huang C, Tian M, Wei A. Use of mineral element profiling coupled with chemometric analysis to distinguish Zanthoxylum bungeanum cultivars and health risks of potentially toxic elements in pericarps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1823-1831. [PMID: 34462928 DOI: 10.1002/jsfa.11517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zanthoxylum bungeanum pericarps (ZBP) are commonly used as food additives and traditional herbal medicines. Several mineral elements are known to have important physiological functions in organisms, whereas others are reported to have toxic effects. We determined levels of macro elements (Mg, S and Ca), essential trace elements (B, Mn, Fe, Cu, Zn, Se and Mo) and toxic elements (Ni, Al, Cr, As, Cd, Hg and Pb) in the pericarps of 19 Z. bungeanum cultivars. Hazard index values and incremental lifetime cancer risks were calculated to express health risks associated with pericarp consumption. Moreover, several chemometric analyses based on the mineral elements were used to distinguish Z. bungeanum cultivars. RESULTS The concentrations of 17 determined elements in the pericarps were ranked: Ca > Mg > S > Fe > Al > Mn > Zn > B > Cu > Ni > Pb > Cr > Mo > As > Cd > Hg > Se. The elements Zn, Cr and As had the highest variations in their concentrations. Cu, Mn, Se, Zn, Al, As, Cd, Cr, Hg, Ni and Pb posed some non-cancer risks, while As and Cd posed cancer risks. Mn, Fe, Zn, and Al were chosen as critical element markers for assessing ZBP using chemometric analyses. CONCLUSION Chemometric analyses could highlight mineral concentration differentiation among the 19 cultivars. The Z. bungeanum cultivar Z12 (from Wudu, Gansu) is best for producing ZBP, and cultivar Z18 (Guanling, Guizhou) can be a reference to classify and evaluate ZBP quality. The results provide valuable information for evaluating the potential safety risks of ZBP and contribute to inter-cultivar discrimination. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Ma
- College of Forestry, Northwest A&F University, Yangling, China
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling, China
| | - Xiaona Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Chen Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Mingjing Tian
- College of Forestry, Northwest A&F University, Yangling, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, China
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling, China
| |
Collapse
|
24
|
Zhu L, Zong X, Xiao X, Cheng Y, Fu J, Lu Z, Jin M, Wang F, Wang Y. Multi-Omics Analysis of the Gut-Liver Axis Reveals the Mechanism of Liver Injury in Colitis Mice. Front Immunol 2022; 12:773070. [PMID: 35069545 PMCID: PMC8770869 DOI: 10.3389/fimmu.2021.773070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a common complication of inflammatory bowel disease (IBD). However, the mechanisms of liver injury development are not clear in IBD patients. Gut microbiota is thought to be engaged in IBD pathogenesis. Here, by an integrated analysis of host transcriptome and colonic microbiome, we have attempted to reveal the mechanism of liver injury in colitis mice. In this study, dextran sulfate sodium (DSS) -induced mice colitis model was constructed. Liver transcriptome showed significant up- and down-regulation of pathways linked to immune response and lipid metabolism, respectively. Whilst the colon transcriptome exhibited dramatic alterations in immune response and pathways associated with cell growth and death. The microbiota of DSS-treated mice underwent strong transitions. Correlation analyses identified genes associated with liver and colon injury, whose expression was associated with the abundance of liver and gut health-related bacteria. Collectively, the results indicate that the liver injury in colitis mice may be related to the intestinal dysbiosis and host-microbiota interactions. These findings may provide new insights for identifying potential targets for the treatment of IBD and its induced liver injury.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuanzhi Cheng
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Pandurangan AK, Mohebali N, Hasanpourghadi M, Esa NM. Caffeic Acid Phenethyl Ester Attenuates Dextran Sulfate Sodium-Induced Ulcerative Colitis Through Modulation of NF-κB and Cell Adhesion Molecules. Appl Biochem Biotechnol 2022; 194:1091-1104. [PMID: 35040047 DOI: 10.1007/s12010-021-03788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Ulcerative colitis (UC) is a serious health condition and defined as inflammation in the colon. Untreated, UC can develop into colitis-associated cancer (CAC), for which effective medicines are not available. Natural products are a better choice to treat UC by alleviating the inflammation. Caffeic acid phenethyl ester (CAPE) is a phenolic compound and known for its beneficial effects, including antibacterial, anti-inflammatory, anti-diabetic, and anticancer. We aimed to study the effect of CAPE on dextran sulfate sodium (DSS)-induced UC in mouse model. Administration of CAPE to DSS-induced mice protected against colon damage by improving body weight of mice, reducing the weight of spleen, and increased colon length. In addition, administration of CAPE resulted reduced the activity of myeloperoxidase (MPO) and CD68+ positive cells. Furthermore, a significant decrease in the production of key cytokines and the expression of nuclear factor (p65-NF)-κB. Moreover, p65-NF-κB activation was reduced in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells from mouse origin. CAPE treatment leads to the reduced expressions of intercellular adhesion molecules (ICAM)-1 and vascular cell adhesion molecules (VCAM), both are key cell adhesion molecules. The results of this study clearly indicate that CAPE can potentially control inflammation in the colon and can be used as a therapy for UC.
Collapse
Affiliation(s)
- Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| | - Nooshin Mohebali
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Mohadeseh Hasanpourghadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Norhaizan Mohd Esa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
26
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
27
|
Volatile Oil Profile of Prickly Ash ( Zanthoxylum) Pericarps from Different Locations in China. Foods 2021; 10:foods10102386. [PMID: 34681436 PMCID: PMC8535335 DOI: 10.3390/foods10102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
Volatile oils of prickly ash (Zanthoxylum) pericarps have various potential biological functions with considerable relevance to food, pharmacological, and industrial applications. The volatile profile of oils extracted from prickly ash pericarps obtained from 72 plantations in China was determined by gas chromatography and mass spectrometry. Several chemometric analyses were used to better understand the volatile oil profile differences among different pericarps and to determine the key factors that affected geographical variations in the main volatile constituents of oils. A total of 47 constituents were detected with D-limonene, alfa-myrcene, and linalool as the most abundant. The volatile profile of pericarp oils was significantly affected by prickly ash species and some environmental factors, and the key factors that affected volatile profile variations for different prickly ash species were diverse. Chemometric analyses based on the volatile oil profile could properly distinguish Z. armatum pericarps from other pericarps. This study provides comprehensive information on the volatile oil profile of pericarps from different prickly ash species and different plantations, and it can be beneficial to a system for evaluating of pericarp quality. Moreover, this study speculates on the key environmental factors that cause volatile oil variations for each species, and can help to obtain better prickly ash pericarp volatile oils by improving the cultivated environments.
Collapse
|
28
|
Zhao M, Dai Y, Li P, Wang J, Ma T, Xu S. Inhibition of NLRP3 inflammasome activation and pyroptosis with the ethyl acetate fraction of Bungeanum ameliorated cognitive dysfunction in aged mice. Food Funct 2021; 12:10443-10458. [PMID: 34231604 DOI: 10.1039/d1fo00876e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zanthoxylum bungeanum Maxim (Rutaceae), a medicinal herb and foodstuff, has previously been demonstrated as useful for the potential prevention of age-related cognitive dysfunction. However, the mechanisms and material basis remain elusively understood. The prevention of cognitive impairment by four fractions of Z. bungeanum was evaluated in d-galactose-induced aging mice, including petroleum ether (PE), methylene chloride (DCM), ethyl acetate (EA), and n-butanol (N-BAI). The results showed that mice treated with EA and N-BAI had significantly alleviated d-galactose-induced memory deficit. In addition, EA could clearly protect neurons from cell death, alleviate oxidative damage and inhibit the activation of microglia in aging mice. Our data also showed that the activation of the NLRP3 inflammasome, the expression of pyroptosis-related proteins, and the release of IL-1β and IL-18 could be remarkably inhibited by the EA fraction in aging mice and LPS/ATP-induced BV-2 microglial cells. Besides, the chemical composition of an active EA fraction was qualitatively analyzed by using HPLC-MS/MS. Thirty-four compounds were tentatively identified based on their retention times, accurate mass, and MS/MS spectra. Moreover, eighteen reference compounds were analyzed by HPLC-MS/MS and their contents of EA were determined. The work demonstrated that the ethyl acetate fraction of Bungeanum ameliorated cognitive deficits, and its effects may be related to ameliorating oxidative stress and suppressing the NLRP3 inflammasome pathway and GSDMD-mediated pyroptosis in aging mice.
Collapse
Affiliation(s)
- Meihuan Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China and School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Tengyun Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| |
Collapse
|
29
|
Alkylamide Profiling of Pericarps Coupled with Chemometric Analysis to Distinguish Prickly Ash Pericarps. Foods 2021; 10:foods10040866. [PMID: 33921089 PMCID: PMC8071439 DOI: 10.3390/foods10040866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/17/2023] Open
Abstract
Because of extensive cultivation areas, various cultivars, nonstandard naming notations, and morphology similarity among relative cultivars, adulteration and associated business fraud may happen in the marketplaces of prickly ash pericarps due to higher financial gain and high-frequency trading. This study presents variations in the chemical components and contents of different prickly ash species from different plantations. Alkylamide profiling of pericarps derived from Zanthoxylum armatum, Z. bungeanum, and some relative Zanthoxylum species from 72 plantations across China were tested using ultra-performance liquid chromatography. Then, several chemometrics were applied to classify the prickly ash pericarps to reveal potential indicators that distinguish prickly ash pericarps and to identify the key factors that affect pericarp alkylamide profiling. The dominating alkylamides in the prickly ash pericarps were Z. piperitum (ZP)-amide C (0–20.64 mg/g) and ZP-amide D (0–30.43 mg/g). Alkylamide profiling of prickly ash pericarps varied significantly across species and geographical variations. ZP-amide D in prickly ash pericarps was identified as a potential indicator to distinguish prickly ash species. Longitude and aluminum content in soils were identified as key factors that affected alkylamide profiling of prickly ash pericarps. This study provides a useful tool to classify prickly ash species based on pericarp alkylamide profiling and to determine the key influence factors on pericarp alkylamide variations.
Collapse
|
30
|
Dejban P, Nikravangolsefid N, Chamanara M, Dehpour A, Rashidian A. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res 2020; 35:835-845. [PMID: 32929778 DOI: 10.1002/ptr.6866] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is a lifelong and recurrent disease of the gastrointestinal tract that afflicts many people in the world. Growing evidence has currently indicated that dysfunction of immune system, particularly toll-like receptors 4 (TLR4) signaling pathway dysfunction plays a pivotal part in the pathogenesis of IBD. TLR4 signaling is involved both in the pathogenesis and in the efficacy of treatment of IBD. There are some medicinal products and herbal medicines, which their role in the treatment of IBD through modulation of TLR4 signaling has been implicated. The purpose of this review article is to summarize those medicinal products and herbal medicines.
Collapse
Affiliation(s)
- Pegah Dejban
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Tian R, Liu X, Luo Y, Jiang S, Liu H, You F, Zheng C, Wu J. Apoptosis Exerts a Vital Role in the Treatment of Colitis-Associated Cancer by Herbal Medicine. Front Pharmacol 2020; 11:438. [PMID: 32410986 PMCID: PMC7199713 DOI: 10.3389/fphar.2020.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis-associated cancer (CAC) is known as inflammatory bowel disease (IBD)-developed colorectal cancer, the pathogenesis of which involves the occurrence of apoptosis. Western drugs clinically applied to CAC are often single-targeted and exert many adverse reactions after long-term administration, so it is urgent to develop new drugs for the treatment of CAC. Herbal medicines commonly have multiple components with multiple targets, and most of them are low-toxicity. Some herbal medicines have been reported to ameliorate CAC through inducing apoptosis, but there is still a lack of systematic review. In this work, we reviewed articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in recent years by setting the keywords as apoptosis in combination with colitis-associated cancer. We summarized the herbal medicine extracts or their compounds that can prevent CAC by modulating apoptosis and analyzed the mechanism of action. The results show the following. (1) Herbal medicines regulate both the mitochondrial apoptosis pathway and death receptor apoptosis pathway. (2) Herbal medicines modulate the above two apoptotic pathways by affecting signal transductions of IL-6/STAT3, MAPK/NF-κ B, Oxidative stress, Non-canonical TGF-β1, WNT/β-catenin, and Cell cycle, thereby ameliorating CAC. We conclude that following. (1) Studies on the role of herbal medicine in regulating apoptosis through the Ras/Raf/ERK, WNT/β-catenin, and Cell cycle pathways have not yet been carried out in sufficient depth. (2) The active constituents of reported anti-CAC herbal medicine mainly include polyphenols, terpenoids, and saccharide. Also, we identified other herbal medicines with the constituents mentioned above as their main components, aiming to provide a reference for the clinical use of herbal medicine in the treatment of CAC. (3) New dosage forms can be utilized to elevate the targeting and reduce the toxicity of herbal medicine.
Collapse
Affiliation(s)
- Ruimin Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Xianfeng Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqin Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Fei X, Li J, Kong L, Hu H, Tian J, Liu Y, Wei A. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:196-203. [PMID: 32155447 DOI: 10.1016/j.plaphy.2020.01.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Plants can accumulate a large amount of reactive oxygen species under adverse conditions such as drought and high temperature, which seriously affect the normal growth and development of plants. The antioxidant system can scavenge the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. However, the regulation patterns of many miRNAs under drought stress are still unclear. The content of antioxidant enzymes and the expression patterns of miRNAs and their target genes related to antioxidant systems were studied under drought stress in Zanthoxylum bungeanum. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is indicated that in the antioxidant process of Z. bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, GUS histochemical and RT-qPCR experimental results show that the expression levels of miRNAs and their target genes are basically negatively correlated, indicating that miRNAs can inhibit the expression of related genes and are also important regulators in the antioxidant system of Z. bungeanum. According to the expression patterns of antioxidant enzymes, miRNA and its target genes under drought stress, combined with previous research results, a model of plant antioxidant mechanism was constructed to provide a reference for further understanding of plant antioxidant mechanism.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jingmiao Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Lijuan Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China; Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
33
|
Lu PD, Zhao YH. Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med 2020; 15:15. [PMID: 32063999 PMCID: PMC7011253 DOI: 10.1186/s13020-020-0296-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a kind of multi-functional nuclear transcription factor involved in regulating gene transcription to influence pathological evolution of inflammatory and immune diseases. Numerous literature evidence that NF-κB pathway plays an essential role in pathogenic development of ulcerative colitis (UC). UC is a chronic non-specific inflammatory bowel disease, and until now, therapeutic agents for UC including aminosalicylates, corticosteroids and immune inhibitors still cannot exert satisfied effects on patients. In recent years, Chinese medicines suggest the advantages of alleviating symptoms and signs, decreasing side-effects and recurrence, whose one of mechanisms is related to regulation of NF-κB pathway. In this review, we categorize Chinese medicines according to their traditional therapeutic functions, and summarize the characteristics of Chinese medicines targeting NF-κB pathway in UC treatment. It indicates that 85 kinds of Chinese medicines’ compounds and formulae can directly act on NF-κBp65; while 58 Chinese medicines’ ingredients and formulae indirectly suppress NF-κBp65 by regulation of its upstream or other related pathways. Moreover, by the analysis of Chinese medicines’ category based on their traditional functions, we conclude the category of dampness-drying and detoxificating medicine targeting NF-κB pathway accounts for primary status for amelioration of UC. Simultaneously, this review also contributes to the choices of Chinese medicine category and provides curative potential of Chinese medicines for clinical UC treatment.
Collapse
Affiliation(s)
- Peng-De Lu
- 1School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Hua Zhao
- 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao, Special Administrative Region of China
| |
Collapse
|
34
|
Chen X, Pan H, Li J, Zhang G, Cheng S, Zuo N, Zhao Q, Peng Z. Inhibition of myeloid differentiation 1 specifically in colon with antisense oligonucleotide exacerbates dextran sodium sulfate-induced colitis. J Cell Biochem 2019; 120:16888-16899. [PMID: 31104313 DOI: 10.1002/jcb.28947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/02/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Myeloid differentiation 1 (MD-1), also known as lymphocyte antigen 86 (Ly86), is a soluble protein homologous to MD-2 and forms a complex with radioprotective 105 (RP105). RP105/MD-1 complex negatively regulates toll-like receptor 4 (TLR4) signaling and is involved in several immune disorders. However, the precise role of MD-1 in inflammatory bowel diseases (IBD) remains poorly understood. To further investigate the involvement of MD-1 in IBD, we inhibited MD-1 in colon with antisense oligonucleotide (AS-ODN) and assessed the effect of MD-1 inhibition on dextran sodium sulfate (DSS)-induced colitis. We discovered that MD-1 protein expression was remarkably decreased in both patients with ulcerative colitis and mice with DSS-induced colitis. For the first time, we showed that oral administration of MD-1 AS-ODN to mice significantly suppressed the MD-1 protein levels in colon rather than systemic tissues. Subsequently, we found that MD-1 AS-ODN treated mice were more susceptible to DSS-induced colitis based on loss of body weight, colon length, histological scores, and disease activity index. MD-1 inhibition also significantly enhanced inflammatory cytokines production such as IL-6 and IL-1β in colons. Finally, mice treated with MD-1 AS-ODN exhibited increased messenger RNA levels of TLR4 and MyD88 after DSS exposure and showed enhanced nuclear factor (NF)-κB activation compared with the control. Taken together, specifically suppression of MD-1 in colon tissues with AS-ODN exacerbates DSS-induced experimental colitis in mice, which is possibly related to activation of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Xiaoxing Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, People's Republic of China
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jin Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, People's Republic of China
| | - Guqin Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shizhe Cheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, People's Republic of China
| | - Na Zuo
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
35
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
36
|
Wu S, Chen Z. Astragaloside IV alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Exp Ther Med 2019; 18:2877-2884. [PMID: 31572532 PMCID: PMC6755457 DOI: 10.3892/etm.2019.7907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and relapsing inflammatory intestinal disease. Although the morbidity of UC has increased notably in recent years, effective therapeutic treatment remains unsatisfactory. Astragaloside IV (ASI), a monomeric compound isolated from the traditional Chinese medicine herb Ligusticum chuanxiong, exhibits anti-inflammatory effects. The present study aimed to investigate the therapeutic effects of ASI on experimental UC in vitro and in vivo. Cell proliferation was detected via a Cell Counting Kit-8 assay in vitro. In addition, the concentrations of the inflammatory factors myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in the colon tissues were determined by ELISA. Western blot analysis was used to examine phosphorylated transcription factor p65 (p-p65), p-inhibitor of NF-κB (IκB), claudin-1 and tight junction protein ZO-1 (ZO-1) protein levels in vitro and in vivo, respectively. The results indicated that lipopolysaccharide (LPS) significantly increased the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in CCD-18Co cells, which was markedly ameliorated by ASI. In addition to the inhibition of pro-inflammatory cytokines, ASI decreased the levels of p-p65 and p-IκB proteins. In addition, ASI decreased the disease activity index scores, and increased colon lengths in dextran sulfate sodium-induced UC mice. ASI also decreased the levels of the pro-inflammatory factors MPO, TNF-α, IL-1β, IL-6 and NO, and upregulated the expression of claudin-1 and ZO-1 in colon tissues. Therefore, ASI was effective in ameliorating experimental UC in vitro and in vivo via the inhibition of inflammatory molecules, and the downregulation of NF-κB signaling. In conclusion, ASI may serve as a potential therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Suxiao Wu
- Department of Gastroenterology, Suzhou Municipal Integrated Traditional Chinese and Western Medicine Hospital, Suzhou, Jiangsu 215101, P.R. China
| | - Zilan Chen
- Department of Gastroenterology, Suzhou Municipal Integrated Traditional Chinese and Western Medicine Hospital, Suzhou, Jiangsu 215101, P.R. China
| |
Collapse
|
37
|
He J, Zhang R, Lei Q, Chen G, Li K, Ahmed S, Long C. Diversity, knowledge, and valuation of plants used as fermentation starters for traditional glutinous rice wine by Dong communities in Southeast Guizhou, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2019; 15:20. [PMID: 31029145 PMCID: PMC6486954 DOI: 10.1186/s13002-019-0299-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/05/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Beverages prepared by fermenting plants have a long history of use for medicinal, social, and ritualistic purposes around the world. Socio-linguistic groups throughout China have traditionally used plants as fermentation starters (or koji) for brewing traditional rice wine. The objective of this study was to evaluate traditional knowledge, diversity, and values regarding plants used as starters for brewing glutinous rice wine in the Dong communities in the Guizhou Province of China, an area of rich biological and cultural diversity. METHODS Semi-structured interviews were administered for collecting ethnobotanical data on plants used as starters for brewing glutinous rice wine in Dong communities. Field work was carried out in three communities in Guizhou Province from September 2017 to July 2018. A total of 217 informants were interviewed from the villages. RESULTS A total of 60 plant species were identified to be used as starters for brewing glutinous rice wine, belonging to 58 genera in 36 families. Asteraceae and Rosaceae are the most represented botanical families for use as a fermentation starter for rice wine with 6 species respectively, followed by Lamiaceae (4 species); Asparagaceae, Menispermaceae, and Polygonaceae (3 species respectively); and Lardizabalaceae, Leguminosae, Moraceae, Poaceae, and Rubiaceae (2 species, respectively). The other botanical families were represented by one species each. The species used for fermentation starters consist of herbs (60.0%), shrubs (23.3%), climbers (10.0%), and trees (6.7%). The parts used include the root (21.7%), leaf (20.0%), and the whole plant (16.7%). Findings indicate a significant relationship between knowledge of plants used as fermentation starters with age (P value < 0.001) and educational status (P value = 0.004) but not with gender (P value = 0.179) and occupation (P value = 0.059). The species that are most used by informants include Pueraria lobata var. montana (Lour.) van der Maesen (UV = 1.74; Leguminosae), Actinidia eriantha Benth. (UV = 1.51; Actinidiaceae), Oryza sativa L. var. glutinosa Matsum (UV = 1.5; Poaceae). CONCLUSION This study highlights that while most of the Dong informants continue to use a diverse range of plants as a fermentation starter for brewing glutinous rice wine, knowledge of these plants is being lost by the younger generations. Documentation of traditional ethnobotanical knowledge and outreach is thus needed to conserve biocultural diversity in the rural Dong communities in southern China.
Collapse
Affiliation(s)
- Jianwu He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081 China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Jishou, 416000 Hunan China
| | - Ruifei Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081 China
| | - Qiyi Lei
- School of Health Science, Kaili University, Kaili, 556011 Guizhou China
| | - Gongxi Chen
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Jishou, 416000 Hunan China
| | - Kegang Li
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Jishou, 416000 Hunan China
| | - Selena Ahmed
- The Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT 59717 USA
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081 China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
38
|
Molecular basis of neurophysiological and antioxidant roles of Szechuan pepper. Biomed Pharmacother 2019; 112:108696. [DOI: 10.1016/j.biopha.2019.108696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/18/2023] Open
|
39
|
Zhang Z, Li S, Cao H, Shen P, Liu J, Fu Y, Cao Y, Zhang N. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food Funct 2019; 10:422-431. [PMID: 30604787 DOI: 10.1039/c8fo01699b] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phloretin, a dihydrogen chalcone flavonoid, is mainly isolated from apples and strawberries. Phloretin has been proven to have many biological activities such as anti-inflammatory and anti-oxidative. Herein, we investigated the protective efficacy and potential mechanism of phloretin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results showed that phloretin resulted in a reduced DSS-induced disease activity index (DAI), colon length shortening and colonic pathological damage. The levels of pro-inflammatory cytokines in the colon were also decreased by the administration of phloretin. Exploration of the potential mechanism demonstrated that phloretin suppressed the inflammatory response by regulating the nuclear factor-κB (NF-κB), toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Phloretin also inhibited the DSS-induced (NOD)-like receptor family and pyrin domain containing 3 (NLRP3) inflammasome activations. Further studies found that phloretin reduced key markers of oxidative stress as well as regulated the expression of zonula occludens-1 (ZO-1) and occludin. Interestingly, the concentration of serum lipopolysaccharide (LPS) was significantly decreased. Escherichia coli (E. coli) and Lactobacillus levels were also re-balanced after phloretin treatment. These results indicate that phloretin might be a new dietary strategy for the treatment of UC.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang M, Xie M, Wei D, Wang L, Hu M, Zhang Q, He Z, Peng W, Wu C. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum attenuates learning and memory impairments in scopolamine-treated mice. Food Funct 2019; 10:7315-7324. [DOI: 10.1039/c9fo00045c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning and memory impairments are common symptoms of dementia in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Mingguo Xie
- Department of Radiology
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610075
- P.R. China
| | - Daneng Wei
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Li Wang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Meibian Hu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Qing Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Zuxin He
- Sichuan Sino-Dandard Pharmaceutical Co. Ltd
- Luxi industrial development zone
- Mianyang 621101
- P.R. China
| | - Wei Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Chunjie Wu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
41
|
Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13133-13140. [PMID: 30472831 DOI: 10.1021/acs.jafc.8b03942] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important member of the nuclear receptor superfamily. Previous studies have shown the satisfactory anti-inflammatory role of PPARγ in experimental colitis models, mainly through negatively regulating several transcription factors such as nuclear factor-κB (NF-κB). Therefore, regulating PPARγ and PPARγ-related pathways has great promise for treating ulcerative colitis (UC). In the present study, our objective was to explore the potential effect of naringin on dextran sulfate sodium (DSS) induced UC in mice and its involved potential mechanism. We found that naringin significantly relieved DSS-induced disease activities index (DAI), colon length shortening, and colonic pathological damage. Exploration of the potential mechanisms demonstrated that naringin significantly activated DSS-induced PPARγ and subsequently suppressed NF-κB activation. PPARγ inhibitor GW9662 largely abrogated the roles of naringin in vitro. Moreover, DSS induced the activation of mitogen-activated protein kinase (MAPK) and (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was inhibited by naringin. Tight junction (TJ) architecture in naringin groups was also maintained by regulating zonula occludens-1 (ZO-1) expression. These results suggested that naringin may be a potential natural agent for protecting mice from DSS-induced UC.
Collapse
Affiliation(s)
- Hongyang Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiapei Cai
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yuchang Han
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis , Jilin University , Changchun 130062 , People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| |
Collapse
|
42
|
Chang SY, Xiao K, Zhang JQ, Zhong K, Grosu E, Gao Z, Wu YP, Gao H. Antibacterial and Antibiofilm Effects of Zanthoxylum bungeanum Leaves against Staphylococcus aureus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilm formation by Staphylococcus aureus on food contact surfaces is one of the most important issues for the food safety. The difficulties in controlling biofilms have driven the search for new antibacterial and antibiofilm agents from natural resources. The aims of the present study were to investigate the antibacterial and antibiofilm activities of the methanolic extract from Zanthoxylum bungeanum Maxim. leaves and identify the active compounds. By bioassay guide of inhibitory activity against S. aureus, four antibacterial compounds were separated from this extract and identified as neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and 4- O-caffeoyl-2,3-dihydroxy-2- C-methylbutyric acid based on MS and NMR data analyses. The four compounds exhibited moderate antibacterial activity against S. aureus with minimum inhibitory concentration of 5 mg/mL. Moreover, a fraction consisted of the four compounds was subjected to antibiofilm assays against S. aureus. Crystal violet staining and XTT reduction assay demonstrated that this fraction showed an excellent inhibitory efficacy on the biomass and metabolic activity of S. aureus biofilm. Scanning electron microscopic observation displayed that this fraction induced severe morphological changes in the architecture of S. aureus biofilm, which further confirmed that it possessed a potent inhibitory activity on the biofilm formation of S. aureus. So, these results suggested that Z. bungeanum leaves could be used as an attractive and promising candidate for the development of natural antibacterial agent for controlling food-related bacterial biofilms.
Collapse
Affiliation(s)
- Shi-Yuan Chang
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Kai Xiao
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Jia-Qi Zhang
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Kai Zhong
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Elena Grosu
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Zhen Gao
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Yan-Ping Wu
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Hong Gao
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
43
|
Periasamy S, Lin CH, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu MY. Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. J Funct Foods 2018; 47:1-10. [PMID: 30555535 PMCID: PMC6289526 DOI: 10.1016/j.jff.2018.05.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tamarind xyloglucan (TXG) is edible, bioavailable and mucoadhesive polysaccharide. The aim of this study was (i) to investigate molecular docking studies on the interaction of TXG to MUC1 and cytokine receptors and (ii) to assess the mucoadhesive role of TXG in UC. In vivo study: C57Bl6 mice were administered with DSS 3% (w/v) in drinking water; TXG 100 or 300 mg/kg/day was given orally for 7 days simultaneously. TXG consistently binds to MUC1 and cytokine receptors in molecular docking studies. TXG decreased the expression of MUC1 and MUC2. The mucoadhesive ability of TXG decreased IL-1β and IL-6 levels. Furthermore, TXG decreased the expression of TLR4, MyD88, I-κB and NF-κB thereby attenuating inflammation via TLR4/NF-κB signaling pathway. TXG mucoadhesion to MUC1 played a pivotal role in attenuating inflammation. To conclude, the mucoadhesive role of TXG is important in the attenuation of inflammation and healing of UC.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chia-Hui Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
44
|
Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-κB Signaling Pathway. Int J Mol Sci 2018; 19:ijms19072037. [PMID: 30011811 PMCID: PMC6073308 DOI: 10.3390/ijms19072037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment.
Collapse
|
45
|
Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J Nutr Biochem 2018; 57:67-76. [DOI: 10.1016/j.jnutbio.2018.03.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
|
46
|
Zhang M, Wang J, Zhu L, Li T, Jiang W, Zhou J, Peng W, Wu C. Zanthoxylum bungeanum Maxim. (Rutaceae): A Systematic Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology. Int J Mol Sci 2017; 18:E2172. [PMID: 29057808 PMCID: PMC5666853 DOI: 10.3390/ijms18102172] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022] Open
Abstract
Zanthoxylum bungeanum Maxim. (Rutaceae) is a popular food additive and traditional Chinese herbal medicine commonly named HuaJiao in China. This plant is widely distributed in Asian countries. The aim of this paper is to provide a systematic review on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of this plant. Furthermore, the possible development and perspectives for future research on this plant are also discussed. To date, over 140 compounds have been isolated and identified from Z. bungeanum, including alkaloids, terpenoids, flavonoids, and free fatty acids. The extracts and compounds have been shown to possess wide-ranging biological activity, such as anti-inflammatory and analgesic effects, antioxidant and anti-tumor effects, antibacterial and antifungal effects, as well as regulatory effects on the gastrointestinal system and nervous system, and other effects. As a traditional herbal medicine, Z. bungeanum has been widely used to treat many diseases, especially digestive disorders, toothache, stomach ache, and diarrhea. Many traditional usages of this plant have been validated by present investigations. However, further research elucidating the structure-function relationship among chemical compounds, understanding the mechanism of unique sensation, as well as exploring new clinical effects and establishing criteria for quality control for Z. bungeanum should be further studied.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiaolong Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lei Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Weidong Jiang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China.
| | - Juan Zhou
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China.
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunjie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
47
|
Hong L, Jing W, Qing W, Anxiang S, Mei X, Qin L, Qiuhui H. Inhibitory effect of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli and intestinal dysfunction. Food Funct 2017; 8:1569-1576. [PMID: 28281719 DOI: 10.1039/c6fo01739h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibitory effects of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli (E. coli) in vitro and in vivo were investigated, as well as its function of improvement of intestinal health. The results of in vitro studies, such as minimal inhibitory concentration (MIC) analysis, agar disc diffusion test and growth curve analysis of E. coli, showed that ZBEO had an excellent inhibitory effect on the growth of E. coli, which may be related to the loss of the normal shape of the cell membranes and the leakage of intracellular constituents, on the basis of SEM observation and cell constituents' release assay. ZBEO also had an inhibitory effect on enteritis and intestinal dysfunction induced by infection of E. coli in vivo, and histopathological observation indicated that ZBEO could markedly ameliorate the structural destruction of intestinal tissues, which might be related to its inhibitory effect on the gene expression of inflammatory cytokines (TLR2, TLR4, TNFα and IL-8). In conclusion, ZBEO showed an excellent inhibitory effect on E. coli both in vitro and in vivo, suggesting the potential application of ZBEO as a kind of functional component having the effects of improving intestinal function and health.
Collapse
Affiliation(s)
- Lei Hong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|